28 research outputs found

    The directed flow maximum near c(s) = 0

    Get PDF
    We investigate the excitation function of quark-gluon plasma formation and of directed in-plane flow of nucleons in the energy range of the BNLAGS and for the Ekin Lab = 40A GeV Pb+Pb collisions performed recently at the CERN-SPS. We employ the three-fluid model with dynamical unification of kinetically equilibrated fluid elements. Within our model with first-order phase transition at high density, droplets of QGP coexisting with hadronic matter are produced already at BNL-AGS energies, Ekin Lab C 10A GeV. A substantial decrease of the isentropic velocity of sound, however, requires higher energies, Ekin Lab C 40A GeV. We show the e ect on the flow of nucleons in the reaction plane. According to our model calculations, kinematic requirements and EoS effects work hand-in-hand at Ekin Lab = 40A GeV to allow the observation of the dropping velocity of sound via an increase of the directed flow around midrapidity as compared to top BNL-AGS energy

    Probes for the early reaction dynamics of heavy ion collisions at AGS and SPS

    Get PDF
    We discuss the early evolution of ultrarelativistic heavy-ion collisions within a multi- fluid dynamical model. In particular, we show that due to the finite mean-free path of the particles compression shock waves are smeared out considerably as compared to the one-fluid limit. Also, the maximal energy density of the baryons is much lower. We discuss the time scale of kinetic equilibration of the baryons in the central region and its relevance for directed flow. Finally, thermal emission of direct photons from the fluid of produced particles is calculated within the three-fluid model and two other simple expansion models. It is shown that the transverse momentum and rapidity spectra of photons give clue to the cooling law and the early rapidity distribution of the photon source

    Excitation function of entropy and pion production from AGS to SPS energies

    Get PDF
    Entropy production in the initial compression stage of relativistic heavy-ion collisions from AGS to SPS energies is calculated within a three-fluid hydrodynamical model. The entropy per participating net baryon is found to increase smoothly and does not exhibit a jump or a plateau as in the 1-dimensional one-fluid shock model. Therefore, the excess of pions per participating net baryon in nucleus-nucleus collisions as compared to proton-proton reactions also increases smoothly with beam energy

    Entropy production in collisions of relativistic heavy ions : a signal for quark-gluon plasma phase transition?

    Get PDF
    Entropy production in the compression stage of heavy ion collisions is discussed within three distinct macroscopic models (i.e. generalized RHTA, geometrical overlap model and three-fluid hydrodynamics). We find that within these models \sim 80% or more of the experimentally observed final-state entropy is created in the early stage. It is thus likely followed by a nearly isentropic expansion. We employ an equation of state with a first-order phase transition. For low net baryon density, the entropy density exhibits a jump at the phase boundary. However, the excitation function of the specific entropy per net baryon, S/A, does not reflect this jump. This is due to the fact that for final states (of the compression) in the mixed phase, the baryon density \rho_B increases with \sqrt{s}, but not the temperature T. Calculations within the three-fluid model show that a large fraction of the entropy is produced by nuclear shockwaves in the projectile and target. With increasing beam energy, this fraction of S/A decreases. At \sqrt{s}=20 AGeV it is on the order of the entropy of the newly produced particles around midrapidity. Hadron ratios are calculated for the entropy values produced initially at beam energies from 2 to 200 AGeV

    "Soft'' transverse expansion and flow in a multi-fluid model without phase transition

    Get PDF
    Abstract: We study transverse expansion and directed flow in Au(11AGeV)Au reactions within a multi-fluid dynamical model. Although we do not employ an equation of state (EoS) with a first order phase transition, we find a slow increase of the transverse velocities of the nucleons with time. A similar behaviour can be observed for the directed nucleon flow. This is due to non-equilibrium e ects which also lead to less and slower conversion of longitudinal into transverse momentum. We also show that the proton rapidity distribution at CERN energies, as calculated within this model, agrees well with the preliminary NA44-data

    Observing compact quark matter droplets in relativistic nuclear collisions

    Get PDF
    Compactness is introduced as a new method to search for the onset of the quark matter transition in relativistic heavy ion collisions. That transition supposedly leads to stronger compression and higher compactness of the source in coordinate space. That effect could be observed via pion interferometry. We propose to measure the compactness of the source in the appropriate principal axis frame of the compactness tensor in coordinate space

    Nonequilibrium fluid-dynamics in the early stage of ultrarelativistic heavy-ion collisions

    Get PDF
    To describe ultrarelativistic heavy-ion collisions we construct a three-fluid hydrodynamical model. In contrast to one-fluid hydrodynamics, it accounts for the finite stopping power of nuclear matter, i.e. for nonequilibrium e ects in the early stage of the reaction. Within this model, we study baryon dynamics in the BNL-AGS energy range. For the system Au+Au we find that kinetic equilibrium between projectile and target nucleons is established only after a time teq CM H 5 fm/c C 2RAu/³CM. Observables which are sensitive to the early stage of the collision (like e.g. nucleon flow) therefore di er considerably from those calculated in the one-fluid model

    Impact parameter dependencies in Pb(160 AGeV)+Pb reactions : hydrodynamical vs. cascade calculations

    Get PDF
    We investigate the impact parameter dependence of the specific entropy S/A in relativistic heavy ion collisions. Especially the anti-Lambda/anti-proton ratio is found to be a useful tool to distinguish between chemical equilibrium assumptions assumed in hydrodynamics (here: the 3-fluid model) and the chemical non-equilibrium scenario like in microscopic models as the UrQMD model

    Antiflow of nucleons at the softest point of the EoS

    Get PDF
    Report-no: UFTP-492/1999 Journal-ref: Phys.Rev. C61 (2000) 024909 We investigate flow in semi-peripheral nuclear collisions at AGS and SPS energies within macroscopic as well as microscopic transport models. The hot and dense zone assumes the shape of an ellipsoid which is tilted by an angle Theta with respect to the beam axis. If matter is close to the softest point of the equation of state, this ellipsoid expands predominantly orthogonal to the direction given by Theta. This antiflow component is responsible for the previously predicted reduction of the directed transverse momentum around the softest point of the equation of state

    Hypermatter : properties and formation in relativistic nuclear collisions

    Get PDF
    The extension of the Periodic System into hitherto unexplored domains - anti- matter and hypermatter - is discussed. Starting from an analysis of hyperon and single hypernuclear properties we investigate the structure of multi-hyperon objects (MEMOs) using an extended relativistic meson field theory. These are contrasted with multi-strange quark states (strangelets). Their production mechanism is stud- ied for relativistic collisions of heavy ions from present day experiments at AGS and SPS to future opportunities at RHIC and LHC. It is pointed out that abso- lutely stable hypermatter is unlikely to be produced in heavy ion collisions. New attention should be focused on short lived metastable hyperclusters ( / 10 10s) and on intensity interferometry of multi-strange-baryon correlations
    corecore