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Abstract

Compactness is introduced as a new method to search for the onset of the quark

matter transition in relativistic heavy ion collisions. That transition supposedly leads

to stronger compression and higher compactness of the source in coordinate space.

That effect could be observed via pion interferometry. We propose to measure the

compactness of the source in the appropriate principal axis frame of the compactness

tensor in coordinate space.
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A variety of signatures for the observation of the quark matter transition in relativistic

heavy ion collisions have been proposed, see e.g. [1] and references therein. Nowadays it is

widely believed that irregularities due to such a new state of matter should be seen most

clearly in excitation functions, i.e. in the bombarding energy dependence, or possibly also in

the impact parameter or mass-number dependence of various observables.

However, in spite of circumstantial evidence for such a novel state of matter [2], undis-

putable “irregularities” in such experimental excitation functions have not been reported

to date. Most probably a convincing argument that quark matter has indeed been found

requires several independent measurements of distinct observables pointing to the same con-

clusion - namely the onset of deconfinement at a particular bombarding energy, impact

parameter and system size.

In the present paper we introduce a new observable for the onset of the phase transition. It

relies on the measurement of the compactness of the source, which is related to the pressure

and density of the system in the compression and expansion stage of the nucleus-nucleus

collision. Observables related to the pressure do not only reflect the transient high density

but rather relate to the order parameter (field), specifying in which thermodynamical state [3]

the excited matter was created. The compactness can be identified via interferometry: The

illumination of the baryon source by the pion radiation is subject to experimental scrutinity

via pion interferometry measurements [4].

To illustrate the basic idea, let us first discuss compression shocks in heavy-ion collisions

employing the Rankine Hugoniot Taub shock adiabat (RHTA) solution [5, 6] of relativistic

hydrodynamics,

W 2 − W0
2 + P

(

W

ρ
−

W0

ρ0

)

= 0 . (1)

It relates the energy per baryon in the local rest frame of the compressed matter, W , to

its baryon density ρ and pressure P . W0 and ρ0 are the energy (=923 MeV) and density

(=0.16 fm−3) in the ground state, and the compression factor is ρ/ρ0.

Solving for P we obtain

P = Wρ0

γcm − 1/γcm

1 − γcmρ0/ρ
. (2)

Simply speaking, the onset of the transition to quark matter at a given incident energy Ekin
lab =

2(γcm
2 − 1)W0 lets the pressure increase less rapidly with W and/or ρ, and consequently

higher compression ρ/ρ0 can be achieved than for the case without transition. Now, as

ρV ≃ πR2
ALρ must equal 2A by virtue of baryon number conservation, the longitudinal

thickness L of the compressed matter is proportional to 1/ρ. Thus, a transition to quark

matter leads to a more compact system, just as compact stars with a quark matter core are
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more compact than pure neutron stars [7]. Of course, in heavy-ion collisions that expectation

is based on the behavior of relativistic compression shocks rather than hydrostatic and

gravitational equilibrium.

To investigate quantitatively the experimental observable, we perform 3-dimensional (1-

fluid) calculations of relativistic hydrodynamics for the compression as well as for the sub-

sequent expansion stage of the reaction. That is, we solve numerically the continuity equa-

tions for the energy-momentum tensor, ∂µT
µν = 0, and the net baryon current, ∂µNµ

B = 0.

Detailed discussions of (3+1)-d numerical solutions for hydrodynamical compression and

expansion can be found e.g. in [8]. We shall employ two different equations of state (EoS)

P (W, ρ): i) a relativistic mean field (RMF) hadron fluid [9] corresponding to baryons and

antibaryons interacting via exchange of massive scalar and vector bosons, plus free thermal

pions; the parameters of the lagrangian are fitted to the ground state of infinite nuclear

matter, in particular the nuclear saturation density, the energy per nucleon, and the incom-

pressibility. ii) the same EoS as in i) for the low-density phase, supplemented by the Bag

Model equation of state with bag constant B1/4 = 235 MeV for the quark-gluon (QG) phase.

The phase coexistence region corresponding to this first-order transition is constructed em-

ploying Gibbs’ condition of phase equilibrium, pRMF(T, µB) = pQG(T, µB), where T and µB

denote the temperature and the baryon-chemical potential, respectively. For example, for

ρ = 0 we find TC ≈ 170 MeV, while at T = 0 phase coexistence sets in at ρ ≈ 4.6ρ0. A more

detailed discussion of these EoS can be found in [6].

As an example, we study the compactness in the reactions Au+Au at impact parameter

b = 3 fm and energy Ekin
lab = 8A GeV, where the transition to quark matter does occur

(within the present model). We define the configuration space sphericity tensor, also called

“compactness tensor” below, as the second moment of the net baryon current. On fixed time

hypersurfaces we have

Fij(t) =
∫

d3x xi xj N0
B(t, ~x) Θ (ρ(t, ~x) − ρcut) . (3)

We apply an additional density cut ρ > ρcut in the integral to discard spectator matter.

In the future the cuts and the hypersurface will have to be adapted to the experimental

conditions. However, that is not crucial for understanding the effect.

The three eigenvalues fn are the solutions of the cubic equation det(Fij − fδij) = 0, and

the eigenvectors ~en follow from solving the linear system of equations (Fij − fnδij)e
j
n = 0.

Let ~e1, ~e2 be the eigenvectors defining the reaction plane, ~e1 corresponding to the bigger

of the eigenvalues f1 and f2. To simplify the discussion we shall assume that the matter

distribution is symmetric with respect to the reaction plane.

We can now rotate the coordinate frame around ~e3 by an angle cos Θ = ~e1 · ~ez, where ~ez

3



defines the longitudinal (beam-) direction in the lab frame. The rotated compactness tensor

F ∗ can be written in terms of the eigenvalues fn and orthogonal eigenvectors ~e ∗

n as

F ∗ = f1~e
∗

1 ⊗ ~e ∗

1 + f2~e
∗

2 ⊗ ~e ∗

2 + f3~e
∗

3 ⊗ ~e ∗

3 . (4)

In diagonal form, F ∗ specifies an ellipsoid in configuration space with principal axis along

~e ∗

n and radii
√

fn. For example, cigar patterns, oriented along the z-axis, would correspond

to f1 > f2 = f3, ~e ∗

1 = ~ez, ~e ∗

2 = ~ex, ~e ∗

3 = ~ey. The “compactness” can now be defined as the

ratio of the in-plane radii,
√

f2/f1.

Figure 1: Contour plot of the time-like component of the net baryon four-current in planes

transverse to the longitudinal axis ~e ∗

1 of the compactness tensor (Au+Au collision at Ekin
lab =

8 AGeV, b = 3 fm). Left: Relativistic mean-field EoS without phase transition. Right: with

phase transition to quark matter.

Fig. 1 shows typical density distributions in the transverse planes of the coordinate frame

where F ∗ is diagonal, eq. (4). The polar angle relative to the lab frame as well as the

eccentricity

ǫ =
f3 − f2

f3 + f2

(5)
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are shown as well. As already indicated in the introduction, we find very different eigenvalues

for the two equations of state, the one without and the other with a first order phase

transition included. The calculation with transition to quark matter corresponds to higher

compactness of the baryon distribution. Because the incompressibility ∂p/∂ρ or ∂p/∂(Wρ)

is smaller in the presence of the coexistence phase, the compactness tensor is much flatter

(nearly a factor of two !) in model ii) than in model i). Moreover, our (3+1)-dimensional

expansion solutions show that the ratio of the in-plane radii
√

f2/f1 remains much smaller

in the case with phase transition, cf. Fig. 2.
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Figure 2: Ratio of the in-plane radii
√

f2/f1 as it evolves during the compression and ex-

pansion stages, for the relativistic mean-field EoS without phase transition and for the case

with transition to quark matter (Au+Au, Ekin
lab = 8 AGeV, b = 3 fm).

This allows to measure directly the density increase in the high density stage of the

reaction, if a phase transition occurs. Care must be taken that the investigated range of

impact parameters constitutes a moderately small bin of centrality values. One should keep

in mind that the compression factor is affected by the incompressibility evaluated on the

RHTA (1), but not along a path of fixed specific entropy, because a large amount of entropy

is being produced in the compression process.

The predicted change in compactness due to the reduced incompressibility associated with

a first-order phase transition can be observed experimentally via the novel interferometry

analysis developed recently by Lisa et al. [4]. The proposed method is quite robust and

5



incorporates other interesting information as the configuration space tilt angles [10], which

complement the momentum-space flow angles. It avoids cuts in tilted ellipsoids, which are

not analysed in the appropriate rotated frame, and were the eccentricity and the RMS-radii

are much less distinct for models i) and ii).
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