83 research outputs found

    Characterization and digital restauration of XIV-XV centuries written parchments by means of non-destructive techniques. Three case studies

    Get PDF
    Parchment is the primary writing medium of the majority of documents with cultural importance. Unfortunately, this material suffers of several mechanisms of degradation that affect its chemical-physical structure and the readability of text. Due to the unique and delicate character of these objects, the use of nondestructive techniques is mandatory. In this work, three partially degraded handwritten parchments dating back to the XIV-XV centuries were analyzed by means of X-ray fluorescence spectroscopy, µ-ATR Fourier transform infrared spectroscopy, and reflectance and UV-induced fluorescence spectroscopy. 'e elemental and molecular results provided the identification of the inks, pigments, and superficial treatments. In particular, all manuscripts have been written with iron gall inks, while the capital letters have been realized with cinnabar and azurite. Furthermore, multispectral UV fluorescence imaging and multispectral VIS-NIR imaging proved to be a good approach for the digital restoration of manuscripts that suffer from the loss of inked areas or from the presence of brown spotting. Indeed, using ultraviolet radiation and collecting the images at different spectral ranges is possible to enhance the readability of the text, while by illuminating with visible light and by collecting the images at longer wavelengths, the hiding effect of brown spots can be attenuated

    Characterization and digital restauration of XIV-XV centuries written parchments by means of non-destructive techniques. Three case studies

    Get PDF
    Parchment is the primary writing medium of the majority of documents with cultural importance. Unfortunately, this material suffers of several mechanisms of degradation that affect its chemical-physical structure and the readability of text. Due to the unique and delicate character of these objects, the use of nondestructive techniques is mandatory. In this work, three partially degraded handwritten parchments dating back to the XIV-XV centuries were analyzed by means of X-ray fluorescence spectroscopy, µ-ATR Fourier transform infrared spectroscopy, and reflectance and UV-induced fluorescence spectroscopy. 'e elemental and molecular results provided the identification of the inks, pigments, and superficial treatments. In particular, all manuscripts have been written with iron gall inks, while the capital letters have been realized with cinnabar and azurite. Furthermore, multispectral UV fluorescence imaging and multispectral VIS-NIR imaging proved to be a good approach for the digital restoration of manuscripts that suffer from the loss of inked areas or from the presence of brown spotting. Indeed, using ultraviolet radiation and collecting the images at different spectral ranges is possible to enhance the readability of the text, while by illuminating with visible light and by collecting the images at longer wavelengths, the hiding effect of brown spots can be attenuated

    Steam reforming of model compounds from biomass fermentation over nanometric ruthenium modified nickel-lanthanum perovskites catalysts

    Get PDF
    Nanometric ruthenium-modified LaNiO3 perovskites prepared by coprecipitation method in aqueous and non-aqueous solvents were tested as catalysts in the steam reforming of butanol, acetone and ethanol and their mixture, named ABE, usually produced by fermentation. ABE is potentially of great interest for hydrogen production, notwithstanding the strong tendency of this mixture of oxygenated compounds to produce coke in the steam reforming conditions. The tested catalyst showed high feed conversions with improved stability

    Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis

    Get PDF
    Chemical recycling is considered one of the most sustainable solutions to limit the environmental issues related to plastic waste pollution, whereby plastic is converted into more valuable compounds when mechanical recycling is not feasible. Among the most critical fast-growing components of municipal solid waste, polystyrene represents 1/3 of the filling materials in landfills. In this work, the chemical recycling of polystyrene via two main thermochemical processes is investigated: pyrolysis and hydrothermal liquefaction (HTL). The influence of temperature (HTL: 300-360 & DEG;C and pyrolysis: 400-600 & DEG;C) and reaction time (HTL: 1-4 h; pyrolysis: 30 min) on the products obtained was studied. The obtained liquid and solid products were analyzed by using gas chromatography-mass spectrometry (GC-MS), an elemental analysis (EA), Fourier-transform infrared spectroscopy (FT-IR) and a thermogravimetric analysis (TGA). During HTL, a temperature of 360 & DEG;C and reaction time of 4 h were needed to completely decompose the polystyrene into mainly oil (83%) and water-soluble compounds (10%). The former was mainly composed of aromatics while the water phase was mainly composed of aromatics and oxygenated compounds (benzaldehyde and acetophenone). The pyrolysis led to the formation of 45% gas and 55% oil at 500 & DEG;C, and the oil was 40% styrene. Pyrolysis was thus more selective towards the recovery of the styrene monomer while the HTL can be an effective process to produce renewable aromatics

    Molecular crystallization inhibitors for salt damage control in porous materials. An overview

    Get PDF
    The use of inhibition chemicals holds the prospect of an efficient strategy to control crystallization in porous materials, thereby potentially contributing to the prevention or mitigation of the salt decay phenomenon in modern as well as historical building materials in a more sustainable manner. In this review, we first provide an essential background on the mechanism of salt crystallization and on the factors influencing this phenomenon; next, we illustrate the mechanism at the basis of the action of crystal growth inhibitors, and critically discuss the major advances in the development of different families of inhibitors, particularly focusing on their influence on salt transport and crystallization within the structure of porous media. Specifically, correlations between the crystallization inhibition processes in porous materials and variables, such as porous substrate composition and properties, contaminant salt type and concentrations, microclimatic conditions, inhibiting solution concentration and properties, and application methods, will be highlighted. Environmental aspects, limitations, and problems associated with some inhibition chemicals are also taken into account. Finally, a survey and a discussion on the most representative experimental techniques and instrumentation available to assess qualitatively and quantitatively the inhibitor effectiveness, as well as recently developed modelling tools are given out

    Soil Biocementation via Enzyme Induced Carbonate Precipitation (EICP) Method Employing Soybeans as a Source of Cheap Enzyme

    Get PDF
    In this work, the soil improvement technique via Enzyme Induced Carbonate Precipitation (EICP) was investigated by employing, as an alternative to expensive pure enzymes, enzymes extracted from agro-food wastes (tomato, apple, and soybean) such that the process is economically viable and fully embraces the concept of the circular economy. The feasibility of the process was evaluated by monitoring calcium carbonate precipitation in a sand sample. The effect of selected operative parameters was investigated during the injection into different grain size sand samples. The optimal operating conditions in terms of sand grain size, temperature, Urea/Calcium concentration were found. Results demonstrated the effectiveness of this alternative solution for EICP method in term of acquired material strength and the possibility to operate sand consolidation through an economically sustainable process

    Thermochemical characterization of polybenzimidazole with and without nano-ZrO2 for ablative materials application

    Get PDF
    During the ballistic atmospheric re-entry, a space vehicle has to withstand huge thermo-mechanical solicitations because of its high velocity and the friction with the atmosphere. According to the kind of the re-entry mission, the heat fluxes can be very high (in the order of some MW m−2) ;thus, an adequate thermal protection system is mandatory in order to preserve the structure of the vehicle, the payload and, for manned mission, the crew. Carbon phenolic ablators have been chosen for several missions because they are able to dissipate the incident heat flux very efficiently. Phenolic resin presents satisfying performance but also environmental drawbacks. Thus, a more environmental-friendly solution was conceived: a high-performance thermoplastic material, polybenzimidazole (PBI), was employed instead of phenolic resin. In this work PBI-ablative material samples were manufactured with and without the addition of nano-ZrO2 and tested with an oxyacetylene flame. For comparison, some carbon-phenolic ablators with the same density were manufactured and tested too. Thermogravimetric analysis on PBI samples was carried out at different heating rates, and the obtained TG data were elaborated to evaluate the activation energy of PBI and nano-filled PBI. The thermokinetics results for PBI show an improvement in thermal stability due to the addition of nano-ZrO2, while the oxyacetylene flame test enlightens how PBI ablators are able to overcome the carbon phenolic ablators performance, in particular when modified by the addition of nano-ZrO2

    Surface modification of flax yarns by enzymatic treatment and their interfacial adhesion with thermoset matrices

    Get PDF
    The aim of this study was to assess the effects of commercially available and relatively inexpensive enzyme preparations based on endo 1,4-β-xylanase, pectinase and xyloglucanase on the thermal (TGA), morphological (SEM), chemical (FT-IR) and mechanical (single yarn tensile tests) properties of flax yarns. The preparation based on pectinase and xyloglucanase provided the best results, resulting in the effective removal of hydrophilic components such as hemicellulose and pectin, the individualization of yarns and increased thermal stability at the expense of a reduction in mechanical properties, depending on the treatment parameters. Single yarn fragmentation tests pointed out an improved interfacial adhesion after enzymatic treatment, with reduced debonding length values of 18% for an epoxy matrix and up to 36% for a vinylester resin compared to untreated flax yarns

    Functionalization of commercial electrospun veils with zinc oxide nanostructures

    Get PDF
    The present research is focused on the synthesis of hexagonal ZnO wurtzite nanorods for the decoration of commercially available electrospun nylon nanofibers. The growth of ZnO was performed by a hydrothermal technique and for the first time on commercial electrospun veils. The growth step was optimized by adopting a procedure with the refresh of growing solution each hour of treatment (Method 1) and with the maintenance of a specific growth solution volume for the entire duration of the treatment (Method 2). The overall treatment time and volume of solution were also optimized by analyzing the morphology of ZnO nanostructures, the coverage degree, the thermal and mechanical stability of the obtained decorated electrospun nanofibers. In the optimal synthesis conditions (Method 2), hexagonal ZnO nanorods with a diameter and length of 53.5 nm ± 5.7 nm and 375.4 nm ± 37.8 nm, respectively, were obtained with a homogeneous and complete coverage of the veils. This easily scalable procedure did not damage the veils that could be potentially used as toughening elements in composites to prevent delamination onset and propagation. The presence of photoreactive species makes these materials ideal also as environmentally friendly photocatalysts for wastewater treatment. In this regard, photocatalytic tests were performed using methylene blue (MB) as model compound. Under UV light irradiation, the degradation of MB followed a first kinetic order data fitting and after 3 h of treatment a MB degradation of 91.0% ± 5.1% was achieved. The reusability of decorated veils was evaluated and a decrease in photocatalysis efficiency was detected after the third cycle of use
    • …
    corecore