30 research outputs found

    Forward ray tracing for image projection prediction and surface reconstruction in the evaluation of corneal topography systems

    Get PDF
    A forward ray tracing (FRT) model is presented to determine the exact image projection in a general corneal topography system. Consequently, the skew ray error in Placido-based topography is demonstrated. A quantitative analysis comparing FRT-based algorithms and Placido-based algorithms in reconstructing the front surface of the cornea shows that arc step algorithms are more sensitive to noise (imprecise). Furthermore, they are less accurate in determining corneal aberrations particularly the quadrafoil aberration. On the other hand, FRT-based algorithms are more accurate and more precise showing that point to point corneal topography is superior compared to its Placido-based counterpart

    Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging

    No full text
    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye

    Visualization 1: Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging

    No full text
    Visualization 1 belonging to Fig. 4 Originally published in Optics Express on 20 March 2017 (oe-25-6-6475

    Multispectral Scanning Light Ophthalmoscope (MSLO) using optimized illumination schemes

    No full text
    We present an MSLO capable of recording spectral information at each spatial imaging point to enable quantitative mapping of vital physiological parameters indicating retinal health condition

    Parallel scanning light ophthalmoscope (PSLO) for retinal imaging

    No full text
    Introduction The eye is constantly in motion even when fixating on a target. These so-called fixational eye movements exist to maintain a sharp vision and they can easily extend to frequencies above 100 Hz. However, they are also the major source of artefacts in retinal imaging systems where the imaging is typically done 30 Hz. In order to reduce eye motion related artifacts in retinal image data we are developing a high-speed imaging system using digital light projection (DLP) technology. Methods To achieve high imaging speeds, retinal area is illuminated with multiple spots/lines in parallel within the whole field of view (FOV) instead of using a single focused spot/line like in traditional scanning laser ophthalmoscopes. These multiple lines/spots patterns are generated with a digital light projector (Lightcrafter 4500, Texas Instrument) and by slightly altering spot/line patterns that we are projecting to the retina, a scanning effect is created. The back-scattered light patterns from the retinal layers are collected via the beamsplitter (PBS) and imaged on to the camera. After every pattern is projected, the final frame is generated by combining these back-reflected illumination patterns. To compensate the lack of physical pinholes, out-of-focus light is removed in the post-processing. Results The fovea of a healthy subject was imaged using 72 patterns. On the left all recorded line patterns were combined to form a non-confocal fundus image showing negligible visible structure. On the right the same lines undergo image processing to remove the out-of-focus light and the corneal scattering. This leads to improved contrast and better lateral resolution in the fundus image. The typical Henle’s fiber layer bowtie is observed around the fovea seen as two brighter areas. Image size is approximately 2.3 mm × 2.3 mm. Conclusions It is possible to create confocal images with the PSLO system. In theory the projector can achieve higher frame rates than traditional scanner-based systems (> 100 Hz) by illuminating the sample with multiple spots/lines. In retinal imaging, such a setup will provide better images because higher imaging speeds reduce motion artifacts

    Non-invasive in vivo angiography of the human eye with Doppler Optical Coherence Tomography

    No full text
    Introduction Optical coherence tomography (OCT) uses laser interferometry for non-invasive cross-sectional imaging of tissues with micrometer resolution. This technology is therefore ideal to visualize the micro-structures of the human retina and choroid in vivo. Additionally blood flow can be detected from Doppler frequency shifts in the OCT signal over time, which are caused by moving particles in flowing blood. In this study we investigated if these Doppler shifts can be used to create angiograms of the retina and choroid. Methods An experimental OCT system was constructed based on a 1040 nm swept laser source. A healthy volunteer was imaged over a retinal area of 6.0 × 7.9 mm 2 (20º × 26º). Doppler shifts were evaluated by measuring each location twice and were calculated from phase changes within the OCT signals. Angiograms of the vasculature were created by integration of the phase changes over depth. Results The retinal angiogram (Fig. 1(A)) shows blood vessels (in white) down to the capillary level and visualizes clearly the avascular zone of the fovea and the entrance and exit of vessels through the optic disc. The choroidal angiogram (Fig. 1(B)) shows a dense network of large vessels below the retina. Conclusions Doppler OCT can produce high-resolution angiograms of the retina and choroid

    Parallel scanning laser ophthalmoscope (PSLO) for high-speed retinal imaging

    No full text
    Purpose High-speed imaging of the retina is crucial for obtaining high quality images in the presence of eye motion. To improve the speed of traditional scanners, a high-speed ophthalmic device is presented using a digital micro-mirror device (DMD) for confocal imaging with multiple simultaneous spots. Methods The PSLO consists of three parts: an illumination, an imaging and a detector arm (Fig. 1). The DMD is uniformly illuminated with a near-infrared (850 nm) LED. The separation between ON positioned mirror elements was made large enough to eliminate cross-talk between neighboring virtual pinholes, and therefore allowed multi-spot confocal imaging across the whole field of view (FOV). The DMD is programmed to project series of shifted point pattern configurations, effectively scanning the spots over the sample surface. The DMD was imaged onto a sample and the returning light was tapped of via a beam-splitter and imaged on a CMOS camera. Multiple point illuminated frames are combined to form one confocal wide-field image. As a proof of principle images of a resolution target were acquired with the PSLO system. Results The resolution target was imaged with a pattern with virtual pinhole size of 2x2 mirrors and the separation between two pinholes was 4 mirror elements. Figure 1B shows the results for combining 9 illumination patterns to form the final image. Conclusions It is possible to create wide-field confocal images with the PSLO system. In theory the DMD can achieve higher frame rates than traditional scanner-based systems by illuminating the sample with multiple spots. In retinal imaging, such a setup will provide better images because higher imaging speeds reduce motion artifacts

    Digital micromirror device based ophthalmoscope with concentric circle scanning

    No full text
    Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast

    Parallel line scanning ophthalmoscope for retinal imaging

    Get PDF
    Purpose: To visualize retinal structures using a newly developed parallel line scanning ophthalmoscope (PLSO). Methods: A PLSO was built using a digital micromirror device (DMD) instead of traditional scanning mirrors to scan lines over the field of view (FOV). The DMD consists of 912 × 1140 micromirrors which can be individually switched on/off based on a programmed binary pattern. By switching on multiple (parallel) two-element wide lines in the DMD, the corresponding lines on the retina are imaged on a CMOS camera. After acquisition of each frame, the micromirrors are turned off and the mirrors for the next set of adjacent lines are turned on. This is repeated until the whole FOV is imaged. Confocal images are generated from the data by subtracting the maximum and minimum intensity values for each pixel in the sequence. The fovea and optic nerve head (ONH) of a healthy subject were imaged using 10º × 10º FOV at 100 Hz with 7 parallel lines resulting in a full image frame rate of 1.4 fps. The images were acquired through a dark-adapted pupil without any dilatation. The acquired data were processed, as mentioned earlier, into confocal images; but also non-confocal images were obtained by averaging all frames. Results: Figure 1A shows the imaged areas. In the non-confocal images (Fig. 1B&C), the corneal scattering is dominant and makes the retinal structures covered in haze. In the confocal images (Fig. 1D&E), confocality and contrast are improved. The foveal avascular zone and smaller blood vessels are visible in the fovea image (Fig. 1D). Also the quality of the ONH image is improved and many of the main features can be distinguished such as small blood vessels (Fig. 1E). Conclusions: The PLSO provided high contrast images of the fovea and ONH and detailed retinal structures could be observed. The DMD eliminates moving parts from the system and exposure time for each frame is potentially shorter than in full-field imaging, which reduces intra-frame motion. In retinal imaging, such a setup will provide better images because higher imaging speeds reduce motion artifacts
    corecore