7 research outputs found

    Expression of endogenous mouse APP modulates β-amyloid deposition in hAPP-transgenic mice

    No full text
    Amyloid-β (Aβ) deposition is one of the hallmarks of the amyloid hypothesis in Alzheimer’s disease (AD). Mouse models using APP-transgene overexpression to generate amyloid plaques have shown to model only certain parts of the disease. The extent to which the data from mice can be transferred to man remains controversial. Several studies have shown convincing treatment results in reducing Aβ and enhancing cognition in mice but failed totally in human. One model-dependent factor has so far been almost completely neglected: the endogenous expression of mouse APP and its effects on the transgenic models and the readout for therapeutic approaches. Here, we report that hAPP-transgenic models of amyloidosis devoid of endogenous mouse APP expression (mAPP-knockout / mAPPko) show increased amounts and higher speed of Aβ deposition than controls with mAPP. The number of senile plaques and the level of aggregated hAβ were elevated in mAPPko mice, while the deposition in cortical blood vessels was delayed, indicating an alteration in the general aggregation propensity of hAβ together with endogenous mAβ. Furthermore, the cellular response to Aβ deposition was modulated: mAPPko mice developed a pronounced and age-dependent astrogliosis, while microglial association to amyloid plaques was diminished. The expression of human and murine aggregation-prone proteins with differing amino acid sequences within the same mouse model might not only alter the extent of deposition but also modulate the route of pathogenesis, and thus, decisively influence the study outcome, especially in translational research

    A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle

    No full text
    Over 40% of microRNAs (miRNAs) are located in introns of protein-coding genes, and many of these intronic miRNAs are co-regulated with their host genes(1,2). In such cases of co-regulation, the products of host genes and their intronic miRNAs can cooperate to coordinately regulate biologically important pathways(3,4). Therefore, we screened intronic miRNAs dysregulated in the livers of mouse models of obesity to identify previously uncharacterized protein-coding host genes that may contribute to the pathogenesis of obesity-associated insulin resistance and type 2 diabetes mellitus. Our approach revealed that expression of both the gene encoding ectodysplasin A (Eda), the causal gene in X-linked hypohidrotic ectodermal dysplasia (XLHED)(5), and its intronic miRNA, miR-676, was increased in the livers of obese mice. Moreover, hepatic EDA expression is increased in obese human subjects and reduced upon weight loss, and its hepatic expression correlates with systemic insulin resistance. We also found that reducing miR-676 expression in db/db mice increases the expression of proteins involved in fatty acid oxidation and reduces the expression of inflammatory signaling components in the liver. Further, we found that Eda expression in mouse liver is controlled via PPAR gamma and RXR-alpha, increases in circulation under conditions of obesity, and promotes JNK activation and inhibitory serine phosphorylation of IRS1 in skeletal muscle. In accordance with these findings, gain-and loss-of-function approaches reveal that liver-derived EDA regulates systemic glucose metabolism, suggesting that EDA is a hepatokine that can contribute to impaired skeletal muscle insulin sensitivity in obesity
    corecore