3,927 research outputs found

    Accreting millisecond X-ray pulsars: 10 years of INTEGRAL observations

    Full text link
    During the last 10 years, INTEGRAL made a unique contribution to the study of accreting millisecond X-ray pulsars (AMXPs), discovering three of the 14 sources now known of this class. Besides increasing the number of known AMXPs, INTEGRAL also carried out observations of these objects above 20 keV, substantially advancing our understanding of their behaviour. We present here a review of all the AMXPs observed with INTEGRAL and discuss the physical interpretation of their behaviour in the X-ray domain. We focus in particular on the lightcurve profile during outburst, as well as the timing, spectral, and thermonuclear type-I X-ray bursts properties.Comment: 8 pages, 8 figures. Proceedings of "An INTEGRAL view of the high-energy sky (the first 10 years)" the 9th INTEGRAL Workshop, October 15-19, 2012, Paris, Franc

    Are There Magnetars in High Mass X-ray Binaries? The Case of SuperGiant Fast X-Ray Transients

    Full text link
    In this paper we survey the theory of wind accretion in high mass X-ray binaries hosting a magnetic neutron star and a supergiant companion. We concentrate on the different types of interaction between the inflowing wind matter and the neutron star magnetosphere that are relevant when accretion of matter onto the neutron star surface is largely inhibited; these include the inhibition through the centrifugal and magnetic barriers. Expanding on earlier work, we calculate the expected luminosity for each regime and derive the conditions under which transition from one regime to another can take place. We show that very large luminosity swings (~10^4 or more on time scales as short as hours) can result from transitions across different regimes. The activity displayed by supergiant fast X-ray transients, a recently discovered class of high mass X-ray binaries in our galaxy, has often been interpreted in terms of direct accretion onto a neutron star immersed in an extremely clumpy stellar wind. We show here that the transitions across the magnetic and/or centrifugal barriers can explain the variability properties of these sources as a results of relatively modest variations in the stellar wind velocity and/or density. According to this interpretation we expect that supergiant fast X-ray transients which display very large luminosity swings and host a slowly spinning neutron star are characterized by magnetar-like fields, irrespective of whether the magnetic or the centrifugal barrier applies. Supergiant fast X-ray transients might thus provide a new opportunity to detect and study magnetars in binary systems.Comment: Accepted for publication in ApJ. 16 pages, 6 figure

    Proton-nucleus cross section at high energies

    Full text link
    Cross sections for proton inelastic collision with different nuclei are described within the Glauber and multiple scattering approximations. A significant difference between approximate `Glauber' formula and exact calculations with a geometrical scaling assumption for very high-energy cross section is shown. Experimental values of proton-proton cross sections obtained using extensive air shower data are based on the relationship of proton-proton and respective proton-air absorption cross sections. According to obtained results values reported by the Akeno and Fly's Eye experimental groups are about 10% overestimated. The proper energy dependence of absorption cross section for collisions with air nuclei is of a great importance for studies of high energy cosmic rays using the Monte Carlo technique.Comment: 9pp (9 eps figures

    Eikonal profile functions and amplitudes for pp\rm pp and pˉp\bar{\rm p}{\rm p} scattering

    Full text link
    The eikonal profile function J(b)J(b) obtained from the Model of the Stochastic Vacuum is parametrized in a form suitable for comparison with experiment. The amplitude and the extended profile function (including imaginary and real parts) are determined directly from the complete pp and pˉ\bar{\rm p}p elastic scattering data at high energies. Full and accurate representation of the data is presented, with smooth energy dependence of all parameters. The changes needed in the original profile function required for description of scattering beyond the forward direction are described.Comment: Latex, 28 pages and 16 figure

    The super-orbital modulation of supergiant high-mass X-ray binaries

    Get PDF
    © ESO, 2017. The long-term X-ray light curves of classical supergiant X-ray binaries and supergiant fast X-ray transients show relatively similar super-orbital modulations, which are still lacking a sound interpretation. We propose that these modulations are related to the presence of corotating interaction regions (CIRs) known to thread the winds of OB supergiants. To test this hypothesis, we couple the outcomes of three-dimensional (3D) hydrodynamic models for the formation of CIRs in stellar winds with a simplified recipe for the accretion onto a neutron star. The results show that the synthetic X-ray light curves are indeed modulated by the presence of the CIRs. The exact period and amplitude of these modulations depend on a number of parameters governing the hydrodynamic wind models and on the binary orbital configuration. To compare our model predictions with the observations, we apply the 3D wind structure previously shown to well explain the appearance of discrete absorption components in the UV time series of a prototypical B0.5I-type supergiant. Using the orbital parameters of IGRJ 16493-4348, which has the same B0.5I donor spectral type, the period and modulations in the simulated X-ray light curve are similar to the observed ones, thus providing support to our scenario. We propose that the presence of CIRs in donor star winds should be considered in future theoretical and simulation efforts of wind-fed X-ray binaries

    The filter wheel and filters development for the X-IFU instruments onboard Athena

    Get PDF
    Athena is the large mission selected by ESA in 2013 to investigate the science theme "Hot and Energetic Universe" and presently scheduled for launch in 2028. One of the two instruments located at the focus of the 12 m-long Athena telescope is the X-ray Integral Field Unit (X-IFU). This is an array of TES microcalorimeters that will be operated at temperatures of 50 mK in order to perform high resolution spectroscopy with an energy resolution down to 2.5 eV at energies < 7 keV. In order to cope with the large dynamical range of X-ray fluxes spanned by the celestial objects Athena will be observing, the X-IFU will be equipped with a filter wheel. This will allow the user to fine tune the instrument set-up based on the nature of the target, thus optimizing the scientific outcomes of the observation. A few positions of the filter wheel will also be used to host a calibration source and to allow the measurement of the instrument intrinsic background

    Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921

    Full text link
    We analyze the spectral and timing properties of IGR J17498-2921 and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kT_e ~ 50 keV, soft seed photons of kT_bb ~ 1 keV, and Thomson optical depth \taut ~ 1 in a slab geometry. The slab area corresponds to a black body radius of R_bb ~9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 milliseconds up to ~65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ~ -60\mu s with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of about two times solar. However, the variation in the burst recurrence time as a function of \dot{m} (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.Comment: 9 pages, 8 figures, accepted for publication in A&A. arXiv admin note: text overlap with arXiv:1012.022

    High Energy Hadron-Nucleus Cross Sections and Their Extrapolation to Cosmic Ray Energies

    Get PDF
    Old models of the scattering of composite systems based on the Glauber model of multiple diffraction are applied to hadron-nucleus scattering. We obtain an excellent fit with only two free parameters to the highest energy hadron-nucleus data available. Because of the quality of the fit and the simplicity of the model it is argued that it should continue to be reliable up to the highest cosmic ray energies. Logarithmic extrapolations of proton-proton and proton-antiproton data are used to calculate the proton-air cross sections at very high energy. Finally, it is observed that if the exponential behavior of the proton-antiproton diffraction peak continues into the few TeV energy range it will violate partial wave unitarity. We propose a simple modification that will guarantee unitarity throughout the cosmic ray energy region.Comment: 8 pages, 9 postscript figures. This manuscript replaces a partial manuscript incorrectly submitte

    Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions

    Full text link
    We report on our activities, currently in progress, aimed at performing accelerator experiments with soft protons and hyper-velocity dust particles. They include tests of different types of X-ray detectors and related components (such as filters) and measurements of scattering of soft protons and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper-velocity dust tests respectively. We present the experimental set-up adopted to perform the tests, status of the activities and some very preliminary results achieved at present time.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-24, 201
    corecore