485 research outputs found

    Relaxed Spatio-Temporal Deep Feature Aggregation for Real-Fake Expression Prediction

    Get PDF
    Frame-level visual features are generally aggregated in time with the techniques such as LSTM, Fisher Vectors, NetVLAD etc. to produce a robust video-level representation. We here introduce a learnable aggregation technique whose primary objective is to retain short-time temporal structure between frame-level features and their spatial interdependencies in the representation. Also, it can be easily adapted to the cases where there have very scarce training samples. We evaluate the method on a real-fake expression prediction dataset to demonstrate its superiority. Our method obtains 65% score on the test dataset in the official MAP evaluation and there is only one misclassified decision with the best reported result in the Chalearn Challenge (i.e. 66:7%) . Lastly, we believe that this method can be extended to different problems such as action/event recognition in future.Comment: Submitted to International Conference on Computer Vision Workshop

    3-D Motion Estimation and Wireframe Adaptation Including Photometric Effects for Model-Based Coding of Facial Image Sequences

    Get PDF
    Cataloged from PDF version of article.We propose a novel formulation where 3-D global and local motion estimation and the adaptation of a generic wireframe model to a particular speaker are considered simultaneously within an optical flow based framework including the photometric effects of the motion. We use a flexible wireframe model whose local structure is characterized by the normal vectors of the patches which are related to the coordinates of the nodes. Geometrical constraints that describe the propagation of the movement of the nodes are introduced, which are then efficiently utilized to reduce the number of independent structure parameters. A stochastic relaxation algorithm has been used to determine optimum global motion estimates and the parameters describing the structure of the wireframe model. Results with both simulated and real facial image sequences are provided

    An adaptive speckle suppression filter for medical ultrasound imaging

    Get PDF
    Cataloged from PDF version of article.An adaptive smoothing technique for speckle suppression in medical B-scan ultrasonic imaging is presented. The technique is based on filtering with appropriately shaped and sized local kernels. For each image pixel, a filtering kernel, which fits to the local homogeneous region containing the processed pixel, is obtained through a local statistics based region growing technique. Performance of the proposed filter has been tested on the phantom and tissue images. The results show that the filter effectively reduces the speckle while preserving the resolvable details. The simulation results are presented in a comparative way with two existing speckle suppression methods. © 1995 IEE

    An improvement to MBASIC algorithm for 3D motion and depth estimation

    Get PDF
    Cataloged from PDF version of article.In model-based coding of facial images, the accuracy of motion and depth parameter estimates strongly affects the coding efficiency. MBASIC is a simple and effective iterative algorithm (recently proposed by Aizawa et al.) for 3-D motion and depth estimation when the initial depth estimates are relatively accurate. In this correspondence, we analyze its performance in the presence of errors in the initial depth estimates and propose a modification to MBASIC algorithm that significantly improves its robustness to random errors with only a small increase in the computational load

    Enhancement of images corrupted with signal dependent noise: Application to ultrasonic imaging

    Get PDF
    An adaptive filter for smoothing images corrupted by signal dependent noise is presented. The filter is mainly developed for speckle suppression in medical B-scan ultrasonic imaging. The filter is based on mean filtering of the image using appropriately shaped and sized local kernels. Each filtering kernel, fitting to the local homogeneous region, is obtained through local statistics based region growing. Performance of the proposed scheme have been tested on a B-scan image of a standard tissue-mimicking ultrasound resolution phantom. The results indicate that the filter effectively reduces the speckle while preserving the resolvable details. The performance figures obtained through computer simulations on the phantom image are presented in a comparative way with some existing speckle iippression schemes

    Iterative technique for 3-D motion estimation in videophone applications

    Get PDF
    In object based coding of facial images, the accuracy of motion and depth parameter estimates strongly affects the coding efficiency. We propose an improved algorithm based on stochastic relaxation for 3-D motion and depth estimation that converges to true motion and depth parameters even in the presence of 50% error in the initial depth estimates. The proposed method is compared with an existing algorithm (MBASIC) in case of different number of point correspondences. The simulation results show that the proposed method provides significantly better results than the MBASIC algorithm
    corecore