52 research outputs found

    Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish

    Get PDF
    A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults

    The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database

    Full text link
    There is an urgent need for largeâ scale botanical data to improve our understanding of community assembly, coexistence, biogeography, evolution, and many other fundamental biological processes. Understanding these processes is critical for predicting and handling humanâ biodiversity interactions and global change dynamics such as food and energy security, ecosystem services, climate change, and species invasions.The Botanical Information and Ecology Network (BIEN) database comprises an unprecedented wealth of cleaned and standardised botanical data, containing roughly 81 million occurrence records from c. 375,000 species, c. 915,000 trait observations across 28 traits from c. 93,000 species, and coâ occurrence records from 110,000 ecological plots globally, as well as 100,000 range maps and 100 replicated phylogenies (each containing 81,274 species) for New World species. Here, we describe an r package that provides easy access to these data.The bien r package allows users to access the multiple types of data in the BIEN database. Functions in this package query the BIEN database by turning user inputs into optimised PostgreSQL functions. Function names follow a convention designed to make it easy to understand what each function does. We have also developed a protocol for providing customised citations and herbarium acknowledgements for data downloaded through the bien r package.The development of the BIEN database represents a significant achievement in biological data integration, cleaning and standardization. Likewise, the bien r package represents an important tool for open science that makes the BIEN database freely and easily accessible to everyone.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142458/1/mee312861_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142458/2/mee312861.pd

    Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes

    Get PDF
    Smoldering multiple myeloma (SMM) is a precursor condition of multiple myeloma (MM) with significant heterogeneity in disease progression. Existing clinical models of progression risk do not fully capture this heterogeneity. Here we integrate 42 genetic alterations from 214 SMM patients using unsupervised binary matrix factorization (BMF) clustering and identify six distinct genetic subtypes. These subtypes are differentially associated with established MM-related RNA signatures, oncogenic and immune transcriptional profiles, and evolving clinical biomarkers. Three genetic subtypes are associated with increased risk of progression to active MM in both the primary and validation cohorts, indicating they can be used to better predict high and low-risk patients within the currently used clinical risk stratification models

    Plasma cells expression from smouldering myeloma to myeloma reveals the importance of the PRC2 complex, cell cycle progression, and the divergent evolutionary pathways within the different molecular subgroups

    Get PDF
    Sequencing studies have shed some light on the pathogenesis of progression from smouldering multiple myeloma (SMM) and symptomatic multiple myeloma (MM). Given the scarcity of smouldering samples, little data are available to determine which translational programmes are dysregulated and whether the mechanisms of progression are uniform across the main molecular subgroups. In this work, we investigated 223 SMM and 1348 MM samples from the University of Arkansas for Medical Sciences (UAMS) for which we had gene expression profiling (GEP). Patients were analysed by TC-7 subgroup for gene expression changes between SMM and MM. Among the commonly dysregulated genes in each subgroup, PHF19 and EZH2 highlight the importance of the PRC2.1 complex. We show that subgroup specific differences exist even at the SMM stage of disease with different biological features driving progression within each TC molecular subgroup. These data suggest that MMSET SMM has already transformed, but that the other precursor diseases are distinct clinical entities from their symptomatic counterpart
    corecore