12,446 research outputs found

    Distilling entanglement from arbitrary resources

    Full text link
    We obtain the general formula for the optimal rate at which singlets can be distilled from any given noisy and arbitrarily correlated entanglement resource, by means of local operations and classical communication (LOCC). Our formula, obtained by employing the quantum information spectrum method, reduces to that derived by Devetak and Winter, in the special case of an i.i.d. resource. The proofs rely on a one-shot version of the so-called "hashing bound," which in turn provides bounds on the one-shot distillable entanglement under general LOCC.Comment: 24 pages, article class, no figure. v2: references added, published versio

    Evanescent single-molecule biosensing with quantum limited precision

    Full text link
    Sensors that are able to detect and track single unlabelled biomolecules are an important tool both to understand biomolecular dynamics and interactions at nanoscale, and for medical diagnostics operating at their ultimate detection limits. Recently, exceptional sensitivity has been achieved using the strongly enhanced evanescent fields provided by optical microcavities and nano-sized plasmonic resonators. However, at high field intensities photodamage to the biological specimen becomes increasingly problematic. Here, we introduce an optical nanofibre based evanescent biosensor that operates at the fundamental precision limit introduced by quantisation of light. This allows a four order-of-magnitude reduction in optical intensity whilst maintaining state-of-the-art sensitivity. It enable quantum noise limited tracking of single biomolecules as small as 3.5 nm, and surface-molecule interactions to be monitored over extended periods. By achieving quantum noise limited precision, our approach provides a pathway towards quantum-enhanced single-molecule biosensors.Comment: 17 pages, 4 figures, supplementary informatio

    Biased EPR entanglement and its application to teleportation

    Get PDF
    We consider pure continuous variable entanglement with non-equal correlations between orthogonal quadratures. We introduce a simple protocol which equates these correlations and in the process transforms the entanglement onto a state with the minimum allowed number of photons. As an example we show that our protocol transforms, through unitary local operations, a single squeezed beam split on a beam splitter into the same entanglement that is produced when two squeezed beams are mixed orthogonally. We demonstrate that this technique can in principle facilitate perfect teleportation utilising only one squeezed beam.Comment: 8 pages, 5 figure

    Collisions of boosted black holes: perturbation theory prediction of gravitational radiation

    Get PDF
    We consider general relativistic Cauchy data representing two nonspinning, equal-mass black holes boosted toward each other. When the black holes are close enough to each other and their momentum is sufficiently high, an encompassing apparent horizon is present so the system can be viewed as a single, perturbed black hole. We employ gauge-invariant perturbation theory, and integrate the Zerilli equation to analyze these time-asymmetric data sets and compute gravitational wave forms and emitted energies. When coupled with a simple Newtonian analysis of the infall trajectory, we find striking agreement between the perturbation calculation of emitted energies and the results of fully general relativistic numerical simulations of time-symmetric initial data.Comment: 5 pages (RevTex 3.0 with 3 uuencoded figures), CRSR-107

    Non-linear optomechanical measurement of mechanical motion

    Get PDF
    Precision measurement of non-linear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of non-linear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic non-linearity of the radiation pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100~pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications.Comment: 8 pages, 4 figures, extensive supplementary material available with published versio

    Dephasing representation of quantum fidelity for general pure and mixed states

    Get PDF
    General semiclassical expression for quantum fidelity (Loschmidt echo) of arbitrary pure and mixed states is derived. It expresses fidelity as an interference sum of dephasing trajectories weighed by the Wigner function of the initial state, and does not require that the initial state be localized in position or momentum. This general dephasing representation is special in that, counterintuitively, all of fidelity decay is due to dephasing and none due to the decay of classical overlaps. Surprising accuracy of the approximation is justified by invoking the shadowing theorem: twice--both for physical perturbations and for numerical errors. It is shown how the general expression reduces to the special forms for position and momentum states and for wave packets localized in position or momentum. The superiority of the general over the specialized forms is explained and supported by numerical tests for wave packets, non-local pure states, and for simple and random mixed states. The tests are done in non-universal regimes in mixed phase space where detailed features of fidelity are important. Although semiclassically motivated, present approach is valid for abstract systems with a finite Hilbert basis provided that the discrete Wigner transform is used. This makes the method applicable, via a phase space approach, e. g., to problems of quantum computation.Comment: 11 pages, 4 figure

    Thermodynamic phase transitions for Pomeau-Manneville maps

    Full text link
    We study phase transitions in the thermodynamic description of Pomeau-Manneville intermittent maps from the point of view of infinite ergodic theory, which deals with diverging measure dynamical systems. For such systems, we use a distributional limit theorem to provide both a powerful tool for calculating thermodynamic potentials as also an understanding of the dynamic characteristics at each instability phase. In particular, topological pressure and Renyi entropy are calculated exactly for such systems. Finally, we show the connection of the distributional limit theorem with non-Gaussian fluctuations of the algorithmic complexity proposed by Gaspard and Wang [Proc. Natl. Acad. Sci. USA 85, 4591 (1988)].Comment: 5 page

    Thermographic Detection o Conducting Contaminants in Composite Materials Using Microwave Excitation

    Get PDF
    This paper describes microwave-source time-resolved infrared radiometry (MW-TRIR) as a method for the detection and characterization of microwave absorption by conductive fibers and other absorbing regions in dielectric materials. Due to recent technical developments in the speed, detector array size, and sensitivity of infrared focalplane arrays, time-resolved infrared radiometry has evolved into an important NDE tool which allows fast area inspection at high spatial resolution. While much prior work has focused on the detection of structural defects or disbonds in a variety of materials [1,2], the increasing importance of composite materials requires new approaches to inspection which allow characterization of local material properties. Defects in such materials may have little thermal contrast compared to the matrix material and may be invisible using conventional infrared radiometry methods. However, where the embedding material is a weak microwave absorber, localized microwave absorbing regions can be detected easily. There are three different classes of absorption processes: (1) dielectric loss (e.g. water), (2) magnetic loss, and (3) Joule heating (e.g. electromagnetic radiation interaction with conducting fibers)
    • …
    corecore