12,241 research outputs found

    Analyticity of the SRB measure for a class of simple Anosov flows

    Full text link
    We consider perturbations of the Hamiltonian flow associated with the geodesic flow on a surface of constant negative curvature. We prove that, under a small perturbation, not necessarely of Hamiltonian character, the SRB measure associated to the flow exists and is analytic in the strength of the perturbation. An explicit example of "thermostatted" dissipative dynamics is constructed.Comment: 23 pages, corrected typo

    The use of Kodak aerochrome infrared color film, type 2443, as a remote sensing tool

    Get PDF
    An infrared color film, Kodak Aerochrome, type 2443, has replaced the 8443 film. The 2443 has lower contrast than the 8443 film, and allows deeper probing into areas that appear as solid black shadows on the 8443 film. The cyan layer of 2443 is approximately 1 1/2 stops slower, at a density of 1.4, than the yellow and magenta emulsion layers

    Apparent movement phenomena on CRT displays - Threshold determinations of apparent movements of pulsed light sources

    Get PDF
    Apparent movement phenomena on cathode ray tube displays - threshold determinations of apparent movements of pulsed light source

    Squeezed state purification with linear optics and feed forward

    Get PDF
    A scheme for optimal and deterministic linear optical purification of mixed squeezed Gaussian states is proposed and experimentally demonstrated. The scheme requires only linear optical elements and homodyne detectors, and allows the balance between purification efficacy and squeezing degradation to be controlled. One particular choice of parameters gave a ten-fold reduction of the thermal noise with a corresponding squeezing degradation of only 11%. We prove optimality of the protocol, and show that it can be used to enhance the performance of quantum informational protocols such as dense coding and entanglement generation.Comment: 4 pages, 3 figure

    Statistical mechanics of damage phenomena

    Full text link
    This paper applies the formalism of classical, Gibbs-Boltzmann statistical mechanics to the phenomenon of non-thermal damage. As an example, a non-thermal fiber-bundle model with the global uniform (meanfield) load sharing is considered. Stochastic topological behavior in the system is described in terms of an effective temperature parameter thermalizing the system. An equation of state and a topological analog of the energy-balance equation are obtained. The formalism of the free energy potential is developed, and the nature of the first order phase transition and spinodal is demonstrated.Comment: Critical point appeared to be a spinodal poin

    Collisions of boosted black holes: perturbation theory prediction of gravitational radiation

    Get PDF
    We consider general relativistic Cauchy data representing two nonspinning, equal-mass black holes boosted toward each other. When the black holes are close enough to each other and their momentum is sufficiently high, an encompassing apparent horizon is present so the system can be viewed as a single, perturbed black hole. We employ gauge-invariant perturbation theory, and integrate the Zerilli equation to analyze these time-asymmetric data sets and compute gravitational wave forms and emitted energies. When coupled with a simple Newtonian analysis of the infall trajectory, we find striking agreement between the perturbation calculation of emitted energies and the results of fully general relativistic numerical simulations of time-symmetric initial data.Comment: 5 pages (RevTex 3.0 with 3 uuencoded figures), CRSR-107

    Laser cooling and control of excitations in superfluid helium

    Full text link
    Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.Comment: 6 pages, 4 figures. Supplementary information attache

    Thin film superfluid optomechanics

    Full text link
    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid 4^4He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates g0>2π×100g_0>2\pi \times 100 kHz and single photon cooperativities C0>10C_0>10 are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as g0>ΩMg_0>\Omega_M and opens the prospect of laser cooling a liquid into its quantum ground state.Comment: 18 pages, 6 figure

    Microphotonic Forces From Superfluid Flow

    Full text link
    In cavity optomechanics, radiation pressure and photothermal forces are widely utilized to cool and control micromechanical motion, with applications ranging from precision sensing and quantum information to fundamental science. Here, we realize an alternative approach to optical forcing based on superfluid flow and evaporation in response to optical heating. We demonstrate optical forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46 nN, roughly one order of magnitude larger than the radiation pressure force. We use this force to feedback cool the motion of a microtoroid mechanical mode to 137 mK. The photoconvective forces demonstrated here provide a new tool for high bandwidth control of mechanical motion in cryogenic conditions, and have the potential to allow efficient transfer of electromagnetic energy to motional kinetic energy.Comment: 5 pages, 6 figure
    • …
    corecore