1,516 research outputs found

    Solid State Light Evaluation in the U.S. Lab Mockup

    Get PDF
    This document constitutes the publication of work performed by the Space Human Factors Laboratory (mail code SF5 at the time) at the Johnson Space Center (JSC) in the months of June and July of 2000. At that time, the Space Human Factors Laboratory was part of the Space Human Factors Branch in the Flight Projects Division of the Space and Life Directorate. This report was originally to be a document for internal consumption only at JSC as it was seen to be only preliminary work for the further development of solid state illumination for general lighting on future space vehicles and the International Space Station (ISS). Due to funding constraints, immediate follow-on efforts were delayed and the need for publication of this document was overcome by other events. However, in recent years and with the development and deployment of a solid state light luminaire prototype on ISS, the time was overdue for publishing this information for general distribution and reference. Solid state lights (SSLs) are being developed to potentially replace the general luminaire assemblies (GLAs) currently in service in the International Space Station (ISS) and included in designs of modules for the ISS. The SSLs consist of arrays of light emitting diodes (LEDs), small solid state electronic devices that produce visible light in proportion to the electrical current flowing through them. Recent progressive advances in electrical power-to-light conversion efficiency in LED technology have allowed the consideration of LEDs as replacements for incandescent and fluorescent light sources in many circumstances, and their inherent advantages in ruggedness, reliability, and life expectancy make them attractive for applications in spacecraft. One potential area of application for the SSLs in the U.S. Laboratory Module of the ISS. This study addresses the suitability of the SSLs as replacements for the GLAs in this application

    Enhanced Lighting Techniques and Augmented Reality to Improve Human Task Performance

    Get PDF
    One of the most versatile tools designed for use on the International Space Station (ISS) is the Special Purpose Dexterous Manipulator (SPDM) robot. Operators for this system are trained at NASA Johnson Space Center (JSC) using a robotic simulator, the Dexterous Manipulator Trainer (DMT), which performs most SPDM functions under normal static Earth gravitational forces. The SPDM is controlled from a standard Robotic Workstation. A key feature of the SPDM and DMT is the Force/Moment Accommodation (FMA) system, which limits the contact forces and moments acting on the robot components, on its payload, an Orbital Replaceable Unit (ORU), and on the receptacle for the ORU. The FMA system helps to automatically alleviate any binding of the ORU as it is inserted or withdrawn from a receptacle, but it is limited in its correction capability. A successful ORU insertion generally requires that the reference axes of the ORU and receptacle be aligned to within approximately 0.25 inch and 0.5 degree of nominal values. The only guides available for the operator to achieve these alignment tolerances are views from any available video cameras. No special registration markings are provided on the ORU or receptacle, so the operator must use their intrinsic features in the video display to perform the pre-insertion alignment task. Since optimum camera views may not be available, and dynamic orbital lighting conditions may limit viewing periods, long times are anticipated for performing some ORU insertion or extraction operations. This study explored the feasibility of using augmented reality (AR) to assist with SPDM operations. Geometric graphical symbols were overlaid on the end effector (EE) camera view to afford cues to assist the operator in attaining adequate pre-insertion ORU alignment

    Role of correlated two-pion exchange in K+NK^+ N scattering

    Get PDF
    A dynamical model for S-- and P--wave correlated 2π2 \pi (and KKˉK \bar K) exchange between a kaon and a nucleon is presented, starting from corresponding NNˉKKˉN \bar N \rightarrow K \bar K amplitudes in the pseudophysical region, which have been constructed from nucleon, Δ\Delta--isobar and hyperon (Λ\Lambda, Σ\Sigma) exchange Born terms and a realistic meson exchange model of the ππKKˉ\pi \pi \rightarrow K \bar K and KKˉKKˉK \bar K \rightarrow K \bar K amplitude. The contribution in the s--channel is then obtained by performing a dispersion relation over the unitarity cut. In the ρ\rho--channel, considerable ambiguities exist, depending on how the dispersion integral is performed. Our model, supplemented by short range interaction terms, is able to describe empirical K+NK^+ N data below pion production threshold in a satisfactory way.Comment: 24 pages, REVTEX, figures available from the author

    Si and Mn Abundances in Damped Lya Systems with Low Dust Content

    Full text link
    We have measured the abundances of Zn, Si, Mn, Cr, Fe, and Ni in three damped Lyman alpha systems at redshifts z < 1 from high resolution echelle spectra of QSOs recorded with the Keck I telescope. In all three cases the abundances of Cr, Fe, and Ni relative to Zn indicate low levels of dust depletions. We propose that when the proportion of refractory elements locked up in dust grains is less than about 50 percent, it is plausible to assume an approximately uniform level of depletion for all grain constituents and, by applying a small dust correction, recover the intrisic abundances of Si and Mn. We use this approach on a small sample of damped systems for which it is appropriate, with the aim of comparing the metallicity dependence of the ratios [Si/Fe] and [Mn/Fe] with analogous measurements in Milky Way stars. The main conclusion is that the relative abundances of both elements in distant galaxies are broadly in line with expectations based on Galactic data. Si displays a mild enhancement at low metallicities, as expected for an alpha-capture element, but there are also examples of near-solar [Si/Fe] at [Fe/H] < -1. The underabundance of Mn at low metallicities is possibly even more pronounced than that in metal-poor stars, and no absorption system has yet been found where [Mn/Fe] is solar. The heterogeneous chemical properties of damped Lyman alpha systems, evident even from this limited set of measurements, provide further support for the conclusion from imaging studies that a varied population of galaxies gives rise to this class of QSO absorbers.Comment: 29 pages, LaTex, 7 Postscript Figures. Accepted for Publication in the Astrophysical Journa

    Sixteen years of Collaborative Learning through Active Sense-making in Physics (CLASP) at UC Davis

    Full text link
    This paper describes our large reformed introductory physics course at UC Davis, which bioscience students have been taking since 1996. The central feature of this course is a focus on sense-making by the students during the five hours per week discussion/labs in which the students take part in activities emphasizing peer-peer discussions, argumentation, and presentations of ideas. The course differs in many fundamental ways from traditionally taught introductory physics courses. After discussing the unique features of CLASP and its implementation at UC Davis, various student outcome measures are presented showing increased performance by students who took the CLASP course compared to students who took a traditionally taught introductory physics course. Measures we use include upper-division GPAs, MCAT scores, FCI gains, and MPEX-II scores.Comment: Also submitted to American Journal of Physic

    Piecewise Linear Models for the Quasiperiodic Transition to Chaos

    Full text link
    We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non-trivial but essentially solvable models for the phenomenon of mode-locking and the quasi-periodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non-zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low-order spline approximations to the classic ``sine-circle'' map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.Comment: 75 pages, plain TeX, 47 figures (available on request
    corecore