363 research outputs found
Linear dependence of peak width in \chi(\bq, \omega) vs T_c for YBCO superconductors
It is shown that the momentum space width of the peak in the spin
susceptibility, Im, is linearly proportional to the
superconducting : with \AA. This relation is similar to the linear relation between incommensurate
peak splitting and in LaSrCuO superconductors, as first proposed by
Yamada et al. (Phys. Rev. B 57, 6165, (1998)). The velocity is
smaller than Fermi velocity or the spin-wave velocity of the parent compound
and remains the same for a wide doping range. This result points towards strong
similarities in magnetic state of YBCO and LaSrCuO.Comment: 5 pages, 3 figures, latex fil
Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature
The alpha-beta magneto-structural phase transition in MnAs/GaAs(111)
epilayers is investigated by elastic neutron scattering. The in-plane parameter
of MnAs remains almost constant with temperature from 100 K to 420 K, following
the thermal evolution of the GaAs substrate. This induces a temperature
dependent biaxial strain that is responsible for an alpha-beta phase
coexistence and, more important, for the stabilization of the ferromagnetic
alpha-phase at higher temperature than in bulk. We explain the premature
appearance of the beta-phase at 275 K and the persistence of the ferromagnetic
alpha-phase up to 350 K with thermodynamical arguments based on the MnAs phase
diagram. It results that the biaxial strain in the hexagonal plane is the key
parameter to extend the ferromagnetic phase well over room temperature.Comment: 4 pages, 3 figures, accepted for publication in Physical Review
Letter
Characterization of the Intra-Unit-Cell magnetic order in Bi2Sr2CaCu2O8+d
As in YBa2Cu3O6+x and HgBa2CuO8+d, the pseudo-gap state in Bi2Sr2CaCu2O8+d is
characterized by the existence of an intra-unit-cell magnetic order revealed by
polarized neutron scattering technique. We report here a supplementary set of
polarized neutron scattering measurements for which the direction of the
magnetic moment is determined and the magnetic intensity is calibrated in
absolute units. The new data allow a close comparison between bilayer systems
YBa2Cu3O6+x and Bi2Sr2CaCu2O8+d and rise important questions concerning the
range of the magnetic correlations and the role of disorder around optimal
doping.Comment: 12 pages, 8 figures, submitted to physical review
Double dispersion of the magnetic resonant mode in cuprates
The magnetic excitation spectra in the vicinity of the resonant peak, as
observed by inelastic neutron scattering in cuprates, are studied within the
memory-function approach. It is shown that at intermediate doping the
superconducting gap induces a double dispersion of the peak, with an anisotropy
rotated between the downward and upward branch. Similar behavior, but with a
spin-wave dispersion at higher energies, is obtained for the low-doping case
assuming a large pairing pseudogap.Comment: 4 LaTeX pages, 4 figure
Fourier-Transformed Local Density of States and Tunneling into a -Wave Superconductor with Bosonic Modes
We analyze the effects of the electronic coupling to bosonic modes in a
d-wave superconductor. The role of the scattering due to boson on the momentum
transfer between electronic states in the Brilloine zone is addressed. We
consider specific examples of phonon, breathing mode phonon and spin
resonance at . The Fourier spectrum of the energy derivative local
density of states (LDOS) is calculated. To properly calibrate the effects of
different modes we fix the quasipartilce renormalization at specific momentum
points. It is found that the mode with highly anisotropic
momentum-dependent coupling matrix element gives rise to well definded features
in the Fourier spectrum, at the energy of mode plus gap, with a momentum
transfer along the Cu-O bond direction of cuprates. This result is in a
striking contrast to the cases of the coupling to other modes and also to the
case of no mode coupling. The origin of this difference is explored in detail.
A comparison with the recent STM experiments is briefly discussed.Comment: 9 pages, 4 eps figures include
Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature
The alpha-beta magneto-structural phase transition in MnAs/GaAs(111)
epilayers is investigated by elastic neutron scattering. The in-plane parameter
of MnAs remains almost constant with temperature from 100 K to 420 K, following
the thermal evolution of the GaAs substrate. This induces a temperature
dependent biaxial strain that is responsible for an alpha-beta phase
coexistence and, more important, for the stabilization of the ferromagnetic
alpha-phase at higher temperature than in bulk. We explain the premature
appearance of the beta-phase at 275 K and the persistence of the ferromagnetic
alpha-phase up to 350 K with thermodynamical arguments based on the MnAs phase
diagram. It results that the biaxial strain in the hexagonal plane is the key
parameter to extend the ferromagnetic phase well over room temperature.Comment: 4 pages, 3 figures, accepted for publication in Physical Review
Letter
High energy spin excitations in YBa_2 Cu_3 O_{6.5}
Inelastic neutron scattering has been used to obtain a comprehensive
description of the absolute dynamical spin susceptibility
of the underdoped superconducting cuprate YBa_2 Cu_3 O_{6.5} ()
over a wide range of energies and temperatures ( and ). Spin excitations of two different
symmetries (even and odd under exchange of two adjacent CuO_2 layers) are
observed which, surprisingly, are characterized by different temperature
dependences. The excitations show dispersive behavior at high energies.Comment: 15 pages, 5 figure
Quantum Impurities and the Neutron Resonance Peak in : Ni versus Zn
The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin
dynamics of an optimally doped high temperature superconductor is compared in
two samples with almost identical superconducting transition temperatures:
YBa(CuNi)O (T=80 K) and
YBa(CuZn)O (T=78 K). In the Ni-substituted
system, the magnetic resonance peak (which is observed at E40 meV in
the pure system) shifts to lower energy with a preserved E/T ratio
while the shift is much smaller upon Zn substitution. By contrast Zn, but not
Ni, restores significant spin fluctuations around 40 meV in the normal state.
These observations are discussed in the light of models proposed for the
magnetic resonance peak.Comment: 3 figures, submitted to PR
On Measuring Condensate Fraction in Superconductors
An analysis of off-diagonal long-range order in superconductors shows that
the spin-spin correlation function is significantly influenced by the order if
the order parameter is anisotropic on a microscopic scale. Thus, magnetic
neutron scattering can provide a direct measurement of the condensate fraction
of a superconductor. It is also argued that recent measurements in high
temperature superconductors come very close to achieving this goal.Comment: 4 pages, 1 eps figure, RevTex. A new possibility in the underdoped
regime is added. Other corrections are mino
Effect of Nonmagnetic Impurities on the Magnetic Resonance Peak in YBa2Cu3O7
The magnetic excitation spectrum of a YBa_2 Cu_3 O_7 crystal containing 0.5%
of nonmagnetic (Zn) impurities has been determined by inelastic neutron
scattering. Whereas in the pure system a sharp resonance peak at E ~ 40 meV is
observed exclusively below the superconducting transition temperature T_c, the
magnetic response in the Zn-substituted system is broadened significantly and
vanishes at a temperature much higher than T_c. The energy-integrated spectral
weight observed near q = (pi,pi) increases with Zn substitution, and only about
half of the spectral weight is removed at T_c
- âŠ