37 research outputs found

    Near to One's Heart: The Intimate Relationship Between the Placenta and Fetal Heart.

    Get PDF
    The development of the fetal heart is exquisitely controlled by a multitude of factors, ranging from humoral to mechanical forces. The gatekeeper regulating many of these factors is the placenta, an external fetal organ. As such, resistance within the placental vascular bed has a direct influence on the fetal circulation and therefore, the developing heart. In addition, the placenta serves as the interface between the mother and fetus, controlling substrate exchange and release of hormones into both circulations. The intricate relationship between the placenta and fetal heart is appreciated in instances of clinical placental pathology. Abnormal umbilical cord insertion is associated with congenital heart defects. Likewise, twin-to-twin transfusion syndrome, where monochorionic twins have unequal sharing of their placenta due to inter-twin vascular anastomoses, can result in cardiac remodeling and dysfunction in both fetuses. Moreover, epidemiological studies have suggested a link between placental phenotypic traits and increased risk of cardiovascular disease in adult life. To date, the mechanistic basis of the relationships between the placenta, fetal heart development and later risk of cardiac dysfunction have not been fully elucidated. However, studies using environmental exposures and gene manipulations in experimental animals are providing insights into the pathways involved. Likewise, surgical instrumentation of the maternal and fetal circulations in large animal species has enabled the manipulation of specific humoral and mechanical factors to investigate their roles in fetal cardiac development. This review will focus on such studies and what is known to date about the link between the placenta and heart development

    Adverse Intrauterine Environment and Cardiac miRNA Expression.

    Get PDF
    Placental insufficiency, high altitude pregnancies, maternal obesity/diabetes, maternal undernutrition and stress can result in a poor setting for growth of the developing fetus. These adverse intrauterine environments result in physiological changes to the developing heart that impact how the heart will function in postnatal life. The intrauterine environment plays a key role in the complex interplay between genes and the epigenetic mechanisms that regulate their expression. In this review we describe how an adverse intrauterine environment can influence the expression of miRNAs (a sub-set of non-coding RNAs) and how these changes may impact heart development. Potential consequences of altered miRNA expression in the fetal heart include; Hypoxia inducible factor (HIF) activation, dysregulation of angiogenesis, mitochondrial abnormalities and altered glucose and fatty acid transport/metabolism. It is important to understand how miRNAs are altered in these adverse environments to identify key pathways that can be targeted using miRNA mimics or inhibitors to condition an improved developmental response

    Trans-abdominal in vivo placental vessel occlusion using High Intensity Focused Ultrasound.

    Get PDF
    Pre-clinically, High Intensity Focused Ultrasound (HIFU) has been shown to safely and effectively occlude placental blood vessels in the acute setting, when applied through the uterus. However, further development of the technique to overcome the technical challenges of targeting and occluding blood vessels through intact skin remains essential to translation into human studies. So too does the assessment of fetal wellbeing following this procedure, and demonstration of the persistence of vascular occlusion. At 115 ± 10 d gestational age (term~147 days) 12 pregnant sheep were exposed to HIFU (n = 6), or to a sham (n = 6) therapy through intact abdominal skin (1.66 MHz, 5 s duration, in situ ISPTA 1.3-4.4 kW.cm-2). Treatment success was defined as undetectable colour Doppler signal in the target placental vessel following HIFU exposures. Pregnancies were monitored for 21 days using diagnostic ultrasound from one day before HIFU exposure until term, when post-mortem examination was performed. Placental vessels were examined histologically for evidence of persistent vascular occlusion. HIFU occluded 31/34 (91%) of placental vessels targeted, with persistent vascular occlusion evident on histological examination 20 days after treatment. The mean diameter of occluded vessels was 1.4 mm (range 0.3-3.3 mm). All pregnancies survived until post mortem without evidence of significant maternal or fetal iatrogenic harm, preterm labour, maternal or fetal haemorrhage or infection. Three of six ewes exposed to HIFU experienced abdominal skin burns, which healed without intervention within 21 days. Mean fetal weight, fetal growth velocity and other measures of fetal biometry were not affected by exposure to HIFU. Fetal Doppler studies indicated a transient increase in the umbilical artery pulsatility index (PI) and a decrease in middle cerebral artery PI as a result of general anaesthesia, which was not different between sham and treatment groups. We report the first successful application of fully non-invasive HIFU for occlusion of placental blood flow in a pregnant sheep model, with a low risk of significant complications. This proof of concept study demonstrates the potential of this technique for clinical translation

    Melatonin modulates the fetal cardiovascular defense response to acute hypoxia.

    Get PDF
    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability.This work was supported by the ‘International Journal of Experimental Pathology’. Dino A. Giussani is Professor of Cardiovascular Physiology & Medicine at the Department of Physiology Development & Neuroscience at the University of Cambridge, Professorial Fellow and Director of Studies in Medicine at Gonville & Caius College, a Lister Institute Fellow, and a Royal Society Wolfson Research Merit Award Holder. He is supported by the British Heart Foundation, the Biotechnology and Biological Sciences Research Council, and the Isaac Newton Trust.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/jpi.1224

    Noninvasive high-intensity focused ultrasound treatment of twin-twin transfusion syndrome: A preliminary in vivo study.

    Get PDF
    We investigated the efficacy, maternofetal responses, and safety of using high-intensity focused ultrasound (HIFU) for noninvasive occlusion of placental vasculature compared to sham treatment in anesthetized pregnant sheep. This technique for noninvasive occlusion of placental vasculature may be translatable to the treatment of conditions arising from abnormal placental vasculature, such as twin-twin transfusion syndrome (TTTS). Eleven pregnant sheep were instrumented with maternal and fetal arterial catheters and time-transit flow probes to monitor cardiovascular, acid-base, and metabolic status, and then exposed to HIFU (n = 5) or sham (n = 6) ablation of placental vasculature through the exposed uterine surface. Placental vascular flow was occluded in 28 of 30 targets, and histological examination confirmed occlusion in 24 of 30 targets. In both HIFU and sham exposures, uterine contact reduced maternal uterine artery flow, but delivery of oxygen and glucose to the fetal brain remained normal. HIFU can consistently occlude in vivo placental vessels and ablate blood flow in a pregnant sheep model. Cardiovascular and metabolic fetal responses suggest that the technique is safe in the short term and potentially translatable to human pregnancy

    Regulation of microRNA during cardiomyocyte maturation in sheep.

    Get PDF
    BACKGROUND: There is a limited capacity to repair damage in the mammalian heart after birth, which is primarily due to the inability of cardiomyocytes to proliferate after birth. This is in contrast to zebrafish and salamander, in which cardiomyocytes retain the ability to proliferate throughout life and can regenerate their heart after significant damage. Recent studies in zebrafish and rodents implicate microRNA (miRNA) in the regulation of genes responsible for cardiac cell cycle progression and regeneration, in particular, miR-133a, the miR-15 family, miR-199a and miR-590. However, the significance of these miRNA and miRNA in general in the regulation of cardiomyocyte proliferation in large mammals, including humans, where the timing of heart development relative to birth is very different than in rodents, is unclear. To determine the involvement of miRNA in the down-regulation of cardiomyocyte proliferation occurring before birth in large mammals, we investigated miRNA and target gene expression in sheep hearts before and after birth. The experimental approach included targeted transcriptional profiling of miRNA and target mRNA previously identified in rodent studies as well as genome-wide miRNA profiling using microarrays. RESULTS: The cardiac expression of miR-133a increased and its target gene IGF1R decreased with increasing age, reaching their respective maximum and minimum abundance when the majority of ovine cardiomyocytes were quiescent. The expression of the miR-15 family members was variable with age, however, four of their target genes decreased with age. These latter profiles are inconsistent with the direct involvement of this family of miRNA in cardiomyocyte quiescence in late gestation sheep. The expression patterns of 'pro-proliferative' miR-199a and miR-590 were also inconsistent with their involvement in cardiomyocyte quiescence. Consequently, miRNA microarray analysis was undertaken, which identified six discrete clusters of miRNA with characteristic developmental profiles. The functions of predicted target genes for the miRNA in four of the six clusters were enriched for aspects of cell division and regulation of cell proliferation suggesting a potential role of these miRNA in regulating cardiomyocyte proliferation. CONCLUSION: The results of this study show that the expression of miR-133a and one of its target genes is consistent with it being involved in the suppression of cardiomyocyte proliferation, which occurs across the last third of gestation in sheep. The expression patterns of the miR-15 family, miR-199a and miR-590 were inconsistent with direct involvement in the regulation cardiomyocyte proliferation in sheep, despite studies in rodents demonstrating that their manipulation can influence the degree of cardiomyocyte proliferation. miRNA microarray analysis suggests a coordinated and potentially more complex role of multiple miRNA in the regulation of cardiomyocyte quiescence and highlights significant differences between species that may reflect their substantial differences in the timing of this developmental process

    Embryonic cardioprotection by hydrogen sulphide: studies of isolated cardiac function and ischaemia-reperfusion injury in the chicken embryo.

    Get PDF
    KEY POINTS: In mammals, pregnancy complications can trigger an embryonic or fetal origin of cardiac dysfunction. However, underlying mechanisms remain uncertain because the partial contributions of the challenge on the mother, placenta or offspring are difficult to disentangle. The avian embryo permits isolation of the direct effects of suboptimal conditions during development on the cardiac function of the offspring, independent of additional effects on the mother and/or the placenta. Therefore, the objectives of this work were to adapt the isolated Langendorff technique using the chicken embryo to study the physiology of the developing heart. Here, we introduce a novel technique and show the utility of the technique for exploring cardioprotective roles of H2 S in the chicken embryo heart. This work lays the foundation for studying the direct effects of H2 S therapy on the embryonic heart independent of effects on the mother and the placenta in adverse development. ABSTRACT: This study adapted the isolated Langendorff preparation to study the chicken embryo heart in response to ischaemia-reperfusion (IR) injury. The utility of the technique was tested by investigating cardioprotective effects of hydrogen sulphide (H2 S) and underlying mechanisms. Embryonic hearts (19 out of 21 days of incubation) mounted on a Langendorff preparation were exposed to IR (30 min ischaemia) after 4 treatments administered randomly, all as a 1 mm bolus, into the perfusate: saline vehicle (control); sodium hydrogen sulphide (NaHS); NaHS plus glibenclamide, an antagonist of KATP opening (NaHS Glib), and Glib alone (Glib). Relative to controls, NaHS treatment improved cardiac function after ischaemia (mean ± SD for area under the curve, AUC, for left ventricular developed pressure, LVDP: 1767.3 ± 929.5 vs. 492.7 ± 308.1; myocardial contractility, dP/dtmax : 2748.9 ± 1514.9 vs. 763.7 ± 433.1) and decreased infarct size (22.7 ± 8.0 vs. 43.9 ± 4.2%) and cardiac damage (% change in creatinine kinase, 49.3 ± 41.3 vs. 214.6 ± 155.1; all P < 0.05). Beneficial effects of NaHS were blocked by Glib. Glib alone had no effects. NaHS increased coronary flow rate (CFR) during baseline (mean ± SD for AUC: 134.3 ± 91.6 vs. 92.2 ± 35.8) and post IR (1467 ± 529.5 vs. 748.0 ± 222.1; both P < 0.05). However, this effect was not prevented by Glib. Therefore, the chicken embryo heart is amenable for study via the Langendorff preparation under basal conditions and during IR. The data show that H2 S confers embryonic cardiac protection via opening of myocardial KATP channels and not via increasing CFR. H2 S may prove a useful therapeutic agent to protect the human fetal heart against IR injury, as may occur in complicated labour.British Heart Foundatio

    Maternal and fetal cardiometabolic recovery following ultrasound-guided high-intensity focused ultrasound placental vascular occlusion.

    Get PDF
    High-intensity focused ultrasound (HIFU) is a non-invasive method of selective placental vascular occlusion, providing a potential therapy for conditions such as twin-twin transfusion syndrome. In order to translate this technique into human studies, evidence of prolonged fetal recovery and maintenance of a healthy fetal physiology following exposure to HIFU is essential. At 116 ± 2 days gestation, 12 pregnant ewes were assigned to control ( n = 6) or HIFU vascular occlusion ( n = 6) groups and anaesthetized. Placental blood vessels were identified using colour Doppler ultrasound; HIFU-mediated vascular occlusion was performed through intact maternal skin (1.66 MHz, 5 s duration, in situ ISPTA 1.8-3.9 kW cm-2). Unidentifiable colour Doppler signals in targeted vessels following HIFU exposure denoted successful occlusion. Ewes and fetuses were then surgically instrumented with vascular catheters and transonic flow probes and recovered from anaesthesia. A custom-made wireless data acquisition system, which records continuous maternal and fetal cardiovascular data, and daily blood sampling were used to assess wellbeing for 20 days, followed by post-mortem examination. Based on a comparison of pre- and post-treatment colour Doppler imaging, 100% (36/36) of placental vessels were occluded following HIFU, and occlusion persisted for 20 days. All fetuses survived. No differences in maternal or fetal blood pressure, heart rate, heart rate variability, metabolic status or oxygenation were observed between treatment groups. There was evidence of normal fetal maturation and no evidence of chronic fetal stress. There were no maternal injuries and no placental vascular haemorrhage. There was both a uterine and fetal burn, which did not result in any obstetric or fetal complications. This study demonstrates normal long-term recovery of fetal sheep from exposure to HIFU-mediated placental vascular occlusion and underlines the potential of HIFU as a potential non-invasive therapy in human pregnancy
    corecore