406 research outputs found

    The Accurate Assessment of Muscle Excitation Requires the Detection of Multiple Surface Electromyograms

    Get PDF
    When sampling electromyograms (EMGs) with one pair of electrodes, it seems implicitly assumed the detected signal reflects the net muscle excitation. However, this assumption is discredited by observations of local muscle excitation. Therefore, we hypothesize that the accurate assessment of muscle excitation requires multiple EMG detection and consideration of electrode-fiber alignment. We advise prudence when drawing inferences from individually collected EMGs

    Specificity of surface EMG recordings for gastrocnemius during upright standing.

    Get PDF
    The relatively large pick-up volume of surface electrodes has for long motivated the concern that muscles other than that of interest may contribute to surface electromyograms (EMGs). Recent findings suggest however the pick-up volume of surface electrodes may be smaller than previously appreciated, possibly leading to the detection of surface EMGs insensitive to muscle activity. Here we combined surface and intramuscular recordings to investigate how comparably action potentials from gastrocnemius and soleus are represented in surface EMGs detected with different inter-electrode distances. We computed the firing instants of motor units identified from intramuscular EMGs detected from gastrocnemius and soleus while five participants stood upright. We used these instants to trigger and average surface EMGs detected from multiple skin regions along gastrocnemius. Results from 66 motor units (whereof 31 from gastrocnemius) revealed the surface-recorded amplitude of soleus action potentials was 6% of that of gastrocnemius and did not decrease for inter-electrode distances smaller than 4 cm. Gastrocnemius action potentials were more likely detected for greater inter-electrode distances and their amplitude increased steeply up to 5 cm inter-electrode distance. These results suggest that reducing inter-electrode distance excessively may result in the detection of surface EMGs insensitive to gastrocnemius activity without substantial attenuation of soleus crosstalk

    Design and Characterization of a Textile Electrode System for the Detection of High-Density sEMG

    Get PDF
    Muscle activity monitoring in dynamic conditions is a crucial need in different scenarios, ranging from sport to rehabilitation science and applied physiology. The acquisition of surface electromyographic (sEMG) signals by means of grids of electrodes (High-Density sEMG, HD-sEMG) allows obtaining relevant information on muscle function and recruitment strategies. During dynamic conditions, this possibility demands both a wearable and miniaturized acquisition system and a system of electrodes easy to wear, assuring a stable electrode-skin interface. While recent advancements have been made on the former issue, detection systems specifically designed for dynamic conditions are at best incipient. The aim of this work is to design, characterize, and test a wearable, HD-sEMG detection system based on textile technology. A 32-electrodes, 15 mm inter-electrode distance textile grid was designed and prototyped. The electrical properties of the material constituting the detection system and of the electrode-skin interface were characterized. The quality of sEMG signals was assessed in both static and dynamic contractions. The performance of the textile detection system was comparable to that of conventional systems in terms of stability of the traces, properties of the electrode-skin interface and quality of the collected sEMG signals during quasi-isometric and highly dynamic tasks

    The M waves of the biceps brachii have a stationary (shoulder-like) component in the first phase: Implications and recommendations for M-wave analysis

    Get PDF
    Objective. We recently documented that compound muscle action potentials (M waves) recorded over the 'pennate' vastus lateralis showed a sharp deflection (named as a shoulder) in the first phase. Here, we investigated whether such a shoulder was also present in M waves evoked in a muscle with different architecture, such as the biceps brachii, with the purpose of elucidating the electrical origin of such afeature. Approach. M waves evoked by maximal single shocks to the brachial plexus were recorded in monopolar and bipolar configurations from 72 individuals using large (10 mm diameter) electrodes and from eight individuals using small (1 mm diameter) electrodes arranged in a linear array. The changes in M-wave features at different locations along the muscle fiber direction were examined. Main results. The shoulder was recognizable in most (87%) monopolar M waves, whereas it was rarely observed (6%) in bipolar derivations. Recordings made along the fiber direction showed that the shoulder was a stationary (non-propagating) feature, with short duration (spiky), which had positive polarity at all locations along the fibers. The latency of the shoulder (9.5 ± 0.5 ms) was significantly shorter than the estimated time taken for the action potentials to reach the biceps tendon (12.8 ms). Significance. The shoulder must be generated by a dipole source, i.e. a source created at a fixed anatomical position, although the exact origin of this dipole is uncertain. Our results suggest that the shoulder may not be due to the end-of-fiber signals formed at the biceps brachii tendon. The shoulder is not related to any specific arrangement of muscle fibers, as it has been observed in both pennate and fusiform muscles. Being a stationary (non-propagating) component, the shoulder is not reliable for studying changes in sarcolemmal excitability, and thus should be excluded from the M-wave analysis

    Dynamic surface electromyography using stretchable screen-printed textile electrodes

    Get PDF
    Objective. Wearable devices have created new opportunities in healthcare and sport sciences by unobtrusively monitoring physiological signals. Textile polymer-based electrodes proved to be effective in detecting electrophysiological potentials but suffer mechanical fragility and low stretch resistance. The goal of this research is to develop and validate in dynamic conditions cost-effective and easily manufacturable electrodes characterized by adequate robustness and signal quality. Methods. We here propose an optimized screen printing technique for the fabrication of PEDOT:PSS-based textile electrodes directly into finished stretchable garments for surface electromyography (sEMG) applications. A sensorised stretchable leg sleeve was developed, targeting five muscles of interest in rehabilitation and sport science. An experimental validation was performed to assess the accuracy of signal detection during dynamic exercises, including sit-to-stand, leg extension, calf raise, walking, and cycling. Results. The electrodes can resist up to 500 stretch cycles. Tests on five subjects revealed excellent contact impedance, and cross-correlation between sEMG envelopes simultaneously detected from the leg muscles by the textile and Ag/AgCl electrodes was generally greater than 0.9, which proves that it is possible to obtain good quality signals with performance comparable with disposable electrodes. Conclusions. An effective technique to embed polymer-based electrodes in stretchable smart garments was presented, revealing good performance for dynamic sEMG detections. Significance. The achieved results pave the way to the integration of unobtrusive electrodes, obtained by screen printing of conductive polymers, into technical fabrics for rehabilitation and sport monitoring, and in general where the detection of sEMG in dynamic conditions is necessary

    Upper limbs cranking for post-stroke rehabilitation: A pilot study on healthy subjects

    Get PDF
    Since one of the major consequences of stroke is hemiparesis, the rehabilitation of upper limbs is necessary to improve the quality of life. Arm cranking gesture represents an alternative rehabilitation tool, especially if accompanied by a biofeedback involving and motivating patients. The aim of this pilot study was twofold: (1) to evaluate the effect of a visual and virtual biofeedback on arm cranking gesture and (2) to estimate the duration of pull and push phases of the crank cycle. Nine healthy and young subjects were involved in the test and were asked to perform the arm cranking gesture in different conditions. A stereophotogrammetric system was adopted to create a virtual, visual and real time biofeedback of cadence, to measure the real cadence of participants and to estimate push and pull phases durations. Results showed that the biofeedback helped subjects to follow an externally imposed cadence. Furthermore, the pull phase resulted to be slightly longer than the push one, although the angular amplitude of the two phases suggested they were the same

    Detecting anatomical characteristics of single motor units by combining high density electromyography and ultrafast ultrasound: a simulation study

    Get PDF
    Muscle force production is the result of a sequence of electromechanical events that translate the neural drive issued to the motor units (MUs) into tensile forces on the tendon. Current technology allows this phenomenon to be investigated non-invasively. Single MU excitation and its mechanical response can be studied through high-density surface electromyography (HDsEMG) and ultrafast ultrasound (US) imaging respectively. In this study, we propose a method to integrate these two techniques to identify anatomical characteristics of single MUs. Specifically, we tested two algorithms, combining the tissue velocity sequence (TVS, obtained from ultrafast US images), and the MU firings (extracted from HDsEMG decomposition). The first is the Spike Triggered Averaging (STA) of the TVS based on the occurrences of individual MU firings, while the second relies on the correlation between the MU firing patterns and the TVS spatio-temporal independent components (STICA). A simulation model of the muscle contraction was adapted to test the algorithms at different degrees of neural excitation (number of active MUs) and MU synchronization. The performances of the two algorithms were quantified through the comparison between the simulated and the estimated characteristics of MU territories (size, location). Results show that both approaches are negatively affected by the number of active MU and synchronization levels. However, STICA provides a more robust MU territory estimation, outperforming STA in all the tested conditions. Our results suggest that spatio-temporal independent component decomposition of TVS is a suitable approach for anatomical and mechanical characterization of single MUs using a combined HDsEMG and ultrafast US approach

    DXA-Based Detection of Low Muscle Mass Using the Total Body Muscularity Assessment Index (TB-MAXI): A New Index with Cutoff Values from the NHANES 1999–2004

    Get PDF
    The aims of this study were to investigate age-related changes in total body skeletal muscle mass (TBSMM) and the between-limb asymmetry in lean mass in a large sample of adults. Demographic, anthropometric, and DXA-derived data of National Health and Nutrition Examination Survey participants were considered. The sample included 10,014 participants of two ethnic groups (Caucasians and African Americans). The age-related decline of TBSMM absolute values was between 5% and 6% per decade in males and between 4.5% and 5.0% per decade in females. The adjustment of TBSMM for body surface area (TB-MAXI) showed that muscle mass peaked in the second decade and decreased progressively during the subsequent decades. The following thresholds were identified to distinguish between low and normal TB-MAXI: (i) 10.0 kg/m2 and 11.0 kg/m2 in Caucasian and African American females; and (ii) 12.5 kg/m2 and 14.5 kg/m2 in Caucasian and African American males. The lean asymmetry indices were higher for the lower limbs compared with the upper limbs and were higher for males compared with females. In conclusion, the present study proposes the TB-MAXI and lean asymmetry index, which can be used (and included in DXA reports) as clinically relevant markers for muscle amount and lean distribution
    • …
    corecore