433 research outputs found

    The Accurate Assessment of Muscle Excitation Requires the Detection of Multiple Surface Electromyograms

    Get PDF
    When sampling electromyograms (EMGs) with one pair of electrodes, it seems implicitly assumed the detected signal reflects the net muscle excitation. However, this assumption is discredited by observations of local muscle excitation. Therefore, we hypothesize that the accurate assessment of muscle excitation requires multiple EMG detection and consideration of electrode-fiber alignment. We advise prudence when drawing inferences from individually collected EMGs

    Specificity of surface EMG recordings for gastrocnemius during upright standing.

    Get PDF
    The relatively large pick-up volume of surface electrodes has for long motivated the concern that muscles other than that of interest may contribute to surface electromyograms (EMGs). Recent findings suggest however the pick-up volume of surface electrodes may be smaller than previously appreciated, possibly leading to the detection of surface EMGs insensitive to muscle activity. Here we combined surface and intramuscular recordings to investigate how comparably action potentials from gastrocnemius and soleus are represented in surface EMGs detected with different inter-electrode distances. We computed the firing instants of motor units identified from intramuscular EMGs detected from gastrocnemius and soleus while five participants stood upright. We used these instants to trigger and average surface EMGs detected from multiple skin regions along gastrocnemius. Results from 66 motor units (whereof 31 from gastrocnemius) revealed the surface-recorded amplitude of soleus action potentials was 6% of that of gastrocnemius and did not decrease for inter-electrode distances smaller than 4 cm. Gastrocnemius action potentials were more likely detected for greater inter-electrode distances and their amplitude increased steeply up to 5 cm inter-electrode distance. These results suggest that reducing inter-electrode distance excessively may result in the detection of surface EMGs insensitive to gastrocnemius activity without substantial attenuation of soleus crosstalk

    Validation of polymer-based screen-printed textile electrodes for surface EMG detection

    Get PDF
    In recent years, the variety of textile electrodes developed for electrophysiological signal detection has increased rapidly. Among the applications that could benefit from this advancement, those based on surface electromyography (sEMG) are particularly relevant in rehabilitation, training and muscle function assessment. In this work, we validate the performance of polymer-based screen-printed textile electrodes for sEMG signal detection. We obtained these electrodes by depositing poly-3,4-ethylenedioxythiophene doped with poly(styrene sulfonate) (PEDOT:PSS) onto cotton fabric, and then selectively changing the physical properties of the textile substrate. The manufacturing costs are low and this process meets the requirements of textile-industry production lines. The validation of these electrodes was based on their functional and electrical characteristics, assessed for two different electrode sizes and three skin-interface conditions (dry, solid hydrogel or saline solution), and compared to those of conventional disposable gelled electrodes. Results show high similarity in terms of noise amplitude and electrode-skin impedance between the conventional and textile electrodes with the addition of solid hydrogel or saline solution. Furthermore, we compared the shape of the electrically-induced sEMG, as detected by conventional and textile electrodes from tibialis anterior. The comparison yielded an R2 value higher than 97% for all measurement conditions. Preliminary tests in dynamic conditions (walking) revealed the exploitability of the proposed electrode technology with saline application for the monitoring of sEMG for up to 35 minutes of activity. These results suggest that the proposed screen-printed textile electrodes may be an effective alternative to the conventional gelled electrodes for sEMG acquisition, thereby providing new opportunities in clinical and wellness fields

    Design and Characterization of a Textile Electrode System for the Detection of High-Density sEMG

    Get PDF
    Muscle activity monitoring in dynamic conditions is a crucial need in different scenarios, ranging from sport to rehabilitation science and applied physiology. The acquisition of surface electromyographic (sEMG) signals by means of grids of electrodes (High-Density sEMG, HD-sEMG) allows obtaining relevant information on muscle function and recruitment strategies. During dynamic conditions, this possibility demands both a wearable and miniaturized acquisition system and a system of electrodes easy to wear, assuring a stable electrode-skin interface. While recent advancements have been made on the former issue, detection systems specifically designed for dynamic conditions are at best incipient. The aim of this work is to design, characterize, and test a wearable, HD-sEMG detection system based on textile technology. A 32-electrodes, 15 mm inter-electrode distance textile grid was designed and prototyped. The electrical properties of the material constituting the detection system and of the electrode-skin interface were characterized. The quality of sEMG signals was assessed in both static and dynamic contractions. The performance of the textile detection system was comparable to that of conventional systems in terms of stability of the traces, properties of the electrode-skin interface and quality of the collected sEMG signals during quasi-isometric and highly dynamic tasks

    The M waves of the biceps brachii have a stationary (shoulder-like) component in the first phase: Implications and recommendations for M-wave analysis

    Get PDF
    Objective. We recently documented that compound muscle action potentials (M waves) recorded over the 'pennate' vastus lateralis showed a sharp deflection (named as a shoulder) in the first phase. Here, we investigated whether such a shoulder was also present in M waves evoked in a muscle with different architecture, such as the biceps brachii, with the purpose of elucidating the electrical origin of such afeature. Approach. M waves evoked by maximal single shocks to the brachial plexus were recorded in monopolar and bipolar configurations from 72 individuals using large (10 mm diameter) electrodes and from eight individuals using small (1 mm diameter) electrodes arranged in a linear array. The changes in M-wave features at different locations along the muscle fiber direction were examined. Main results. The shoulder was recognizable in most (87%) monopolar M waves, whereas it was rarely observed (6%) in bipolar derivations. Recordings made along the fiber direction showed that the shoulder was a stationary (non-propagating) feature, with short duration (spiky), which had positive polarity at all locations along the fibers. The latency of the shoulder (9.5 ± 0.5 ms) was significantly shorter than the estimated time taken for the action potentials to reach the biceps tendon (12.8 ms). Significance. The shoulder must be generated by a dipole source, i.e. a source created at a fixed anatomical position, although the exact origin of this dipole is uncertain. Our results suggest that the shoulder may not be due to the end-of-fiber signals formed at the biceps brachii tendon. The shoulder is not related to any specific arrangement of muscle fibers, as it has been observed in both pennate and fusiform muscles. Being a stationary (non-propagating) component, the shoulder is not reliable for studying changes in sarcolemmal excitability, and thus should be excluded from the M-wave analysis

    Dynamic surface electromyography using stretchable screen-printed textile electrodes

    Get PDF
    Objective. Wearable devices have created new opportunities in healthcare and sport sciences by unobtrusively monitoring physiological signals. Textile polymer-based electrodes proved to be effective in detecting electrophysiological potentials but suffer mechanical fragility and low stretch resistance. The goal of this research is to develop and validate in dynamic conditions cost-effective and easily manufacturable electrodes characterized by adequate robustness and signal quality. Methods. We here propose an optimized screen printing technique for the fabrication of PEDOT:PSS-based textile electrodes directly into finished stretchable garments for surface electromyography (sEMG) applications. A sensorised stretchable leg sleeve was developed, targeting five muscles of interest in rehabilitation and sport science. An experimental validation was performed to assess the accuracy of signal detection during dynamic exercises, including sit-to-stand, leg extension, calf raise, walking, and cycling. Results. The electrodes can resist up to 500 stretch cycles. Tests on five subjects revealed excellent contact impedance, and cross-correlation between sEMG envelopes simultaneously detected from the leg muscles by the textile and Ag/AgCl electrodes was generally greater than 0.9, which proves that it is possible to obtain good quality signals with performance comparable with disposable electrodes. Conclusions. An effective technique to embed polymer-based electrodes in stretchable smart garments was presented, revealing good performance for dynamic sEMG detections. Significance. The achieved results pave the way to the integration of unobtrusive electrodes, obtained by screen printing of conductive polymers, into technical fabrics for rehabilitation and sport monitoring, and in general where the detection of sEMG in dynamic conditions is necessary

    Quantification of cortical proprioceptive processing through a wireless and miniaturized EEG amplifier

    Get PDF
    Corticokinematic coherence (CKC) is computed between limb kinematics and cortical activity (e.g. MEG, EEG), and it can be used to detect, quantify and localize the cortical processing of proprioceptive afference arising from the body. EEG-based studies on CKC have been limited to lab environments due to bulky, non-portable instrumentations. We recently proposed a wireless and miniaturized EEG acquisition system aimed at enabling EEG studies outside the laboratory. The purpose of this work is to compare the EEG-based CKC values obtained with this device with a conventional wired-EEG acquisition system to validate its use in the quantification of cortical proprioceptive processing. Eleven healthy right-handed participants were recruited (six males, four females, age range: 24-40 yr). A pneumatic-movement actuator was used to evoke right index-finger flexion-extension movement at 3 Hz for 4 min. The task was repeated both with the wireless-EEG and wired-EEG devices using the same 30-channel EEG cap preparation. CKC was computed between the EEG and finger acceleration. CKC peaked at the movement frequency and its harmonics, being statistically significant (p < 0.05) in 8-10 out of 11 participants. No statistically significant differences (p < 0.05) were found in CKC strength between wireless-EEG (range 0.03-0.22) and wired-EEG (0.02-0.33) systems, that showed a good agreement between the recording systems (3 Hz: r = 0.57, p = 0.071, 6 Hz: r = 0.82, p = 0.003). As expected, CKC peaked in sensors above the left primary sensorimotor cortex contralateral to the moved right index finger. As the wired-EEG device, the tested wireless-EEG system has proven feasible to quantify CKC, and thus can be used as a tool to study proprioception in the human neocortex. Thanks to its portability, the wireless-EEG used in this study has the potential to enable the examination of cortical proprioception in more naturalistic conditions outside the laboratory environment. Clinical Relevance - Our study will contribute to provide innovative technological foundations for future unobtrusive EEG recordings in naturalistic conditions to examine human sensorimotor system

    Upper limbs cranking for post-stroke rehabilitation: A pilot study on healthy subjects

    Get PDF
    Since one of the major consequences of stroke is hemiparesis, the rehabilitation of upper limbs is necessary to improve the quality of life. Arm cranking gesture represents an alternative rehabilitation tool, especially if accompanied by a biofeedback involving and motivating patients. The aim of this pilot study was twofold: (1) to evaluate the effect of a visual and virtual biofeedback on arm cranking gesture and (2) to estimate the duration of pull and push phases of the crank cycle. Nine healthy and young subjects were involved in the test and were asked to perform the arm cranking gesture in different conditions. A stereophotogrammetric system was adopted to create a virtual, visual and real time biofeedback of cadence, to measure the real cadence of participants and to estimate push and pull phases durations. Results showed that the biofeedback helped subjects to follow an externally imposed cadence. Furthermore, the pull phase resulted to be slightly longer than the push one, although the angular amplitude of the two phases suggested they were the same
    • …
    corecore