3,608 research outputs found

    Synchrotron and Synchrotron Self-Compton Spectral Signatures and Blazar Emission Models

    Get PDF
    We find that energy losses due to synchrotron self-Compton (SSC) emission in blazar jets can produce distinctive signatures in the time-averaged synchrotron and SSC spectra of these objects. For a fairly broad range of particle injection distributions, SSC-loss dominated synchrotron emission exhibits a spectral dependence Fνν3/2F_\nu \sim \nu^{-3/2}. The presence or absence of this dependence in the optical and ultraviolet spectra of flat spectrum radio quasars such as 3C~279 and in the soft X-ray spectra of high frequency BL Lac objects such as Mrk 501 gives a robust measure of the importance of SSC losses. Furthermore, for partially cooled particle distributions, spectral breaks of varying sizes can appear in the synchrotron and SSC spectra and will be related to the spectral indices of the emission below the break. These spectral signatures place constraints on the size scale and the non-thermal particle content of the emitting plasma as well as the observer orientation relative to the jet axis.Comment: 4 pages, 1 figure, LaTeX2e, emulateapj5.sty, accepted for publication in Ap

    Line emission from gamma-ray burst environments

    Get PDF
    The time and angle dependent line and continuum emission from a dense torus around a cosmological gamma-ray burst source is simulated, taking into account photoionization, collisional ionization, recombination, and electron heating and cooling due to various processes. The importance of the hydrodynamical interaction between the torus and the expanding blast wave is stressed. Due to the rapid deceleration of the blast wave as it interacts with the dense torus, the material in the torus will be illuminated by a drastically different photon spectrum than observable through a low-column-density line of sight, and will be heated by the hydrodynamical interaction between the blast wave and the torus. A model calculation to reproduce the Fe K-alpha line emission observed in the X-ray afterglow of GRB 970508 is presented. The results indicate that ~ 10^{-4} solar masses of iron must be concentrated in a region of less than 10^{-3} pc. The illumination of the torus material due to the hydrodynamic interaction of the blast wave with the torus is the dominant heating and ionization mechanism leading to the formation of the iron line. These results suggest that misaligned GRBs may be detectable as X-ray flashes with pronounced iron emission line features.Comment: Accepted for publication in ApJ. Updated recombination rate data; discussion on element abundances added; references update

    The Spectral Energy Distribution of the High-Z Blazar Q0906+693

    Get PDF
    We describe further observations of QSO J0906+6930, a z=5.48 blazar likely to be detected in gamma-rays. New radio and X-ray data place significant constraints on any kpc-scale extension of the VLBA-detected jet. Improved optical spectroscopy detects absorption from an intervening galaxy at z=1.849 and raise the possibility that this distant, bright source is lensed. We combine the new data into an improved SED for the blazar core and comment on the Compton keV-GeV flux component.Comment: 10pp, 3 figures, accpeted for publication in the Astronomical Journa

    On the singular values and eigenvalues of the Fox–Li and related operators

    Get PDF
    The Fox–Li operator is a convolution operator over a finite interval with a special highly oscillatory kernel. It plays an important role in laser engineering. However, the mathematical analysis of its spectrum is still rather incomplete. In this expository paper we survey part of the state of the art, and our emphasis is on showing how standard Wiener–Hopf theory can be used to obtain insight into the behaviour of the singular values of the Fox–Li operator. In addition, several approximations to the spectrum of the Fox–Li operator are discussed and results on the singular values and eigenvalues of certain related operators are derived

    Dust sublimation by GRBs and its implications

    Full text link
    The prompt optical flash recently detected accompanying GRB990123 suggests that, for at least some GRBs, gamma-ray emission is accompanied by prompt optical-UV emission with luminosity L(1-7.5eV)=10^{49}(\Delta\Omega/4\pi)erg/s, where \Delta\Omega is the solid angle into which gamma-ray and optical-UV emission is beamed. Such an optical-UV flash can destroy dust in the beam by sublimation out to an appreciable distance, approximately 10 pc, and may clear the dust out of as much as 10^7(\Delta\Omega/4\pi)M_sun of molecular cloud material on an apparent time scale of 10 seconds. Detection of time dependent extinction on this time scale would therefore provide strong constraints on the GRB source environment. Dust destruction implies that existing, or future, observations of not-heavily-reddened fireballs are not inconsistent with GRBs being associated with star forming regions. In this case, however, if gamma-ray emission is highly beamed, the expanding fireball would become reddened on a 1 week time scale. If the optical depth due to dust beyond approximately 8 pc from the GRB is 0.2<\tau_V<2, most of the UV flash energy is converted to infra-red, \lambda \sim 1 micron, radiation with luminosity \sim 10^{41} erg/s extending over an apparent duration of \sim 20(1+z)(\Delta\Omega/0.01) day. Dust infra-red emission may already have been observed in GRB970228 and GRB980326, and may possibly explain their unusual late time behavior.Comment: 16 pages, including 1 figure, submitted to Ap

    A Case Study of Co-teacher Relationships for English Language Learners in a Suburban Elementary School

    Get PDF
    English Language Learners (ELLs) in the United States are faced with many academic challenges including those of language acquisition, lack of background knowledge, fear of participation and unknown academic language. These challenges mixed with the ever-growing demands of the educational system, resulted in State and local educational agencies to make a distinct shift away from segregated instructional services for ELLs, by either requiring or recommending integrated co-teaching as an optimal way to educate them. Although a large number of teachers and administrators are unfamiliar with collaborative practices for ELLs, school districts have nonetheless implemented integrated co-teaching models to comply with guidelines. However, the basic establishment of professionals in an assigned classroom does not create a collaborative teaching partnership. The development and success of these partnerships relied on many different factors. This study explored the development of co-teaching relationships in an elementary public school setting organized to serve ELL students through an integrated model. This study examined the co-teaching relationships between general education (GE) and Teachers to Speakers of Other Languages (TESOL) in an elementary school and described how these teachers constructed collective efficacy beliefs that affected the development, implementation, and sustainment of a successful co-teaching relationship. This research utilized a qualitative case study methodology. Data was collected through focus groups with co-teachers, an interview with administration, observations of collaborative sessions and a review of documents (i.e. lesson plans, school improvement plan). This study provided guidance on how teachers of ELLs construct collective efficacy beliefs that affect the development, implementation and sustainment of a successful integrated co-teaching model. Furthermore, this study provided information for school administrators so that they may recognize key elements and strategies that will guide them in fostering successful co-teaching partnerships amongst their staff. The outcome of this study, identified key elements and strategies to guide administrators and teachers in fostering successful co-teaching relationships that benefit all students

    Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism

    Get PDF
    Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses

    Analyzing the Multiwavelength Spectrum and Variability of BL Lacertae During the July 1997 Outburst

    Full text link
    The multiwavelength spectrum of BL Lacertae during its July 1997 outburst is analyzed in terms of different variations of the homogeneous leptonic jet model for the production of high-energy radiation from blazars. We find that a two-component gamma-ray spectrum, consisting of a synchrotron self-Compton and an external Compton component, is required in order to yield an acceptable fit to the broadband spectrum. Our analysis indicates that in BL Lac, unlike other BL Lac objects, the broad emission line region plays an important role for the high-energy emission. Several alternative blazar jet models are briefly discussed. In the appendix, we describe the formalism in which the process of Comptonization of reprocessed accretion disk photons is treated in the previously developed blazar jet simulation code which we use.Comment: Now accepted for publication in The Astronomical Journal. Significantly extended discussion w.r.t. original version. 3 Figures included using epsf.sty, rotate.st

    Spherical magnetic nanoparticles: magnetic structure and interparticle interaction

    Full text link
    The interaction between spherical magnetic nanoparticles is investigated from micromagnetic simulations and ananlysed in terms of the leading dipolar interaction energy between magnetic dipoles. We focus mainly on the case where the particles present a vortex structure. In a first step the local magnetic structure in the isolated particle is revisited. For particles bearing a uniaxial magnetocrystaline anisotropy, it is shown that the vortex core orientation relative to the easy axis depends on both the particle size and the anisotropy constant. When the particles magnetization present a vortex structure, it is shown that the polarization of the particles by the dipolar field of the other one must be taken into account in the interaction. An analytic form is deduced for the interaction which involves the vortex core magnetization and the magnetic susceptibility which are obtained from the magnetic properties of the isolated particle.Comment: 20 pages, 10 figures Published in Journal of Applied Physics. To be found at: http://link.aip.org/link/?jap/105/07391
    corecore