1,175 research outputs found

    EEG analytics for early detection of autism spectrum disorder: a data-driven approach

    Get PDF
    Autism spectrum disorder (ASD) is a complex and heterogeneous disorder, diagnosed on the basis of behavioral symptoms during the second year of life or later. Finding scalable biomarkers for early detection is challenging because of the variability in presentation of the disorder and the need for simple measurements that could be implemented routinely during well-baby checkups. EEG is a relatively easy-to-use, low cost brain measurement tool that is being increasingly explored as a potential clinical tool for monitoring atypical brain development. EEG measurements were collected from 99 infants with an older sibling diagnosed with ASD, and 89 low risk controls, beginning at 3 months of age and continuing until 36 months of age. Nonlinear features were computed from EEG signals and used as input to statistical learning methods. Prediction of the clinical diagnostic outcome of ASD or not ASD was highly accurate when using EEG measurements from as early as 3 months of age. Specificity, sensitivity and PPV were high, exceeding 95% at some ages. Prediction of ADOS calibrated severity scores for all infants in the study using only EEG data taken as early as 3 months of age was strongly correlated with the actual measured scores. This suggests that useful digital biomarkers might be extracted from EEG measurements.This research was supported by National Institute of Mental Health (NIMH) grant R21 MH 093753 (to WJB), National Institute on Deafness and Other Communication Disorders (NIDCD) grant R21 DC08647 (to HTF), NIDCD grant R01 DC 10290 (to HTF and CAN) and a grant from the Simons Foundation (to CAN, HTF, and WJB). We are especially grateful to the staff and students who worked on the study and to the families who participated. (R21 MH 093753 - National Institute of Mental Health (NIMH); R21 DC08647 - National Institute on Deafness and Other Communication Disorders (NIDCD); R01 DC 10290 - NIDCD; Simons Foundation)Published versio

    The Emerging Role of Neurodiagnostic Informatics in Integrated Neurological and Mental Health Care

    Get PDF
    Mental, neurological, and neurodevelopmental (MNN) disorders impose an enormous burden of disease globally. Many MNN disorders follow a developmental trajectory. Thus, defining symptoms of MNN disorders may be conceived as the end product of a long developmental process. Many pharmaceutical therapies are aimed at the end symptoms, essentially attempting to reverse pathological brain function that has developed over a long time. A new paradigm is needed to leverage the developmental trajectory of MNN disorders, based on measuring brain function through the life span. Electroencephalography (EEG) is ideally suited for this task. New developments in several fields, including consumer EEG hardware, ubiquitous access to the Internet and electronic health records, and nonlinear mathematics to extract information from physiological signals have converged to enable new approaches to integrating EEG into routine health care. Research continues to demonstrate that EEG analysis can be used to discover digital biomarkers for a wide range of MNN disorders, including autism, attention-deficit/hyperactivity disorder (ADHD), schizophrenia and dementias, and likely many others. When EEG-derived information about brain function is stored with an electronic health record, clinical decision support software may use these data to detect atypical brain development in the earliest stages, thus opening a potential window for early intervention. These developments create an opportunity for neurodiagnostics to merge with biomedical informatics to create clinical tools for monitoring brain function through the life span. Advanced professionals with neurodiagnostics and biomedical informatics skills and training are needed to lead the way in this emerging field

    Not You Again!

    Get PDF

    EEG complexity as a biomarker for autism spectrum disorder risk

    Get PDF
    BACKGROUND: Complex neurodevelopmental disorders may be characterized by subtle brain function signatures early in life before behavioral symptoms are apparent. Such endophenotypes may be measurable biomarkers for later cognitive impairments. The nonlinear complexity of electroencephalography (EEG) signals is believed to contain information about the architecture of the neural networks in the brain on many scales. Early detection of abnormalities in EEG signals may be an early biomarker for developmental cognitive disorders. The goal of this paper is to demonstrate that the modified multiscale entropy (mMSE) computed on the basis of resting state EEG data can be used as a biomarker of normal brain development and distinguish typically developing children from a group of infants at high risk for autism spectrum disorder (ASD), defined on the basis of an older sibling with ASD. METHODS: Using mMSE as a feature vector, a multiclass support vector machine algorithm was used to classify typically developing and high-risk groups. Classification was computed separately within each age group from 6 to 24 months. RESULTS: Multiscale entropy appears to go through a different developmental trajectory in infants at high risk for autism (HRA) than it does in typically developing controls. Differences appear to be greatest at ages 9 to 12 months. Using several machine learning algorithms with mMSE as a feature vector, infants were classified with over 80% accuracy into control and HRA groups at age 9 months. Classification accuracy for boys was close to 100% at age 9 months and remains high (70% to 90%) at ages 12 and 18 months. For girls, classification accuracy was highest at age 6 months, but declines thereafter. CONCLUSIONS: This proof-of-principle study suggests that mMSE computed from resting state EEG signals may be a useful biomarker for early detection of risk for ASD and abnormalities in cognitive development in infants. To our knowledge, this is the first demonstration of an information theoretic analysis of EEG data for biomarkers in infants at risk for a complex neurodevelopmental disorder.This research was supported by a grant from Autism Speaks (to HTF), National Institute on Deafness and Other Communication Disorders (NIDCD) grant R21 DC08647 (to HTF), NIDCD grant R01 DC 10290 (to HTF and CAN) and a grant from the Simons Foundation (to CAN and WJB). We thank the following people for their help in data collection: Tara Augenstein, Leah Casner, Laura Kasparian, Nina Leezenbaum, Vanessa Vogel-Farley and Annemarie Zuluaga. We are especially grateful to the families who participated in this study. (Autism Speaks; R21 DC08647 - National Institute on Deafness and Other Communication Disorders (NIDCD); R01 DC 10290 - National Institute on Deafness and Other Communication Disorders (NIDCD); Simons Foundation

    Informatics for EEG biomarker discovery in clinical neuroscience

    Get PDF
    Neurological and developmental disorders (NDDs) impose an enormous burden of disease on children throughout the world. Two of the most common are autism spectrum disorder (ASD) and epilepsy. ASD has recently been estimated to affect 1 in 68 children, making it the most common neurodevelopmental disorder in children. Epilepsy is also a spectrum disorder that follows a developmental trajectory, with an estimated prevalence of 1%, nearly as common as autism. ASD and epilepsy co-occur in approximately 30% of individuals with a primary diagnosis of either disorder. Although considered to be different disorders, the relatively high comorbidity suggests the possibility of common neuropathological mechanisms. Early interventions for NDDs lead to better long-term outcomes. But early intervention is predicated on early detection. Behavioral measures have thus far proven ineffective in detecting autism before about 18 months of age, in part because the behavioral repertoire of infants is so limited. Similarly, no methods for detecting emerging epilepsy before seizures begin are currently known. Because atypical brain development is likely to precede overt behavioral manifestations by months or even years, a critical developmental window for early intervention may be opened by the discovery of brain based biomarkers. Analysis of brain activity with EEG may be under-utilized for clinical applications, especially for neurodevelopment. The hypothesis investigated in this dissertation is that new methods of nonlinear signal analysis, together with methods from biomedical informatics, can extract information from EEG data that enables detection of atypical neurodevelopment. This is tested using data collected at Boston Children’s Hospital. Several results are presented. First, infants with a family history of ASD were found to have EEG features that may enable autism to be detected as early as 9 months. Second, significant EEG-based differences were found between children with absence epilepsy, ASD and control groups using short 30-second EEG segments. Comparison of control groups using different EEG equipment supported the claim that EEG features could be computed that were independent of equipment and lab conditions. Finally, the potential for this technology to help meet the clinical need for neurodevelopmental screening and monitoring in low-income regions of the world is discussed

    Accuracy study of the Upper Atmosphere Research Satellite (UARS) definitive attitude determination

    Get PDF
    The Upper Atmosphere Research Satellite (UARS) has two definitive attitude determination requirements: the definitive attitude of the Modular Attitude Control Subsystem (MACS) and the definitive attitude of the gimbaled Solar-Stellar Pointing Platform (SSPP). The onboard computer (OBC) will compute the MACS attitude using a Kalman filter and will transform this attitude solution through the SSPP gimbals to calculate the SSPP attitude. The attitude ground support system (AGSS) will compute the MACS attitude using a batch least-squares differential corrector algorithm and will also transform this solution through the gimbals to obtain the SSPP attitude. This paper reports the results of a prelaunch study to predict the accuracy of the OBC attitude solutions and the accuracy of the AGSS attitude solutions. The OBC and AGSS solution accuracies are then compared to establish the relative quality. The effects of star observability, sensor noise, and sensor misalignment uncertainties on attitude determination accuracy are analyzed for each case

    Neurotechnology and Psychiatric Biomarkers

    Get PDF

    Aftershocks and Pore Fluid Diffusion Following the 1992 Landers Earthquake

    Get PDF
    We model the evolution of regional stress following the 1992 Landers earthquake in order to test the importance of pore fluid flow in producing aftershocks. Rising fluid pressure due to pore fluid flow and the resulting Coulomb stress changes were found to be strongly correlated with the time and location of aftershock events. Regional aftershock frequencies computed by integrating pore pressure decay rates also agreed quite well with aftershock data. Calculations show that regions of rising postseismic poroelastic Coulomb stress overlap considerably with regions of positive coseismic Coulomb stress. Thus pore fluid flow, which affects pore pressure within faults and causes regional poroelastic stress evolution following earthquakes, gradually evolves the initial coseismic stress changes. Together these changes provide a reasonable physical mechanism for aftershock triggering which agrees with data for the 1992 Landers earthquake

    Common Nodes of Virus-Host Interaction Revealed Through an Integrated Network Analysis

    Get PDF
    Viruses are one of the major causes of acute and chronic infectious diseases and thus a major contributor to the global burden of disease. Several studies have shown how viruses have evolved to hijack basic cellular pathways and evade innate immune response by modulating key host factors and signaling pathways. A collective view of these multiple studies could advance our understanding of virus-host interactions and provide new therapeutic perspectives for the treatment of viral diseases. Here, we performed an integrative meta-analysis to elucidate the 17 different host-virus interactomes. Network and bioinformatics analyses showed how viruses with small genomes efficiently achieve the maximal effect by targeting multifunctional and highly connected host proteins with a high occurrence of disordered regions. We also identified the core cellular process subnetworks that are targeted by all the viruses. Integration with functional RNA interference (RNAi) datasets showed that a large proportion of the targets are required for viral replication. Furthermore, we performed an interactome-informed drug re-purposing screen and identified novel activities for broad-spectrum antiviral agents against hepatitis C virus and human metapneumovirus. Altogether, these orthogonal datasets could serve as a platform for hypothesis generation and follow-up studies to broaden our understanding of the viral evasion landscape
    corecore