2,891 research outputs found
Electrical Characterization of a Thin Edgeless N-on-p Planar Pixel Sensors For ATLAS Upgrades
In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC),
the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon
system. Because of its radiation hardness and cost effectiveness, the n-on-p
silicon technology is a promising candidate for a large area pixel detector.
The paper reports on the joint development, by LPNHE and FBK of novel n-on-p
edgeless planar pixel sensors, making use of the active trench concept for the
reduction of the dead area at the periphery of the device. After discussing the
sensor technology, and presenting some sensors' simulation results, a complete
overview of the electrical characterization of the produced devices will be
given.Comment: 9 pages, 9 figures, to appear in the proceedings of the 15th
International Workshops on Radiation Imaging Detector
Novel Silicon n-on-p Edgeless Planar Pixel Sensors for the ATLAS upgrade
In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans
to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon
technology is a promising candidate for the pixel upgrade thanks to its
radiation hardness and cost effectiveness, that allow for enlarging the area
instrumented with pixel detectors. We report on the development of novel n-in-p
edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of
the "active edge" concept for the reduction of the dead area at the periphery
of the device. After discussing the sensor technology and fabrication process,
we present device simulations (pre- and post-irradiation) performed for
different sensor configurations. First preliminary results obtained with the
test-structures of the production are shown.Comment: 6 pages, 5 figures, to appear in the proceedings of the 9th
International Conference on Radiation Effects on Semiconductor Materials
Detectors and Device
Performance of Irradiated Thin Edgeless N-on-P Planar Pixel Sensors for ATLAS Upgrades
In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC),
the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon
system. Because of its radiation hardness and cost effectiveness, the n-on-p
silicon technology is a promising candidate for a large area pixel detector.
The paper reports on the joint development, by LPNHE and FBK of novel n-on-p
edgeless planar pixel sensors, making use of the active trench concept for the
reduction of the dead area at the periphery of the device. After discussing the
sensor technology, a complete overview of the electrical characterization of
several irradiated samples will be discussed. Some comments about detector
modules being assembled will be made and eventually some plans will be
outlined.Comment: 6 pages, 13 figures, to appear in the proceedings of the 2013 Nuclear
Science Symposium and Medical Imaging Conference. arXiv admin note: text
overlap with arXiv:1311.162
Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades
The development of n-on-p "edgeless" planar pixel sensors being fabricated at
FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the
High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A
characterizing feature of the devices is the reduced dead area at the edge,
achieved by adopting the "active edge" technology, based on a deep etched
trench, suitably doped to make an ohmic contact to the substrate. The project
is presented, along with the active edge process, the sensor design for this
first n-on-p production and a selection of simulation results, including the
expected charge collection efficiency after radiation fluence of comparable to those expected at HL-LHC (about
ten years of running, with an integrated luminosity of 3000 fb) for the
outer pixel layers. We show that, after irradiation and at a bias voltage of
500 V, more than 50% of the signal should be collected in the edge region; this
confirms the validity of the active edge approach.Comment: 20 pages, 9 figures, submitted to Nucl. Instr. and Meth.
Measurement of the Charge Collection Efficiency after Heavy Non-Uniform Irradiation in BaBar Silicon Detectors
We have investigated the depletion voltage changes, the leakage current
increase and the charge collection efficiency of a silicon microstrip detector
identical to those used in the inner layers of the BaBar Silicon Vertex Tracker
(SVT) after heavy non-uniform irradiation. A full SVT module with the front-end
electronics connected has been irradiated with a 0.9 GeV electron beam up to a
peak fluence of 3.5 x 10^14 e^-/cm^2, well beyond the level causing substrate
type inversion. We irradiated one of the two sensors composing the module with
a non-uniform profile with sigma=1.4 mm that simulates the conditions
encountered in the BaBar experiment by the modules intersecting the horizontal
machine plane. The position dependence of the charge collection properties and
the depletion voltage have been investigated in detail using a 1060 nm LED and
an innovative measuring technique based only on the digital output of the chip.Comment: 7 pages, 13 figures. Presented at the 2004 IEEE Nuclear Science
Symposium, October 18-21, Rome, Italy. Accepted for publication by IEEE
Transactions on Nuclear Scienc
A microstrip gas chamber with true two-dimensional and pixel readout
A true two-dimensional μstrip gas chamber has been constructed and successfully tested. This new detector has an effective substrate thickness of less than 2 μm. An ion implanted oxide layer of 1.8 μm thickness provides the necessary insulation between the front and back plane and permits collection on the back electrodes of a large fraction of the induced charge. The back electrode signal is used to measure the coordinate along the anode strips (X-Y readout) or to provide true space points (pixel readout). Very good imaging capabilities have been obtained in both cases. A flux of 107 particles/mm2 s has been measured without significant gain loss. No charging effect has been observed after three days continuously running at a flux of 104 particles/mm2 s, while a 15% gain loss, probably due to ageing effects, has been measured after collection on the strips of a charge corresponding to the more than six years of running at the design luminosity of LHC, at 50 cm from the beam axis
- …