60 research outputs found

    Studies of a muon-based mass sensitive parameter for the IceTop surface array

    Get PDF

    Measuring the Neutrino Cross Section Using 8 years of Upgoing Muon Neutrinos Observed with IceCube

    Get PDF
    The IceCube Neutrino Observatory detects neutrinos at energies orders of magnitude higher than those available to current accelerators. Above 40 TeV, neutrinos traveling through the Earth will be absorbed as they interact via charged current interactions with nuclei, creating a deficit of Earth-crossing neutrinos detected at IceCube. The previous published results showed the cross section to be consistent with Standard Model predictions for 1 year of IceCube data. We present a new analysis that uses 8 years of IceCube data to fit the νμ_{μ} absorption in the Earth, with statistics an order of magnitude better than previous analyses, and with an improved treatment of systematic uncertainties. It will measure the cross section in three energy bins that span the range 1 TeV to 100 PeV. We will present Monte Carlo studies that demonstrate its sensitivity

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event

    The Acoustic Module for the IceCube Upgrade

    Get PDF

    A Combined Fit of the Diffuse Neutrino Spectrum using IceCube Muon Tracks and Cascades

    Get PDF

    IceCube Search for Earth-traversing ultra-high energy Neutrinos

    Get PDF
    The search for ultra-high energy neutrinos is more than half a century old. While the hunt for these neutrinos has led to major leaps in neutrino physics, including the detection of astrophysical neutrinos, neutrinos at the EeV energy scale remain undetected. Proposed strategies for the future have mostly been focused on direct detection of the first neutrino interaction, or the decay shower of the resulting charged particle. Here we present an analysis that uses, for the first time, an indirect detection strategy for EeV neutrinos. We focus on tau neutrinos that have traversed Earth, and show that they reach the IceCube detector, unabsorbed, at energies greater than 100 TeV for most trajectories. This opens up the search for ultra-high energy neutrinos to the entire sky. We use ten years of IceCube data to perform an analysis that looks for secondary neutrinos in the northern sky, and highlight the promise such a strategy can have in the next generation of experiments when combined with direct detection techniques

    Search for high-energy neutrino sources from the direction of IceCube alert events

    Get PDF

    Posteriori analysis on IceCube double pulse tau neutrino candidates

    Get PDF
    The IceCube Neutrino Observatory at the South Pole detects Cherenkov light emitted by charged secondary particles created by primary neutrino interactions. Double pulse waveforms can arise from charged current interactions of astrophysical tau neutrinos with nucleons in the ice and the subsequent decay of tau leptons. The previous 8-year tau double pulse analysis found three tau neutrino candidate events. Among them, the most promising one observed in 2014 is located very near the dust layer in the middle of the detector. A posterior analysis on this event will be presented in this paper, using a new ice model treatment with continuously varying nuisance parameters to do the targeted Monte Carlo re-simulation for tau and other background neutrino ensembles. The impact of different ice models on the expected signal and background statistics will also be discussed
    corecore