29 research outputs found

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    CERN-ICEC-STFC-hosted Workshop on Innovative, Robust and Affordable Medical Linear Accelerators for Challenging Environments

    No full text
    a) Integrated Safety and QA Subsystems: Includes Ion Chambers, Self-Monitoring, Patient-specific QA b) Simplified Control and Remote Diagnostics c) Integrated Shielding; Low Leakage Systems d) Compactness, Operability and Maintenance (gantry systems and patient positioning

    Beam Delivery Simulation - Recent Developments and Optimization

    No full text
    Beam Delivery Simulation (BDSIM) is a particle tracking code that simulates the passage of particles through both the magnetic accelerator lattice as well as their interaction with the material of the accelerator itself. The Geant4 toolkit is used to give a full range of physics processes needed to simulate both the interaction of primary particles and the production and subsequent propagation of secondaries. BDSIM has already been used to simulate linear accelerators such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), but it has recently been adapted to simulate circular accelerators as well, producing loss maps for the Large Hadron Collider (LHC). In this paper the most recent developments, which extend BDSIM’s functionality as well as improve its efficiency are presented. Improvement and refactorisation of the tracking algorithms are presented alongside improved automatic geometry construction for increased particle tracking speed

    Beam Delivery Simulation: BDSIM - Development & Optimization

    No full text
    Beam Delivery Simulation (BDSIM) is a Geant4 and C++ based particle tracking code that seamlessly tracks particles through accelerators and detectors, including the full range of particle interaction physics processes from Geant4. BDSIM has been successfully used to model beam loss and background conditions for many current and future linear accelerators such as the Accelerator Test Facility 2 (ATF2) and the International Linear Collider (ILC). Current developments extend its application for use with storage rings, in particular for the Large Hadron Collider (LHC) and the High Luminosity upgrade project (HL-LHC). This paper presents the latest results from using BDSIM to model the LHC as well as the developments underway to improve performance

    Beam Profile Measurements at PETRA with the Laserwire Compton Scattering Monitor

    No full text
    The vertical beam profile at the PETRA positron storage ring has been measured using a laserwire scanner. A laser- wire monitor is a device which can measure high brilliant beam profiles by scanning a finely focused laser beam non- invasively across the charged particle beam. Evaluation of the Compton scattered photon flux as a function of the laser beam position yields the transverse beam profile. The aim of the experiment at PETRA is to obtain the profile of the positron beam at several GeV energy and several nC bunch charge. Key elements of laserwire systems are currently being studied and are described in this paper such as laser beam optics, a fast scanning system and a photon calorime- ter. Results are presented from positron beam profile scans using orbit bumps and a fast scanning scheme

    A novel approach to seamless simulations of compact hadron therapy systems for self-consistent evaluation of dosimetric and radiation protection quantities

    No full text
    Hadron therapy installations are evolving towards more compact systems that require higher-quality beams for advanced treatment modalities such as proton flash and arc therapy. Therefore the accurate modelling of present and next-generation systems poses new challenges where the simulations require both magnetic beam transport and particle-matter interactions. We present a novel approach to building simulations of beam delivery systems at a level suitable for clinical applications while seamlessly providing the computation of quantities relevant for beam dose deposition, radiation protection assessment, and shielding activation determination. A realistic model of the Ion Beam Applications (IBA) ProteusR One system is developed using Beam Delivery Simulation (BDSIM), based on Geant4, that uniquely allows simulation using a single model. Its validation against measured data is discussed in detail. The first results of self-consistent simulations for beam delivery and equivalent ambient dose are presented. The results show that our approach successfully models the complex interactions between the beam transport and its interactions with the system for relevant clinical scenarios at an acceptable computational cost.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore