8,900 research outputs found

    Effects of Anisotropy in QED3 from Dyson-Schwinger equations in a box

    Full text link
    We investigate the effect of anisotropies in the fermion velocities of 2+1 dimensional QED on the critical number N_f^c of fermions for dynamical mass generation. Our framework are the Dyson-Schwinger equations for the gauge boson and fermion propagators formulated in a finite volume. In contrast to previous Dyson-Schwinger studies we do not rely on an expansion in small anisotropies but keep the full velocity dependence of fermion equations intact. As result we find sizable variations of N_f^c away from the isotropic point in agreement with other approaches. We discuss the relevance of our findings for models of high-T_c superconductors.Comment: 9 pages, 7 figures, v2: minor changes, typos corrected, version accepted by PR

    Cooling for instantons and the Wrath of Nahm

    Get PDF
    The dynamics of instantons and anti-instantons in lattice QCD can be studied by analysing the action and topological charge of configurations as they approach a self-dual or anti-self-dual state, i.e. a state in which S/S_0=|Q|. We use cooling to reveal the semi-classical structure of the configurations we study. Improved actions which eliminate discretization errors up to and including O(a^4) are used to stabilise instantons as we cool for several thousand sweeps. An analogously improved lattice version of the continuum field-strength tensor is used to construct a topological charge free from O(a^4) discretization errors. Values of the action and topological charge obtained with these improved operators approach mutually-consistent integer values to within a few parts in 10^4 after several hundred cooling sweeps. Analysis of configurations with |Q| \approx 1 and |Q| \approx 2 supports the hypothesis that a self-dual |Q|=1 configuration cannot exist on the 4-torus.Comment: 5 pages, 4 figures, talk presented at the workshop on Lattice Hadron Physics, Cairns Australia, July 200

    The method of Gaussian weighted trajectories. V. On the 1GB procedure for polyatomic processes

    Full text link
    In recent years, many chemical reactions have been studied by means of the quasi-classical trajectory (QCT) method within the Gaussian binning (GB) procedure. The latter consists in "quantizing" the final vibrational actions in Bohr spirit by putting strong emphasis on the trajectories reaching the products with vibrational actions close to integer values. A major drawback of this procedure is that if N is the number of product vibrational modes, the amount of trajectories necessary to converge the calculations is ~ 10^N larger than with the standard QCT method. Applying it to polyatomic processes is thus problematic. In a recent paper, however, Czako and Bowman propose to quantize the total vibrational energy instead of the vibrational actions [G. Czako and J. M. Bowman, J. Chem. Phys., 131, 244302 (2009)], a procedure called 1GB here. The calculations are then only ~ 10 times more time-consuming than with the standard QCT method, allowing thereby for considerable numerical saving. In this paper, we propose some theoretical arguments supporting the 1GB procedure and check its validity on model test cases as well as the prototype four-atom reaction OH+D_2 -> HOD+D

    Infrared Exponents and the Running Coupling of Landau gauge QCD and their Relation to Confinement

    Get PDF
    The infrared behaviour of the gluon and ghost propagators in Landau gauge QCD is reviewed. The Kugo-Ojima confinement criterion and the Gribov-Zwanziger horizon condition result from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement with corresponding lattice data obtained recently. The resulting running coupling approaches a fix point in the infrared, α(0)=8.92/Nc\alpha(0) = 8.92/N_c. Two different fits for the scale dependence of the running coupling are given and discussed.Comment: 3 pages, 3 figures; talk given by R.A. at the conference Quark Nuclear Physics 200

    Kinetic energy spectra for fragments and break-up density in multifragmentation

    Get PDF
    We investigate the possibility, in nuclear fragmentation, to extract information on nuclear density at break-up from fragment kinetic energy spectra using a simultaneous scenario for fragment emission. The conclusions we derive are different from the recently published results of Viola et al. [Phys. Rev. Lett. 93, (2004), 132701] assuming a sequential fragment emission and claiming that the experimentally observed decrease of peak centroids for kinetic energy spectra of fragments with increasing bombarding energy is due to a monotonic decrease of the break-up density.Comment: 6 pages, 3 figure

    Short report: molecular markers associated with Plasmodium falciparum resistance to sulfadoxine-pyrimethamine in the Democratic Republic of Congo.

    Get PDF
    Sulfadoxine-pyrimethamine (SP) is the first line antimalarial treatment in the Democratic Republic of Congo. Using polymerase chain reaction, we assessed the prevalence of mutations in the dihydrofolate reductase (dhfr) (codons 108, 51, 59) and dihydropteroate synthase (dhps) (codons 437, 540) genes of Plasmodium falciparum, which have been associated with resistance to pyrimethamine and sulfadoxine, respectively. Four hundred seventy-four patients were sampled in Kilwa (N = 138), Kisangani (N = 112), Boende (N = 106), and Basankusu (N = 118). The proportion of triple mutations dhfr varied between sites but was always > 50%. The proportion of dhps double mutations was < 20%, with some sites as low as 0.9%. A quintuple mutation was present in 12.8% (16/125) samples in Kilwa; 11.9% (13/109) in Kisangani, 2.9% (3/102) in Boende, and 0.9% (1/112) in Basankusu. These results suggest high resistance to pyrimethamine alone or combined with sulfadoxine. Adding artesunate to SP does not seem a valid alternative to the current monotherapy

    A molecular method for the identification of resting eggs of acartiid copepods in the Thau lagoon, France

    Get PDF
    Acartia and Paracartia species, often known to co-occur, can exhibit complex life cycles, including the production of resting eggs. Studying and understanding their population dynamics is hindered by the inability to identify eggs and early developmental stages using morphological techniques. We have developed a simple molecular technique to distinguish between the three species of the Acartiidae family (Acartia clausi, A. discaudata and Paracartia grani) that co-occur in the Thau lagoon (43�250N; 03�400E) in southern France. Direct amplification of a partial region of the mitochondrial cytochrome oxidase I gene by polymerase chain reaction and subsequent restriction fragment length polymorphism results in a unique restriction profile for each species. The technique is capable of determining the identity of individual eggs, including resting eggs retrieved from sediment samples, illustrating its application in facilitating population dynamic studies of this ubiquitous and important member of the zooplankton community
    corecore