2,382 research outputs found
Probing Density Fluctuations using the FIRST Radio Survey
We use results of angular clustering measurements in 3000 sq. deg's of the
FIRST radio survey to infer information on spatial clustering. Measurements are
compared with CDM-model predictions. Clustering of FIRST sources with optical
ID's in the APM catalog are also investigated. Finally, we outline a
preliminary search for a weak lensing signal in the survey.Comment: 6 pages latex, 2 figures, to appear in Cosmology with the New Radio
Surveys (Kluwer
Tyrosine kinase inhibitors for the therapy of anaplastic thyroid cancer
Anaplastic thyroid cancer (ATC) is often incurable so new therapeutic approaches are needed. Tyrosine kinases inhibitors (such as imanitib, sunitinib or sorafenib) are under evaluation for the treatment of ATC. Other vascular disrupting agents, such as combretastatin A4 phosphate, and antiangiogenic agents, such as aplidin, PTK787/ZK222584 and human VEGF monoclonal antibodies (bevacizumab, cetuximab), have been evaluated. Small-molecule adenosine triphosphate competitive inhibitors directed intracellularly at EGFRs tyrosine kinase, such as erlotinib or gefitinib, are also studied. Furthermore, new molecules have been shown to be active against ATC, such as CLM94 and CLM3. However, more research is needed to finally identify therapies able to control and to cure this disease
Icebergs in the North Atlantic: Modelling circulation changes and glacio-marine deposition
In order to investigate meltwater events in the North Atlantic, a simple iceberg generation, drift, and melting routine was implemented in a high-resolution OGCM. Starting from the modelled last glacial state, every 25th day cylindrical model icebergs 300 meters high were released at 32 specific points along the coasts. Icebergs launched at the Barents Shelf margin spread a light meltwater lid over the Norwegian and Greenland Seas, shutting down the deep convection and the anti-clockwise circulation in this area. Due to the constraining ocean circulation, the icebergs produce a tongue of relatively cold and fresh water extending eastward from Hudson Strait that must develop at this location, regardless of iceberg origin. From the total amount of freshwater inferred by the icebergs, the thickness of the deposited IRD could be calculated in dependance of iceberg sediment concentration. In this way, typical extent and thickness of Heinrich layers could be reproduced, running the model for 250 years of steady state with constant iceberg meltwater inflow
Recommended from our members
The influence of soil communities on the temperature sensitivity of soil respiration
Soil respiration represents a major carbon flux between terrestrial ecosystems and the atmosphere, and is expected to accelerate under climate warming. Despite its importance in climate change forecasts, however, our understanding of the effects of temperature on soil respiration (RS) is incomplete. Using a metabolic ecology approach we link soil biota metabolism, community composition and heterotrophic activity, to predict RS rates across five biomes. We find that accounting for the ecological mechanisms underpinning decomposition processes predicts climatological RS variations observed in an independent dataset (n = 312). The importance of community composition is evident because without it RS is substantially underestimated. With increasing temperature, we predict a latitudinal increase in RS temperature sensitivity, with Q10 values ranging between 2.33 ±0.01 in tropical forests to 2.72 ±0.03 in tundra. This global trend has been widely observed, but has not previously been linked to soil communities
Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.
Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors
Individual differences in explicit and implicit visuomotor learning and working memory capacity
The theoretical basis for the association between high working memory capacity (WMC) and enhanced visuomotor adaptation is unknown. Visuomotor adaptation involves interplay between explicit and implicit systems. We examined whether the positive association between adaptation and WMC is specific to the explicit component of adaptation. Experiment 1 replicated the positive correlation between WMC and adaptation, but revealed this was specific to the explicit component of adaptation, and apparently driven by a sub-group of participants who did not show any explicit adaptation in the correct direction. A negative correlation was observed between WMC and implicit learning. Experiments 2 and 3 showed that when the task restricted the development of an explicit strategy, high WMC was no longer associated with enhanced adaptation. This work reveals that the benefit of high WMC is specifically linked to an individual’s capacity to use an explicit strategy. It also reveals an important contribution of individual differences in determining how adaptation is performed
The detection of the imprint of filaments on cosmic microwave background lensing
Galaxy redshift surveys, such as 2dF, SDSS, 6df, GAMA and VIPERS, have shown
that the spatial distribution of matter forms a rich web, known as the cosmic
web. The majority of galaxy survey analyses measure the amplitude of galaxy
clustering as a function of scale, ignoring information beyond a small number
of summary statistics. Since the matter density field becomes highly
non-Gaussian as structure evolves under gravity, we expect other statistical
descriptions of the field to provide us with additional information. One way to
study the non-Gaussianity is to study filaments, which evolve non-linearly from
the initial density fluctuations produced in the primordial Universe. In our
study, we report the first detection of CMB (Cosmic Microwave Background)
lensing by filaments and we apply a null test to confirm our detection.
Furthermore, we propose a phenomenological model to interpret the detected
signal and we measure how filaments trace the matter distribution on large
scales through filament bias, which we measure to be around 1.5. Our study
provides a new scope to understand the environmental dependence of galaxy
formation. In the future, the joint analysis of lensing and Sunyaev-Zel'dovich
observations might reveal the properties of `missing baryons', the vast
majority of the gas which resides in the intergalactic medium and has so far
evaded most observations
The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat
We describe the SPIDER flight cryostat, which is designed to cool six
millimeter-wavelength telescopes during an Antarctic long-duration balloon
flight. The cryostat, one of the largest to have flown on a stratospheric
payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6
K. Stainless steel capillaries facilitate a high flow impedance connection
between the main liquid helium tank and a smaller superfluid tank, allowing the
latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank.
Each telescope houses a closed cycle helium-3 adsorption refrigerator that
further cools the focal planes down to 300 mK. Liquid helium vapor from the
main tank is routed through heat exchangers that cool radiation shields,
providing negative thermal feedback. The system performed successfully during a
17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold
time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig
- …