7 research outputs found
Evidence for a dynamic corona in the short-term time lags of black hole X-ray binary MAXI J1820+070
In X-ray observations of hard state black hole X-ray binaries, rapid
variations in accretion disc and coronal power-law emission are correlated and
show Fourier-frequency-dependent time lags. On short (~0.1 s) time-scales,
these lags are thought to be due to reverberation and therefore may depend
strongly on the geometry of the corona. Low-frequency quasi-periodic
oscillations (QPOs) are variations in X-ray flux that have been suggested to
arise because of geometric changes in the corona, possibly due to General
Relativistic Lense-Thirring precession. Therefore one might expect the
short-term time lags to vary on the QPO time-scale. We performed novel
spectral-timing analyses on NICER observations of the black hole X-ray binary
MAXI J1820+070 during the hard state of its outburst in 2018 to investigate how
the short-term time lags between a disc-dominated and a coronal
power-law-dominated energy band vary on different time-scales. Our method can
distinguish between variability due to the QPO and broadband noise, and we find
a linear correlation between the power-law flux and lag amplitude that is
strongest at the QPO frequency. We also introduce a new method to resolve the
QPO signal and determine the QPO-phase-dependence of the flux and lag
variations, finding that both are very similar. Our results are consistent with
a geometric origin of QPOs, but also provide evidence for a dynamic corona with
a geometry varying in a similar way over a broad range of time-scales, not just
the QPO time-scale.Comment: 19 pages, 14 figures, 3 tables, accepted for publication in MNRA
Tracking the X-Ray Polarization of the Black Hole Transient Swift J1727.8â1613 during a State Transition
We report on an observational campaign on the bright black hole (BH) X-ray binary Swift J1727.8â1613 centered around five observations by the Imaging X-ray Polarimetry Explorer. These observations track for the first time the evolution of the X-ray polarization of a BH X-ray binary across a hard to soft state transition. The 2â8 keV polarization degree decreased from âŒ4% to âŒ3% across the five observations, but the polarization angle remained oriented in the northâsouth direction throughout. Based on observations with the Australia Telescope Compact Array, we find that the intrinsic 7.25 GHz radio polarization aligns with the X-ray polarization. Assuming the radio polarization aligns with the jet direction (which can be tested in the future with higher-spatial-resolution images of the jet), our results imply that the X-ray corona is extended in the disk plane, rather than along the jet axis, for the entire hard intermediate state. This in turn implies that the long (âł10 ms) soft lags that we measure with the Neutron star Interior Composition ExploreR are dominated by processes other than pure light-crossing delays. Moreover, we find that the evolution of the soft lag amplitude with spectral state does not follow the trend seen for other sources, implying that Swift J1727.8â1613 is a member of a hitherto undersampled subpopulation
Tracking the X-ray Polarization of the Black Hole Transient Swift J1727.8-1613 during a State Transition
We report on a campaign on the bright black hole X-ray binary Swift
J1727.81613 centered around five observations by the Imaging X-ray
Polarimetry Explorer (IXPE). This is the first time it has been possible to
trace the evolution of the X-ray polarization of a black hole X-ray binary
across a hard to soft state transition. The 2--8 keV polarization degree slowly
decreased from 4\% to 3\% across the five observations, but
remained in the North-South direction throughout. Using the Australia Telescope
Compact Array (ATCA), we measure the intrinsic 7.25 GHz radio polarization to
align in the same direction. Assuming the radio polarization aligns with the
jet direction (which can be tested in the future with resolved jet images),
this implies that the X-ray corona is extended in the disk plane, rather than
along the jet axis, for the entire hard intermediate state. This in turn
implies that the long (10 ms) soft lags that we measure with the
Neutron star Interior Composition ExploreR (NICER) are dominated by processes
other than pure light-crossing delays. Moreover, we find that the evolution of
the soft lag amplitude with spectral state differs from the common trend seen
for other sources, implying that Swift J1727.81613 is a member of a hitherto
under-sampled sub-population.Comment: Submitted to ApJ. 20 pages, 8 figure
Evidence for a dynamic corona in the short-term time lags of black hole X-ray binary MAXI J1820+070
In X-ray observations of hard state black hole X-ray binaries, rapid variations in accretion disc and coronal power-law emission are correlated and show Fourier-frequency-dependent time lags. On short (~0.1 s) time-scales, these lags are thought to be due to reverberation and therefore may depend strongly on the geometry of the corona. Low-frequency quasi-periodic oscillations (QPOs) are variations in X-ray flux that have been suggested to arise because of geometric changes in the corona, possibly due to General Relativistic Lense-Thirring precession. Therefore one might expect the short-term time lags to vary on the QPO time-scale. We performed novel spectral-timing analyses on NICER observations of the black hole X-ray binary MAXI J1820+070 during the hard state of its outburst in 2018 to investigate how the short-term time lags between a disc-dominated and a coronal power-law-dominated energy band vary on different time-scales. Our method can distinguish between variability due to the QPO and broadband noise, and we find a linear correlation between the power-law flux and lag amplitude that is strongest at the QPO frequency. We also introduce a new method to resolve the QPO signal and determine the QPO-phase-dependence of the flux and lag variations, finding that both are very similar. Our results are consistent with a geometric origin of QPOs, but also provide evidence for a dynamic corona with a geometry varying in a similar way over a broad range of time-scales, not just the QPO time-scale
Dramatic Drop in the X-Ray Polarization of Swift J1727.81613 in the Soft Spectral State
International audienceBlack-hole X-ray binaries exhibit different spectral and timing properties in different accretion states. The X-ray outburst of a recently discovered and extraordinarily bright source, SwiftJ1727.81613, has enabled the first investigation of how the X-ray polarization properties of a source evolve with spectral state. The 28 keV polarization degree was previously measured by the Imaging X-ray Polarimetry Explorer (IXPE) to be 4% in the hard and hard intermediate states. Here we present new IXPE results taken in the soft state, with the X-ray flux dominated by the thermal accretion-disk emission. We find that the polarization degree has dropped dramatically to 1%. This result indicates that the measured X-ray polarization is largely sensitive to the accretion state and the polarization fraction is significantly higher in the hard state when the X-ray emission is dominated by up-scattered radiation in the X-ray corona. The combined polarization measurements in the soft and hard states disfavor a very high or low inclination of the system
Tracking the X-Ray Polarization of the Black Hole Transient Swift J1727.8â1613 during a State Transition
International audienceWe report on an observational campaign on the bright black hole (BH) X-ray binary Swift J1727.8â1613 centered around five observations by the Imaging X-ray Polarimetry Explorer. These observations track for the first time the evolution of the X-ray polarization of a BH X-ray binary across a hard to soft state transition. The 2â8 keV polarization degree decreased from âŒ4% to âŒ3% across the five observations, but the polarization angle remained oriented in the northâsouth direction throughout. Based on observations with the Australia Telescope Compact Array, we find that the intrinsic 7.25 GHz radio polarization aligns with the X-ray polarization. Assuming the radio polarization aligns with the jet direction (which can be tested in the future with higher-spatial-resolution images of the jet), our results imply that the X-ray corona is extended in the disk plane, rather than along the jet axis, for the entire hard intermediate state. This in turn implies that the long (âł10 ms) soft lags that we measure with the Neutron star Interior Composition ExploreR are dominated by processes other than pure light-crossing delays. Moreover, we find that the evolution of the soft lag amplitude with spectral state does not follow the trend seen for other sources, implying that Swift J1727.8â1613 is a member of a hitherto undersampled subpopulation