609 research outputs found
Unforeseen high temperature and humidity stability of FeCl intercalated few layer graphene
We present the first systematic study of the stability of the structure and
electrical properties of FeCl intercalated few-layer graphene to high
levels of humidity and high temperature. Complementary experimental techniques
such as electrical transport, high resolution transmission electron microscopy
and Raman spectroscopy conclusively demonstrate the unforeseen stability of
this transparent conductor to a relative humidity up to at room
temperature for 25 days, to a temperature up to 150\,^\circC in atmosphere
and up to a temperature as high as 620\,^\circC in vacuum, that is more than
twice higher than the temperature at which the intercalation is conducted. The
stability of FeCl intercalated few-layer graphene together with its unique
values of low square resistance and high optical transparency, makes this
material an attractive transparent conductor in future flexible electronic
applications.Comment: Scientific Reports, volume 5, article no. 760
What information can we obtain from the yield ratio in heavy-ion collisions ?
The recently reported data on the yield ratio in central
rapidity region of heavy-ion collisions are analyzed by theoretical formula
which accounts for Coulomb interaction between central charged fragment (CCF)
consisting of nearly stopped nucleons with effective charge
Z_{\mbox{\scriptsize eff}} and charged pions produced in the same region of
the phase space. The Coulomb wave function method is used instead of the usual
Gamow factor in order to account for the finite production range of pions,
. For Gaussian shape of the pion production sources it results in a
quasi-scaling in and Z_{\mbox{\scriptsize eff}} which makes
determination of parameters and Z_{\mbox{\scriptsize eff}} from the
existing experimental data difficult. Only sufficiently accurate data taken in
the extreme small - region, where this
quasi-scaling is broken, could be used for this purpose.Comment: 7 pages, Latex type, 8 figure
Recommended from our members
Some experimental considerations of the QCD Group
For experimental investigation of quantum chromodynamics, the preferred machine question is dominated by such issues as how much luminosity is needed and which machine is practical (to get approved, build fast, run reliably, etc.). It is concluded that pile-up problems for localized E/sub T/ triggers are not serious. For high luminosity QCD studies a philosophy is envisaged which is predominantly calorimetric and ignores the low p/sub t/ activity. It is suggested that consideration be given to the concept of a jet spectrometer for jet fragmentation with momentum measurement. (LEW
Quasiscaling in the analysis of the yield ratio : Mathematical structure and estimation of source size
Recently we have found that integral of the squared Coulomb wave function
describing systemcomposed of charged pion and central charged fragment
protons, , times pion source function (of
the size ), \intdr |\psi_r(r)|^2 \rho(r), shows a quasiscaling
behavior. This is approximately invariant under the following transformation:
; . We called
such behavior quasiscaling. We examine this quasiscaling
behavior in detail. In particular we provide a semi-analytical examination of
this behavior and confirm it for the exponential pionic source functions in
addition to the Gaussian ones and for the production of K mesons as well. When
combined with the results of the HBT, a result of the yield ratio allows us to
estimate the size of the central charged fragment (CCF) to be for Pb+Pb collisions at energy 158 GeV/nucleon. From our
estimation, the baryon number density [1/fm^3] is
obtained.Comment: 7 pages, RevTex, 6figure
Enhancement of singly and multiply strangeness in p-Pb and Pb-Pb collisions at 158A GeV/c
The idea that the reduction of the strange quark suppression in string
fragmentation leads to the enhancement of strange particle yield in
nucleus-nucleus collisions is applied to study the singly and multiply strange
particle production in p-Pb and Pb-Pb collisions at 158A GeV/c. In this
mechanism the strange quark suppression factor is related to the effective
string tension, which increases in turn with the increase of the energy, of the
centrality and of the mass of colliding system. The WA97 observation that the
strange particle enhancement increases with the increasing of centrality and of
strange quark content in multiply strange particles in Pb-Pb collisions with
respect to p-Pb collisions was accounted reasonably.Comment: 8 pages, 3 PostScript figures, in Latex form. submitted to PR
Two-kaon correlations in central Pb + Pb collisions at 158 A GeV/c
Two-particle interferometry of positive kaons is studied in Pb + Pb
collisions at mean transverse momenta and 0.91 GeV/c. A
three-dimensional analysis was applied to the lower data, while a
two-dimensional analysis was used for the higher data. We find that the
source size parameters are consistent with the scaling curve observed in
pion correlation measurements in the same collisions, and that the duration
time of kaon emission is consistent with zero within the experimental
sensitivity.Comment: 4 pages incl. 1 table and 3 fig's; RevTeX; accepted for publication
in PR
The multiple sclerosis risk sharing scheme monitoring study - early results and lessons for the future
Background: Risk sharing schemes represent an innovative and important approach to the problems of rationing and achieving cost-effectiveness in high cost or controversial health interventions. This study aimed to assess the feasibility of risk sharing schemes, looking at long term clinical outcomes, to determine the price at which high cost treatments would be acceptable to the NHS.
Methods: This case study of the first NHS risk sharing scheme, a long term prospective cohort study of beta interferon and glatiramer acetate in multiple sclerosis ( MS) patients in 71 specialist MS centres in UK NHS hospitals, recruited adults with relapsing forms of MS, meeting Association of British Neurologists (ABN) criteria for disease modifying therapy. Outcome measures were: success of recruitment and follow up over the first three years, analysis of baseline and initial follow up data and the prospect of estimating the long term cost-effectiveness of these treatments.
Results: Centres consented 5560 patients. Of the 4240 patients who had been in the study for a least one year, annual review data were available for 3730 (88.0%). Of the patients who had been in the study for at least two years and three years, subsequent annual review data were available for 2055 (78.5%) and 265 (71.8%) patients respectively. Baseline characteristics and a small but statistically significant progression of disease were similar to those reported in previous pivotal studies.
Conclusion: Successful recruitment, follow up and early data analysis suggest that risk sharing schemes should be able to deliver their objectives. However, important issues of analysis, and political and commercial conflicts of interest still need to be addressed
Observing Quark-Gluon Plasma with Strange Hadrons
We review the methods and results obtained in an analysis of the experimental
heavy ion collision research program at nuclear beam energy of 160-200A GeV. We
study strange, and more generally, hadronic particle production experimental
data. We discuss present expectations concerning how these observables will
perform at other collision energies. We also present the dynamical theory of
strangeness production and apply it to show that it agrees with available
experimental results. We describe strange hadron production from the
baryon-poor quark-gluon phase formed at much higher reaction energies, where
the abundance of strange baryons and antibaryons exceeds that of nonstrange
baryons and antibaryons.Comment: 39 journal pages (155kb text), 8 postscript figures, 8 table
Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model
We develop and extend the dynamical string parton model. This model, which is
based on the salient features of QCD, uses classical Nambu-Got\=o strings with
the endpoints identified as partons, an invariant string breaking model of the
hadronization process, and interactions described as quark-quark interactions.
In this work, the original model is extended to include a phenomenological
quantization of the mass of the strings, an analytical technique for treating
the incident nucleons as a distribution of string configurations determined by
the experimentally measured structure function, the inclusion of the gluonic
content of the nucleon through the introduction of purely gluonic strings, and
the use of a hard parton-parton interaction taken from perturbative QCD
combined with a phenomenological soft interaction. The limited number of
parameters in the model are adjusted to and -- data. Utilizing
these parameters, the first calculations of the model for -- and
-- collisions are presented and found to be in reasonable agreement with
a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex
- âŠ