89 research outputs found

    Synovial explant inflammatory mediator production corresponds to rheumatoid arthritis imaging hallmarks:a cross-sectional study

    Get PDF
    Introduction: Despite the widespread use of magnetic resonance imaging (MRI) and Doppler ultrasound for the detection of rheumatoid arthritis (RA) disease activity, little is known regarding the association of imaging-detected activity and synovial pathology. The purpose of this study was to compare site-specific release of inflammatory mediators and evaluate the corresponding anatomical sites by examining colour Doppler ultrasound (CDUS) and MRI scans.Methods: RA patients were evaluated on the basis of CDUS and 3-T MRI scans and subsequently underwent synovectomy using a needle arthroscopic procedure of the hand joints. The synovial tissue specimens were incubated for 72 hours, and spontaneous release of monocyte chemoattractant protein 1 (MCP-1), interleukin 6 (IL-6), macrophage inflammatory protein 1β (MIP-1β) and IL-8 was measured by performing multiplex immunoassays. Bone marrow oedema (BME), synovitis and erosion scores were estimated on the basis of the rheumatoid arthritis magnetic resonance imaging score (RAMRIS). Mixed models were used for the statistical analyses. Parsimony was achieved by omitting covariates with P > 0.1 from the statistical model.Results: Tissue samples from 58 synovial sites were obtained from 25 patients. MCP-1 was associated with CDUS activity (P = 0.009, approximate Spearman's ρ = 0.41), RAMRIS BME score (P = 0.01, approximate Spearman's ρ = 0.42) and RAMRIS erosion score (P = 0.03, approximate Spearman's ρ = 0.31). IL-6 was associated with RAMRIS synovitis score (P = 0.04, approximate Spearman's ρ = 0.50), BME score (P = 0.04, approximate Spearman's ρ = 0.31) and RAMRIS erosion score (P = 0.03, approximate Spearman's ρ = 0.35). MIP-1β was associated with CDUS activity (P = 0.02, approximate Spearman's ρ = 0.38) and RAMRIS synovitis scores (P = 0.02, approximate Spearman's ρ = 0.63). IL-8 associations with imaging outcome measures did not reach statistical significance.Conclusions: The association between imaging activity and synovial inflammatory mediators underscores the high sensitivity of CDUS and MRI in the evaluation of RA disease activity. The associations found in our present study have different implications for synovial mediator releases and corresponding imaging signs. For example, MCP-1 and IL-6 were associated with both general inflammation and bone destruction, in contrast to MIP-1β, which was involved solely in general synovitis. The lack of association of IL-8 with synovitis was likely underestimated because of a large proportion of samples above assay detection limits among the patients with the highest synovitis scores. © 2014 Andersen et al.; licensee BioMed Central Ltd

    Tendon collagen synthesis declines with immobilization in elderly humans:no effect of anti-inflammatory medication

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) are used as pain killers during periods of unloading caused by traumatic occurrences or diseases. However, it is unknown how tendon protein turnover and mechanical properties respond to unloading and subsequent reloading in elderly humans, and whether NSAID treatment would affect the tendon adaptations during such periods. Thus we studied human patellar tendon protein synthesis and mechanical properties during immobilization and subsequent rehabilitating resistance training and the influence of NSAIDs upon these parameters. Nineteen men (range 60–80 yr) were randomly assigned to NSAIDs (ibuprofen 1,200 mg/day; Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 wk and retrained for 6 wk. Tendon collagen protein synthesis, mechanical properties, size, expression of genes related to collagen turnover and remodeling, and signal intensity (from magnetic resonance imaging) were investigated. Tendon collagen synthesis decreased ( P &lt; 0.001), whereas tendon mechanical properties and size were generally unchanged with immobilization, and NSAIDs did not influence this. Matrix metalloproteinase-2 mRNA tended to increase ( P &lt; 0.1) after immobilization in both groups, whereas scleraxis mRNA decreased with inactivity in the Plc group only ( P &lt; 0.05). In elderly human tendons, collagen protein synthesis decreased after 2 wk of immobilization, whereas tendon stiffness and modulus were only marginally reduced, and NSAIDs had no influence upon this. This indicates an importance of mechanical loading for maintenance of tendon collagen turnover. However, reduced collagen production induced by short-term unloading may only marginally affect tendon mechanical properties in elderly individuals.NEW &amp; NOTEWORTHY In elderly humans, 2 wk of inactivity reduces tendon collagen protein synthesis, while tendon stiffness and modulus are only marginally reduced, and NSAID treatment does not affect this. This indicates that mechanical loading is important for maintenance of tendon collagen turnover and that changes in collagen turnover induced by short-term immobilization may only have minor impact on the internal structures that are essential for mechanical properties in elderly tendons.</jats:p

    The cell envelope structure of cable bacteria

    Get PDF
    Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the architecture of the cell envelope of cable bacterium filaments by combining different sample preparation methods (chemical fixation, resin-embedding, and cryo-fixation) with a portfolio of imaging techniques (scanning electron microscopy, transmission electron microscopy and tomography, focused ion beam scanning electron microscopy, and atomic force microscopy). We systematically imaged intact filaments with varying diameters. In addition, we investigated the periplasmic fiber sheath that remains after the cytoplasm and membranes were removed by chemical extraction. Based on these investigations, we present a quantitative structural model of a cable bacterium. Cable bacteria build their cell envelope by a parallel concatenation of ridge compartments that have a standard size. Larger diameter filaments simply incorporate more parallel ridge compartments. Each ridge compartment contains a similar to 50 nm diameter fiber in the periplasmic space. These fibers are continuous across cell-to-cell junctions, which display a conspicuous cartwheel structure that is likely made by invaginations of the outer cell membrane around the periplasmic fibers. The continuity of the periplasmic fibers across cells makes them a prime candidate for the sought-after electron conducting structure in cable bacteria
    corecore