33 research outputs found

    Alpha beta T-cell graft depletion for allogeneic HSCT in adults with hematological malignancies

    Get PDF
    We conducted a multicenter prospective single-arm phase 1/2 study that assesses the outcome of alpha beta T-cell depleted allogeneic hematopoietic stem cell transplantation (allo-HSCT) of peripheral blood derived stem cells from matched related, or unrelated donors (10/10 and 9/10) in adults, with the incidence of acute graft-versus-host disease (aGVHD) as the primary end point at day 100. Thirty-five adults (median age, 59; range, 19-69 years) were enrolled. Conditioning consisted of antithymocyte globulin, busulfan, and fludarabine, followed by 28 days of mycophenolic acid after allo-HSCT. The minimal follow-up time was 24 months. The median number of infused CD34(+) cells and alpha beta T cells were 6.1 x 10(6) and 16.3 x 10(3) cells per kg, respectively. The cumulative incidence (CI) of aGVHD grades 2-4 and 3-4 at day 100 was 26% and 14%. One secondary graft failure was observed. A prophylactic donor lymphocyte infusion (DLI) (1 x 10(5) CD3(+) T cells per kg) was administered to 54% of the subjects, resulting in a CI of aGVHD grades 2-4 and 3-4 to 37% and 17% at 2 years. Immune monitoring revealed an early reconstitution of natural killer (NK) and gamma delta T cells. Cytomegalovirus reactivation associated with expansion of memory-like NK cells. The CI of relapse was 29%, and the nonrelapse mortality 32% at 2 years. The 2-year CI of chronic GVHD (cGVHD) was 23%, of which 17% was moderate. We conclude that only 26% of patients developed aGVHD 2-4 after alpha beta T-cell-depleted allo-HSCT within 100 days and was associated with a low incidence of cGVHD after 2 years. This trial was registered at www.trialregister.nl as #NL4767.Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease

    Multicenter Comparison of Molecular Tumor Boards in The Netherlands: Definition, Composition, Methods, and Targeted Therapy Recommendations

    Get PDF
    Background: Molecular tumor boards (MTBs) provide rational, genomics-driven, patient-tailored treatment recommendations. Worldwide, MTBs differ in terms of scope, composition, methods, and recommendations. This study aimed to assess differences in methods and agreement in treatment recommendations among MTBs from tertiary cancer referral centers in The Netherlands. Materials and Methods: MTBs from all tertiary cancer referral centers in The Netherlands were invited to participate. A survey assessing scope, value, logistics, composition, decision-making method, reporting, and registration of the MTBs was completed through on-site interviews with members from each MTB. Targeted therapy recommendations were compared using 10 anonymized cases. Participating MTBs were asked to provide a treatment recommendation in accordance with their own methods. Agreement was based on which molecular alteration(s) was considered actionable with the next line of targeted therapy. Results: Interviews with 24 members of eight MTBs revealed that all participating MTBs focused on rare or complex mutational cancer profiles, operated independently of cancer type–specific multidisciplinary teams, and consisted of at least (thoracic and/or medical) oncologists, pathologists, and clinical scientists in molecular pathology. Differences were the types of cancer discussed and the methods used to achieve a recommendation. Nevertheless, agreement among MTB recommendations, based on identified actionable molecular alteration(s), was high for the 10 evaluated cases (86%). Conclusion: MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational cancer profiles. We propose a “Dutch MTB model” for an optimal, collaborative, and nationally aligned MTB workflow. Implications for Practice: Interpretation of genomic analyses for optimal choice of target therapy for patients with cancer is becoming increasingly complex. A molecular tumor board (MTB) supports oncologists in rationalizing therapy options. However, there is no consensus on the most optimal setup for an MTB, which can affect the quality of recommendations. This study reveals that the eight MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational profiles. The Dutch MTB model is based on a collaborative and nationally aligned workflow with interinstitutional collaboration and data sharing

    X-ray absorption spectroscopic studies of zinc in the N-terminal domain of HIV-2 integrase and model compounds

    Get PDF
    Contains fulltext : 74656.pdf (postprint version ) (Open Access)10 p

    The force of HER2-A druggable target in NSCLC?

    No full text
    Since several years targeted therapy has been part of treatment in NSCLC in subsets of patients with specific genetic alterations. One of these alterations involves HER2, a member of the ERBB family of tyrosine kinase receptors. Despite that HER2 alterations in NSCLC have been studied for years, there is still no consensus about subgroup definitions. In this review HER2 alterations in NSCLC are discussed, including diagnostic challenges and treatment strategies.Three principal mechanisms of HER2 alterations can be identified: HER2 protein overexpression, HER2 gene amplification and HER2 gene mutations. There are several methods for the detection of HER2 "positivity" in NSCLC, but no gold standard has been established. Laboratory methods for assessment of HER2 positivity in NSCLC include immunohistochemistry (IHC) for protein overexpression and fluorescent in situ hybridization (FISH) and next generation sequencing (NGS) for genetic alterations.Many trials testing HER2 targeted therapy in HER2 altered NSCLC has not lead to a renewed standard of care for this group of patients. Therefore, today the (re)search on how to analyse, define and treat HER2 alterations in NSCLC continues. Still there is no consensus about HER2 subgroup definitions and results of the many trials studying possible treatment strategies are inconclusive. Future research should focus on the most important missing link, whether all HER2 alterations are relevant oncogenic drivers and whether it should be considered as a therapeutic target in NSCLC.Pulmonolog

    The Route of Administration (Enteral or Parenteral) Affects the Conversion of Isotopically Labeled L-[2-15N]Glutamine Into Citrulline and Arginine in Humans.

    No full text
    BACKGROUND: Glutamine exhibits numerous beneficial effects in experimental and clinical studies. It has been suggested that these effects may be partly mediated by the conversion of glutamine into citrulline and arginine. The intestinal metabolism of glutamine appears to be crucial in this pathway. The present study was designed to establish the effect of the feeding route, enteral or parenteral, on the conversion of exogenously administered glutamine into citrulline and arginine at an organ level in humans, with a focus on gut metabolism. METHODS: Sixteen patients undergoing upper gastrointestinal surgery received an IV or enteral (EN) infusion of l-[2-(15)N]glutamine. Blood was sampled from a radial artery and from the portal and right renal vein. Amino acid concentrations and enrichments were measured, and net fluxes of [(15)N]-labeled substrates across the portal drained viscera (PDV) and kidneys were calculated from arteriovenous differences and plasma flow. RESULTS: Arterial [(15)N]glutamine enrichments were significantly lower during enteral tracer infusion (tracer-to-tracee ratio [labeled vs unlabeled substrate, TTR%] IV: 6.66 +/- 0.35 vs EN: 3.04 +/- 0.45; p < .01), reflecting first-pass intestinal metabolism of glutamine during absorption. Compared with IV administration, enteral administration of the glutamine tracer resulted in a significantly higher intestinal fractional extraction of [(15)N]glutamine (IV: 0.15 +/- 0.03 vs EN: 0.44 +/- 0.08 mumol/kg/h; p < .01). Furthermore, enteral administration of the glutamine tracer resulted in higher arterial enrichments of [(15)N]citrulline (TTR% IV: 5.52 +/- 0.44 vs EN: 8.81 +/- 1.1; p = .02), and both routes of administration generated a significant enrichment of [(15)N]arginine (TTR% IV: 1.43 +/- 0.12 vs EN: 1.68 +/- 0.18). This was accompanied by intestinal release of [(15)N]citrulline across the PDV, which was higher with enteral glutamine (IV: 0.38 +/- 0.07 vs EN: 0.72 +/- 0.11 mumol/kg/h; p = .02), and subsequent [(15)N]arginine release in both groups. CONCLUSIONS: In humans, the gut preferably takes up enterally administered glutamine compared with intravenously provided glutamine. The route of administration, enteral or IV, affects the quantitative conversion of glutamine into citrulline and subsequent renal arginine synthesis in humans

    Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism

    No full text
    BACKGROUND: The liver plays a central role in amino acid metabolism. However, because of limited accessibility of the portal vein, human data on this subject are scarce. OBJECTIVE: We studied hepatic amino acid metabolism in noncirrhotic fasting patients undergoing liver surgery. DESIGN: Twenty patients undergoing hepatectomy for colorectal metastases in a normal liver were studied. Before resection, blood was sampled from a radial artery, portal vein, hepatic vein, and renal vein. Organ blood flow was measured by duplex ultrasound scan. RESULTS: The intestine consumed glutamine and released citrulline. Citrulline was taken up by the kidney. This was accompanied by renal arginine release, which supports the view that glutamine is a precursor for arginine synthesis through an intestinal-renal pathway. The liver was found to extract citrulline from this pathway at a rate that was dependent on intestinal citrulline release (P < 0.0001) and hepatic citrulline influx (P = 0.03). Fractional hepatic extractions of citrulline (8.4%) and arginine (11.5%) were not significantly different. Eighty-eight percent of arginine reaching the liver passed it unchanged. Splanchnic citrulline release could account for one-third of renal citrulline uptake. CONCLUSIONS: This is the first study of hepatic and interorgan amino acid metabolism in humans with a normal liver. The data indicate that glutamine is a precursor of ornithine, which can be converted to citrulline by the intestine; citrulline is transformed in the kidneys to arginine. Hepatic citrulline uptake limits the amount of gut-derived citrulline reaching the kidney. These findings may have implications for interventions aimed at increasing systemic arginine concentrations

    Specific amino acids in the critically ill patient--exogenous glutamine/arginine: a common denominator?

    No full text
    OBJECTIVE: Glutamine and arginine are both used as nutritional supplements in critically ill patients. Although glutamine has been shown to be beneficial for the metabolically stressed patient, considerations about arginine supplementation are not unanimously determined. Our aim is to review the current knowledge on the possible interplay between glutamine and arginine generation in the stressed patient and to elaborate on whether these amino acids may function as a common denominator. Because glutamine can be given by the parenteral and enteral routes, possible different actions on the metabolic fate (e.g., generation of citrulline) with both routes are analyzed. DATA SOURCE: A summary of data on the clinical effect of glutamine and arginine metabolism is given, incorporating data on glutamine and arginine supplementation. Differences between the route of administration, parenteral or enteral, and the molecular form of supplied glutamine, free or as dipeptide, on citrulline generation by the gut and production of arginine are discussed. RESULTS: Glutamine and arginine influence similar organ systems; however, they differ in their targets. For example, glutamine serves as fuel for the immune cells, increases human leukocyte antigen-DR expression on monocytes, enhances neutrophil phagocytosis, and increases heat shock protein expression. Arginine affects the immune system by stimulating direct or indirect proliferation of immune cells. This indirect effect is possibly mediated by nitric oxide, which also enhances macrophage cytotoxicity. Furthermore, glutamine serves as a precursor for the de novo production of arginine through the citrulline-arginine pathway. Glutamine has shown to be beneficial in the surgical and critically ill patient, whereas arginine supplementation is still under debate. The route of glutamine administration (parenteral or enteral) determines the effect on citrulline and on the de novo arginine generation. There is a marked difference between the administration of free glutamine and dipeptide enterally or parenterally. Splanchnic extraction of the hydrolyzed glutamine in mice when administering the dipeptide enterally is higher compared with administering free glutamine from the enteral site. In patients, splanchnic extraction of the dipeptide given enterally is 100% when comparing supplementation of the dipeptide intravenously. CONCLUSIONS: The beneficial effects of free glutamine or dipeptide may depend on the route of administration but also on the metabolic fate of amino acids generated (e.g., citrulline, arginine). Glutamine serves as a substrate for de novo citrulline and arginine synthesis. More research needs to be done to establish the direct clinical relevance of the different metabolic pathways. Future perspectives might include combining enteral and parenteral routes of administrating free glutamine or dipeptide
    corecore