71 research outputs found

    Impact of Weak Lensing Mass Calibration on eROSITA Galaxy Cluster Cosmological Studies -- a Forecast

    Full text link
    We forecast the impact of weak lensing (WL) cluster mass calibration on the cosmological constraints from the X-ray selected galaxy cluster counts in the upcoming eROSITA survey. We employ a prototype cosmology pipeline to analyze mock cluster catalogs. Each cluster is sampled from the mass function in a fiducial cosmology and given an eROSITA count rate and redshift, where count rates are modeled using the eROSITA effective area, a typical exposure time, Poisson noise and the scatter and form of the observed X-ray luminosity-- and temperature--mass--redshift relations. A subset of clusters have mock shear profiles to mimic either those from DES and HSC or from the future Euclid and LSST surveys. Using a count rate selection, we generate a baseline cluster cosmology catalog that contains 13k clusters over 14,892~deg2^2 of extragalactic sky. Low mass groups are excluded using raised count rate thresholds at low redshift. Forecast parameter uncertainties for ΩM\Omega_\mathrm{M}, σ8\sigma_8 and ww are 0.023 (0.016; 0.014), 0.017 (0.012; 0.010), and 0.085 (0.074; 0.071), respectively, when adopting DES+HSC WL (Euclid; LSST), while marginalizing over the sum of the neutrino masses. A degeneracy between the distance--redshift relation and the parameters of the observable--mass scaling relation limits the impact of the WL calibration on the ww constraints, but with BAO measurements from DESI an improved determination of ww to 0.043 becomes possible. With Planck CMB priors, ΩM\Omega_\text{M} (σ8\sigma_8) can be determined to 0.0050.005 (0.0070.007), and the summed neutrino mass limited to ∑mν<0.241\sum m_\nu < 0.241 eV (at 95\%). If systematics on the group mass scale can be controlled, the eROSITA group and cluster sample with 43k objects and LSST WL could constrain ΩM\Omega_\mathrm{M} and σ8\sigma_8 to 0.007 and ww to 0.050.Comment: 28 pages, 13 figur

    Galaxy cluster cosmology

    Get PDF

    Cosmological Constraints from Galaxy Clusters and Groups in the eROSITA Final Equatorial Depth Survey

    Full text link
    We present the first cosmological study of a sample of eROSITAeROSITA clusters, which were identified in the eROSITAeROSITA Final Equatorial Depth Survey (eFEDS). In a joint selection on X-ray and optical observables, the sample contains 455455 clusters within a redshift range of 0.1<z<1.20.1<z<1.2, of which 177177 systems are covered by the public data from the Hyper Suprime-Cam (HSC) survey that enables uniform weak-lensing cluster mass constraints. With minimal assumptions, at each cluster redshift zz we empirically model (1) the scaling relations between the cluster halo mass and the observables, which include the X-ray count rate, the optical richness, and the weak-lensing mass, and (2) the X-ray selection in terms of the completeness function C\mathtt{C}. Using the richness distribution of the clusters, we directly measure the X-ray completeness and adopt those measurements as informative priors for the parameters of C\mathtt{C}. In a blinded analysis, we obtain the cosmological constraints Ωm=0.245−0.058+0.048\Omega_{\mathrm{m}} = 0.245^{+0.048}_{-0.058}, σ8=0.833−0.063+0.075\sigma_{8} = 0.833^{+0.075}_{-0.063} and S8≡σ8(Ωm/0.3)0.3=0.791−0.031+0.028S_{8} \equiv \sigma_{8}\left(\Omega_{\mathrm{m}}/0.3\right)^{0.3}= 0.791^{+0.028}_{-0.031} in a flat Λ\LambdaCDM cosmology. Extending to a flat wwCDM cosmology leads to the constraint on the equation of state parameter of the dark energy of w=−1.25±0.47w = -1.25\pm 0.47. The eFEDS constraints are in good agreement with the results from the PlanckPlanck mission, the galaxy-galaxy lensing and clustering analysis of the Dark Energy Survey, and the cluster abundance analysis of the SPT-SZ survey at a level of ≲1σ\lesssim1\sigma. With the empirical modelling, this work presents the first fully self-consistent cosmological constraints based on a synergy between wide-field X-ray and weak lensing surveys.Comment: Accepted for publication in MNRAS. Figures 18 and 19 contain the main results. Chains and cluster masses are at https://github.com/inonchiu/eFEDSproduct

    Is graphene on Ru(0001) a nanomesh?

    Full text link
    The electronic structure of a single layer graphene on Ru(0001) is compared with that of a single layer hexagonal boron nitride nanomesh on Ru(0001). Both are corrugated sp2 networks and display a pi-band gap at the K point of their 1 x 1 Brillouin zone. Graphene has a distinct Fermi surface which indicates that 0.1 electrons are transferred per 1 x 1 unit cell. Photoemission from adsorbed xenon identifies two distinct Xe 5p1/2 lines, separated by 240 meV, which reveals a corrugated electrostatic potential energy surface. These two Xe species are related to the topography of the system and have different desorption energies.Comment: 5 pages, 4 figures, 1 tabl

    Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates With the SPT-GMOS Spectroscopic Survey

    Get PDF
    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanning 0.28<z<1.08 0.28 < z < 1.08. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17±417\pm4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m<m∗−0.5m < m^{*}-0.5) cluster galaxies is 11±411\pm4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.Comment: Accepted to ApJ; 21 pages, 11 figures, 5 table

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447
    • …
    corecore