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Zusammenfassung

Galaxienhaufen (englisch galaxy cluster) sind einige der größten Objekte in unserem Universum. Sie bestehen
aus einigen Dutzend bis hin zu Tausenden von Galaxien und wurden, wie ihr Name bereits nahelegt, zunächst
als Überdichten in der projizierten Anzahldichte von Galaxien in den 1960er Jahren entdeckt (z.B. Abell 1958;
Zwicky et al. 1968). Allerdings weiß man heute, dass Galaxien nur etwa 1% der Gesamtmasse eines Galax-
ienhaufens ausmachen. Intergalaktisches Gas macht mit etwa 9% der Gesamtmasse den Großteil gewöhnlicher
Materie aus, und der Rest, also 90%, ist dunkle Materie. Diese drei Komponenten eines Galaxienhaufens
können durch verschiedene Methoden beobachtet werden. Die Galaxien selbst werden optisch beobachtet,
und das intergalaktische Gas anhand anderer, spezieller Methoden. Die dunkle Materie wiederum kann per
Definition nicht direkt beobachtet werden. Allerdings bestimmen Messungen des schwachen Gravitationslin-
seneffekts die Gesamtmasse eines Galaxienhaufens, sodass auch die dunkle Materie untersucht werden kann.

Auf der Titelseite dieser Dissertation ist der berühmte “bullet cluster” abgebildet, dessen innere Struktur an-
hand der drei erwähnten Beobachtungsarten aufgelöst werden konnte: Der eigentliche Galaxienhaufen befindet
sich in der linken Bildhälfte, in der auch viele rotverschobene Galaxien zu erkennen sind. Rechts davon befindet
sich der “bullet”, ein kleinerer Galaxienhaufen, der den größeren bereits von links nach rechts durchquert hat.
Die blaue Farbe zeigt die anhand des schwachen Gravitationslinseneffekts gemessene Verteilung der dunklen
Materie, welche in zwei Komponenten aufgeteilt ist. Die rote Farbe zeigt die Verteilung des heißen Gases,
welches in Röntgenbeobachtungen sichtbar gemacht wurde. Deutlich ist zu erkennen, dass das Gas aufgrund
von Druckkräften in der Nähe des Begegnungsortes beider Haufen geblieben ist, während Galaxien und dunkle
Materie fast ungehindert durcheinander durch dringen konnten.

Galaxienhaufen sind zweifelsohne sehr interessante Objekte, die unter vielerlei astrophysikalischer Gesicht-
spunkten untersucht werden. Des weiteren sind Galaxienhaufen jedoch auch dazu geeignet die Kosmologie,
also die Entwicklung des Universums, zu studieren. So ist etwa die Bildung von Galaxienhaufen eng mit der
kosmischen Materieverteilung verbunden, sodass selbst eine mäßig genaue Messung ihrer Anzahldichte präzise
Bestimmungen kosmologischer Parameter ermöglicht. Des weiteren hängt die Anzahldichte sowohl von der
kosmischen Expansion ab, welche die Dichte verringert, als auch von der kosmischen Strukturbildung, bzw.
von deren Wachstumsrate. Diese zweifache Abhängigkeit macht Kosmologie mit Galaxienhaufen besonders
interessant. Durch Galaxienhaufen gemessene kosmologische Parameter zeigen andere Abhängigkeiten und
Entartungen auf als die anderer Methoden. So sind etwa einige der Entartungen in Ergebnissen von Galax-
ienhaufen fast senkrecht zu den Entartungen durch Messungen der kosmischen Hintergrundstrahlung, und die
Kombination beider Methoden ist daher besonders interessant. Solche kombinierten Messungen sind höchst-
wahrscheinlich der Schlüssel zum Verständnis der beschleunigten Expansion.

Allerdings müssen, um Galaxienhaufen in der Kosmologie benutzen zu können, einige Schwierigkeiten
überwunden werden. Der forderndste Teil ist dabei eine genaue und verlässliche Bestimmung der Masse von
Galaxienhaufen, welche ja wie bereits erwähnt nicht direkt gemessen werden kann, sondern vielmehr anhand
von Beobachtungen abgeleitet werden muss. Des weiteren muss das zugrunde liegende Modell, welches die
Daten mit den grundliegenden kosmologischen Parametern verbindet, genau bekannt und bestimmt sein.

Mit dieser Dissertation möchte ich mich einigen dieser Herausforderungen stellen, zu ihrer Überwin-
dung beitragen und neue Ergebnisse vorstellen. Zunächst aber soll in einer Einleitung das kosmologische
Grundgerüst, und speziell die allgemeine Relativität vorgestellt werden, sowie die Entstehung und Entwick-
lung von Galaxienhaufen. Im Anschluss werden wir auf die Verwendung von Galaxienhaufen zum Studium der
Kosmologie eingehen sowie auf die wichtigsten Beobachtungsmethoden. Die Einleitung möchte ich schließlich
mit einigen technischen Aspekten der verwendeten numerischen Methoden beschliessen. Im Hauptteil dieser
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Dissertation stelle ich eine Reihe von wissenschaftlichen Arbeiten im Bereich der Galaxienhaufen-Kosmologie
vor, an denen ich im Laufe meiner Doktorarbeit gearbeitet habe.

In der ersten hier vorgestellten Arbeit benutzen wir den Galaxienhaufen-Katalog des South Pole Tele-
scope (SPT), und richten unser Augenmerk auf Massenkalibrierung und Kosmologie. Das SPT ist ein am
geographischen Südpol arbeitendes Millimeter-Wellen Teleskop, das es uns erlaubt, einen sauber selektierten
Katalog an Galaxienhaufen zu erstellen, der auch die am meist rotverschobenen Galaxienhaufen beinhaltet. Als
Ausgangspunkt dienen uns die vorhergehenden Bemühungen der collaboration, Röntgen-Daten für einen Teil
des Katalogs zu beschaffen und im Rahmen einer kosmologischen Untersuchung zu nutzen. Wir haben nun
spektrokopische Messungen hinzugefügt, die zum großen Teil ebenfalls von der SPT collaboration beschafft
wurden. Die vorgestellte Arbeit hat zwei wichtige Ziele: 1) eine Methode zu entwickeln, um den SPT Katalog
mit den beiden zusätzlichen Röntgen- und spektroskopischen Messungen auszuwerten, und 2) verschiedene
Datenkombinationen in kosmologischer Hinsicht zu analysieren. Eines der zentralen Ergebnisse ist der Ver-
gleich der typischen Galaxienhaufenmassen, die wir bei Verwendung der verschiedenen Daten erhalten. So
ist etwa die Massenskala, die wir bei Benutzung der Röntgendaten messen, um ca. 44% niedriger als wenn
Planck-Daten hinzugezogen werden. Die Kalibrierung anhand spektroskopischer Geschwindigkeitsdispersio-
nen liegt in etwa dazwischen. Im Kosmologie-Teil führen wir schließlich einen interessanten Test durch, in
dem wir sowohl die Zustandsgleichung der dunklen Energie – durch den Parameter w beschrieben – als auch
die Rate der Strukturbildung, die wir mit einem phänomenologischen Modell parametrisieren, betrachten. Die
Ergebnisse bestätigen, dass das Standard ΛCDM-Modell die Daten korrekt beschreibt.

Die zweite Arbeit beschäftigt sich mit zwei Massen-Observablen: das vom SPT gemessene Signal des
Sunyaev-Zel’dovich Effekts und die optische “richness” λ, die mit dem redMaPPer Algorithmus in den “sci-
ence verification” Daten der Dark Energy Survey (DES) gemessen wurde. Zunächst werden beide Kataloge
kombiniert, wobei für jede Detektion durch SPT bis zu einem Signal-Rausch-Verhältnis von ξ > 4.5 auch op-
tische Entsprechungen gefunden werden. Der Überlapp zwischen beiden Himmelsdurchmusterungen führt zu
einem kombinierten Katalog mit 25 Galaxienhaufen für den wir zeigen konnten, das zufällige Paarungen mit
hoher Wahrscheinlichkeit ausgeschlossen sind. Wir wenden dann die abundance-matching Methode für den
SPT Katalog mit einem kosmologischen Referenzmodell an, um die richness-Massen Relation zu bestimmen,
wobei unsere Ergebnisse gut mit der Literatur übereinstimmen. Des weiteren untersuchen wir die typischen
Versetzungen zwischen den von SPT und redMaPPer bestimmten Zentren der Galaxienhaufen. Diese Arbeit
nutzt erste Daten der überlappenden SPT und DES surveys, und zeigt, dass bessere Ergebnisse und weiter
reichende Untersuchungen mit dem Fortschritt des DES Programms möglich sein werden.

Seit der Veröffentlichung der ersten hier vorgestellten Arbeit wurde der vollständige, 2500 deg2 umfassende
SPT Katalog publiziert. Ich stelle hier eine kosmologische Auswertung dieses vollständigen SPT Katalogs vor,
in der ich insbesondere die Strukturbildung, wie auch im ersten SPT Projekt, untersuche. Die besseren Daten
führen dabei zu sehr viel genaueren Messungen, und diese Arbeit stellt die derzeit besten Messungen der
Strukturbildung anhand von Galaxienhaufen vor. Des weiteren zeigt sich, dass der zusätzliche Freiheitsgrad
des Zustands der dunklen Energie w unsere Messung der kosmischen Wachstumsrate kaum schwächt. Unsere
Daten zeigen keine Anzeichen einer Abweichung vom ΛCDM-Modell oder der allgemeinen Relativität.

In der vierten, theoretischeren Arbeit schließlich benutzen wir große numerischen Simulationen, um die
Halo-Massenfunktion (HMF) zu bestimmen. Die HMF ist zentraler Bestandteil jeder kosmologischen Arbeit
mit Galaxienhaufen, da sie das Bindeglied zwischen berechneter und beobachteter Anzahldichte in Abhängigkeit
von Masse und Rotverschiebung darstellt. Die gewöhnlich verwendeten HMF wurden anhand von N-Teilchen
Simulationen unter Vernachlässigung von möglichen baryonischen Effekten kalibriert. Wir gehen hier einen
Schritt weiter und arbeiten mit den größten hydrodynamischen Simulationen, die derzeit verfügbar sind. Wir
bestätigen dabei, dass baryonische Effekte in der Tat jenseits von & 1014M� vernachlässigbar sind. Allerdings
zeigen wir auch, dass diese Effekte für künftige Missionen wie eROSITA relevant sein werden, und dass deren
Vernachlässigung dann zu Messabweichungen führen würden, die so groß wie der gesamte Messfehler wären.
Wir stellen Fit-Funktionen der HMF für verschiedene Massendefinitionen vor.

Ich werde diese Dissertation mit einer Zusammenfassung beschliessen und einige interessante aktuelle und
künftige Projekte vorstellen.



Abstract

Galaxy clusters are some of the largest astrophysical objects in the Universe. They contain a few tens up to
several thousands of galaxies. As their name suggests, they were first discovered as overdensities of projected
galaxies in the 1960s (e.g., Abell 1958; Zwicky et al. 1968). However, galaxies only represent a tiny contribu-
tion to the total mass of a cluster, typically of order 1%. Intergalactic gas, the so called intracluster medium
(ICM) contributes about 9% of the total mass. The rest of the mass is in the form of dark matter. Given their
composition, galaxy clusters can be observed through different techniques. In optical observations, only the
galaxies are visible. Several techniques allow us to observe the ICM. Finally, the dark matter component is
not directly observable. However, the shear due to weak gravitational lensing is sensitive to the total mass of a
cluster, and it is therefore possible to also learn about the dark matter component.

The title figure of this thesis shows the well-known “bullet cluster”. It became famous because three
different measurement techniques were employed to learn about its structure: The main cluster is located in the
left part of the image and hosts a large number of galaxies as seen in the optical. To its right is the “bullet”,
a smaller cluster that passed through the main cluster from left to right. The blue shading indicates the total
mass distribution measured through the weak gravitational lensing technique. It clearly exhibits two separate
structures. In red is the hot ICM gas as observed in the X-ray. The gas has stayed closer to the point of encounter
of both clusters because of pressure forces, whereas the galaxies and the dark matter behave as pressure-less
particles and simply passed through another.

However, besides being interesting objects to be studied from an astrophysical point of view, galaxy clusters
are also suitable as cosmological probes and can help in improving our understanding of the Universe. The for-
mation of galaxy clusters is directly linked to the distribution of matter in the Universe in a very sensitive way.
Therefore, even a moderately precise measurement of the abundance of these objects as a function of their mass
and redshift can lead to competitive cosmological constraints. Furthermore, the abundance of clusters depends
both on the expansion history of the Universe – diluting their number density – as well as on the rate at which
cosmic structure evolves and grows; this dual sensitivity makes galaxy cluster studies particularly interesting.
In the space of cosmological parameters, results from galaxy clusters exhibit parameter degeneracies that are
different than degeneracies from other cosmological probes. In particular, these degeneracies are approximately
orthogonal to those from measurements of the cosmic microwave background anisotropies, which makes the
combination of both probes a very powerful tool. Such joint analyses are of prime importance to understanding
the accelerated expansion of the Universe.

To fully exploit galaxy cluster data, several challenges must be overcome. The most important one is
determining reliable cluster masses. Because the cluster mass is not a direct observable, it needs to be estimated
through one or more of the various techniques mentioned above. Another obviously important ingredient is
robust modeling of the abundance of clusters as a function of the cosmological parameters of interest.

In this thesis, I will try to address some of the challenges of cluster cosmology and present some new
results. First of all, I will start by introducing the basic framework of General Relativity needed to understand
the evolution of our Universe. I will then discuss the formation of galaxy clusters and motivate their use as
cosmological probes. Then, I will summarize the principle techniques employed to observe galaxy clusters and
measure the relevant quantities for cosmological studies. Finally, I will discuss some of the technical aspects
of the analysis techniques employed. After this introduction, I will present a series of scientific studies in the
area of galaxy cluster cosmology that I pursued as part of my thesis work.

The first project I present is an analysis of the SPT cluster sample, focusing on cosmology and mass cal-
ibration. The SPT is a millimeter-wavelength telescope located at the South Geographic Pole. The telescope
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has been performing a multi-wavelength, high angular resolution survey of the CMB. One of the main goals
has been enabling the extraction of a sample of cleanly selected galaxy clusters that extends out to the highest
redshifts where clusters exist. This work builds upon a previous study that the collaboration conducted using
a subsample of the total survey, supplemented with X-ray observations for a subset of clusters. In the present
study, we added further follow-up data from optical spectroscopy measurements that were obtained mostly by
the SPT collaboration. This study has two main aspects: 1) establish a formalism that allows to combine the
SPT sample with two kinds of follow-up data from X-ray and spectroscopic observations, 2) conduct a cosmo-
logical analysis, considering different data combinations. One of the key results is the comparison of the cluster
mass scale that we obtain for different data combinations. For example, the mass scale preferred by the X-ray
calibration is about 44% lower than the scale we obtain when adding Planck data to the fits. The calibration
from velocity dispersions is between both. In terms of cosmology, we perform an interesting test where we
allow both for a varying dark energy equation of state parameter w and deviations from standard growth of
structure, parametrized by a phenomenological model. We find no evidence for departures from the standard
ΛCDM model and growth according to General Relativity.

The second study focuses on two mass observables: The Sunyaev-Zel’dovich effect signal as extracted from
the SPT survey maps, and optical cluster properties defined by the richness λ, as measured with the redMaPPer
algorithm in the Dark Energy Survey (DES) science verification data. In a first stage, we cross-match the SPT
and DES catalogs and find optical counterparts for each SPT detection down to a signal-to-noise of ξ > 4.5.
Given the overlap between both surveys, our sample comprises 25 objects for which we show that false random
associations can be excluded with high confidence. We then perform the abundance-matching technique against
a fixed reference cosmology for the SPT sample, and simultaneously determine the parameters of the richness-
mass relation. Our results agree with previous analyses. We also study the offset distribution between SPT and
redMaPPer cluster centers. This study takes advantage of the overlap between the SPT and DES surveys, and
indicates that better constraints and more detailed analyses will be possible as the DES survey progresses.

Since the publication of the first paper, the cluster data of the full 2500 deg2 SPT survey have been pub-
lished. I present a cosmological analysis of the full SPT sample, in which I constrain the growth of structure
as in the first project. However, the improved dataset lead to vastly improved constraints; in this paper we
present the tightest constraints on cosmic growth from clusters to date. Another key result is that allowing for
the dark energy equation of state parameter to vary as an additional free parameter does only mildly degrade
our constraints on the growth rate. We find no evidence of tension with the ΛCDM model and the growth rate
as predicted by General Relativity.

Finally, in a fourth and more theoretical study, we work on large numerical simulations to calibrate the
halo mass function (HMF). The HMF is a key piece to every cluster cosmology test, as it predicts the number
of clusters as a function of their mass and redshift. The commonly used HMFs are calibrated against N-body
simulations under the assumption that baryonic effects can be neglected. We improve on these studies by
using the largest hydrodynamic simulations available to date. We confirm that baryonic effects are indeed
subdominant for massive clusters & 1014M�. However, for future surveys that extend to lower masses such as
eROSITA, neglecting these effects could lead to biases in the results that are of the same order as the expected
overall uncertainties. We present fitting formulae for the HMF for different cluster mass definitions.

A final chapter contains the conclusions and some discussion of future topics of particular interest.
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Chapter 1

Introduction

This thesis is dedicated to galaxy cluster analyses in a cosmological context. It therefore covers different topics
including galaxy cluster observations and astrophysics, cosmology, statistical methods, numerical simulations,
and development of analysis tools. The work conducted in this thesis is at the exciting intersection between
theory and observations. Although each scientific study presented here covers slightly different aspects, they
are all related to the question of how to use current and future cluster data to constrain cosmology in a robust
and statistically correct way. Obviously, these requirements can only be met if one fully understands what
kind of observations is needed to measured the relevant cluster properties and how the cluster sample was
constructed. Furthermore, one needs to apply reliable and well-tested analysis methods. Finally, a profound
knowledge of the tested theory is required to draw meaningful conclusions.

The work presented in this thesis was conducted with the goal to contribute some new analysis methods
and results to the field of cluster cosmology. Furthermore, this thesis hopefully provides a useful overview
and introduction to this field. To start with, I review the basic ingredients needed to understand the relevance
of the studies conducted for this thesis. While this overview is certainly not extensive, it should provide the
reader with the necessary background knowledge for appreciating the presented work. In the following, I
discuss the fundaments of cosmology and show how galaxy clusters are deeply linked to key properties of our
Universe. After this theoretical part, I highlight some of the astrophysical methods used to observe galaxy
clusters. Finally, in a somewhat more technical section, I describe practical aspects of parameter fitting in up
to ∼30 dimensions. I conclude with a summary and outlook that set the stage for the main part of this thesis.

1.1 Cosmology and Galaxy Clusters

1.1.1 The homogeneous Universe
With his theory of General Relativity, Albert Einstein formulated the description of space-time:

Gµν + Λgµν =
8πG
c4 Tµν. (1.1)

These are a set of coupled, nonlinear equations that can only be exactly solved under further, simplifying
assumptions. The cosmological principle states that the Universe is homogeneous and isotropic. While this is
certainly not true on terrestrial scales or in the solar system or even the Milky Way, it is a good approximation on
very large scales & 100 Mpc. The application of the cosmological principle leads to the Friedmann-Lemaı̂tre-
Robertson-Walker metric

ds2 = c2dt2 − a(t)2dχ2 (1.2)

with the speed of light c, the scale factor a(t), and the 3-dimensional spatial, time-independent metric dχ. The
spatial metric has the form

dχ2 =
dr2

1 − kr2 + r2dΩ2 (1.3)



2 Introduction

with unitless distance r, the curvature of space k and the solid angle Ω. The curvature k takes values −1, 0, 1 for
negative, zero, and positive curvature. Still under the assumption of the cosmological principle, one can now
solve Einstein’s equation, and – after some arithmetic – obtain the Friedmann equations

H2 ≡
( ȧ
a

)2
=

8πG
3

ρ − kc2

a2 (1.4)

and

Ḣ + H2 =
4πG

3

(
ρ +

3p
c2

)
. (1.5)

Here, ρ is the mass (energy) density, and p is the pressure. These expressions appear in the Friedmann equations
as they correspond to the trace of the stress-energy tensor Tµν in Einstein’s equation. A useful reformulation of
the above equations is

ρ̇ = −3H
(
ρ +

p
c2

)
, (1.6)

which allows to describe the evolution of density over time. Note that the cosmological constant Λ has been
absorbed into ρ and p.

For perfect fluids with equation of state p = wρc2, one can exactly solve the Friedmann equations. Further
assuming spatial flatness (k = 0), the density of the fluid evolves depending on its equation of state parameter
w as

ρ(t) ∝ a−3(1+w). (1.7)

In the following, we will consider ordinary matter (effectively pressure-less dust, w = 0), radiation (relativistic,
w = 1/3), and dark energy (w = −1). It follows from Equation 1.7 that the comoving dark energy density is
constant, ρ̇DE = 0.

In Equation 1.4, the curvature, the density, and the Hubble constant are related to each other. It is convenient
to define the critical density

ρc ≡ 3H2

8πG
(1.8)

which defines the density at which the curvature vanishes, k = 0. One can further define the density parameter
ΩX ≡ ρX/ρcrit for each type of energy component X. With this definition, the first Friedmann equation is
re-expressed as

H2

H2
0

= Ωra−4 + Ωma−3 + Ωka−2 + ΩΛa−3(1+w), (1.9)

where the subscript zero means “today”, and where the density parameters refer to their present values: Ωr the
radiation density, Ωm the matter density, Ωk the curvature density (Ωk ≡ 1 − Ωr − Ωm − ΩΛ), and ΩΛ the dark
energy density. It is useful to express the above equation in terms of the cosmological redshift. Light emitted
from a very distant object with wavelength λem is observed at longer wavelength λobs on Earth because space
between the emitter and us has expanded since photon emission. The redshift is defined as

z ≡ λobs − λem

λem
(1.10)

and can directly be related to the scale factor via 1 + z = a(t0)/a(te), where te stand for the time of emission.
We can now restate equation 1.9 as a function of redshift. In the late Universe, it follows from equation 1.7 that
the radiation component has redshiftet away and can be neglected. Still assuming spatial flatness, we can write
down

E2(z) ≡ H2

H2
0

= Ωm(1 + z)3 + ΩΛ(1 + z)3(1+w), (1.11)

and conclude the description of the homogeneous Universe.
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Figure 1.1 The total matter transfer function (CDM+baryons+neutrinos) at redshift 0 as calculated by CAMB.
The BAO wiggles are visible around k ∼ 0.1 h/Mpc.

1.1.2 The inhomogeneous Universe
Looking at the world around us, it is obvious that the Universe is not homogeneous. In fact, everything we
observe – starting with ourselves – is definitely neither homogeneous nor isotropic. In this section we will
review the basic description of small cosmological inhomogeneities and create a link to the formation of galaxy
clusters. Indeed, their formation is deeply linked to the fundamental level of inhomogeneity in the Universe
which makes them such a powerful and interesting probe of cosmology.

We define perturbations as δ ≡ ρ/ρ̄ − 1, with the mean density ρ̄. They evolve according to the continuity,
Euler and Poisson equations, which for small perturbations |δ| < 1 can be combined to give

δ̈ + 2Hδ̇ +

(
k
a

)2
δP
ρ
− 3

2
H2Ωm(t)δ = 0, (1.12)

with pressure fluctuations δP. For cold dark matter (no pressure) this equation has a growing solution

δ(t) ∝ D(z) = H(z)
∫ ∞

z

dz′(1 + z′)
H3(z′)

. (1.13)

This expression is also referred to as the growth factor D(z).
After the era of inflation, the primordial fluctuations were Gaussian, scale-free, and adiabatic. Different

k-modes are independent meaning that they evolve independently as D(z). The matter power spectrum – the
mean Fourier transform of the spatial correlation function – can then be written as a function of wavenumber k
as

Pprimodial(k) = A0kns (1.14)

with an initial normalization A0 and the scalar spectral index ns. We will come back to the normalization later.
The scalar spectral index is slightly smaller than unity (e.g., Planck Collaboration et al. 2015a), meaning that
there is more power on large scales than on small scales. The exact value of ns is sensitive to the processes that
end inflation and therefore carries information about inflation itself. However, for this work, it is sufficient to
consider ns as a phenomenological parameter.

As the primordial Universe evolves, several effects need to be accounted for that ultimately render the
matter power spectrum scale-dependent. The evolution of the matter power spectrum is captured as

P(k, z) = Pprimodial(k) D(z)2 T (k, z)2 (1.15)
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Figure 1.2 The matter power spectrum as calculated by CAMB. The overall offset between both spectra corre-
sponds to the structure growth between redshift 1 and 0. The BAO wiggles are visible around k ∼ 0.1 h/Mpc.

with the linear growth rate D as described above. The transfer function T describes how the shape of the
initial power spectrum is altered due to different physical processes, including interactions between baryons
and photons. In principle, the transfer function is obtained by solving Equation 1.12 for each matter species
and accounting for their couplings. Indeed, there are approximate expressions for the transfer function (e.g.,
Eisenstein & Hu 1998, 1999). However, the exact solution for the transfer function cannot be obtained analyti-
cally, especially due to the complicated (de-)coupling between baryons and photons which implies solving the
multi-species Boltzmann equation. Numerical codes such as CAMB1 or CLASS2 take a few seconds to provide
accurate transfer functions. The transfer function at redshift z = 0 is shown in Figure 1.1.

Discussing some key features is quite instructive. The most important scale is the horizon scale at matter-
radiation equality keq ∼ 0.01 Mpc−1. At early times, before matter-radiation equality, and on large, super-
horizon scales, dark matter, baryons, and radiation evolve together and perturbations can grow according to
D(z); the transfer function is T = 1. However, perturbations on sub-horizon scales grow only logarithmically
with time until matter-radiation equality (Mészáros effect, Meszaros 1974). Shorter modes entered the horizon
earlier than longer modes, and thus have had more logarithmic growth by the end of radiation domination.
Together, these effects lead to the characteristic, bent shape of the transfer function that suppresses the power
on small scales. Note that after matter-radiation equality, perturbations grow uniformly on all scales. The
transfer function further exhibits some wiggles at intermediate wave numbers. These are the baryon acoustic
oscillations (BAO), which correspond to standing waves in the baryon-photon plasma before recombination.
When both species were coupled, baryons get gravitationally attracted to the gravitational wells formed by the
dark matter, while the pressure in the radiation component goes in the opposite direction. At recombination,
these oscillations cease, and the distribution of baryonic matter is fixed. The corresponding length scale evolves
according to the background expansion, and can now be used as a standard ruler for measuring the geometry
of the Universe (for a review, see e.g., Weinberg et al. 2013).

Figure 1.2 shows the total matter power spectrum at redshift z = 0. The shape of the large-scale end k < keq
simply corresponds to the primordial power spectrum multiplied with the growth factor (remember that the
transfer function is equal to unity on these scales, c.f. figure 1.1). As anticipated, the maximum of the power
spectrum is directly linked to the horizon at matter-radiation equality, and arises due to the product of the
primordial power spectrum (P ∼ k) with the square of the transfer function with its characteristic suppression
for k > keq. The BAO features are visible at k ∼ 0.1 h/Mpc and at larger wavenumber, the power spectrum drops

1http://camb.info
2http://class-code.net
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Figure 1.3 Impact of massive neutrinos on the matter power spectrum (figure taken from Park et al. 2012).

as P ∝ Pprimordial T 2 ∼ k−3. The dimensionless power spectrum ∆2(k) ≡ k3P(k)/2π2 measures the contribution
of perturbations at wavenumber k. It increases as ∆2(k) ∝ k4 at low k, and becomes approximately constant for
large k. This implies that the smallest scales become non-linear first; we have hierarchical, bottom-up structure
formation.

Several practical purposes and measurements require the computation of the variance of the fluctuations
on a particular filtering scale. A common choice is σ(M), where the scale is chosen as the sphere of radius R
encompassing the mass M = 4π/3 ρmR3, with the mean matter density ρm. The variance of the matter power
spectrum P(k, z) then is

σ2(M, z) ≡ 1
2π2

∫
P(k, z)Ŵ2(kR)k2dk, (1.16)

with the Fourier transform Ŵ of the real-space top-hat window function of radius R. We will come back to the
variance σ when predicting the number density of galaxy clusters from the power spectrum.

So far, we have assumed massless neutrinos. However, the confirmation of neutrino oscillations directly
implies that at least one neutrino has a non-zero mass (for a review, see e.g., Gonzalez-Garcia et al. 2012).
While a thorough discussion of neutrino physics would be beyond the scope of this introduction, we briefly
discuss how the neutrino masses affect the matter power spectrum. Because they are very light, neutrinos still
travel at high velocities close to the speed of light. Therefore, they are also called hot dark matter (HDM).
However, because of their high velocities, neutrinos tend to free stream out of the gravitational potential wells
formed by (cold) dark matter and baryons. This leads to a decrease of power of those scales, as just discussed
for WDM. Figure 1.3 shows this effect for a range of different neutrino densities Ων, which is directly related
to the sum of neutrino masses via

∑
mν = 94 eV Ωνh2. Note how the suppression of power on intermediate

and small scales increases with increasing neutrino mass. Conversely, this means that one can learn about the
sum of neutrino masses if one is able to measure the amount of this suppression. In fact, we will apply this
technique later in this thesis to constrain

∑
mν.
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1.1.3 The Cosmological Parameters
Having reviewed the basic theoretical ingredients, it is time to summarize the cosmological parameters that
are of interest for this thesis. Obviously, the set of free parameters depends on the model we choose to adopt.
Let us start with the spatially flat ΛCDM model (CDM and cosmological constant Λ) which is described by 6
parameters:

• Ωm: total matter

• Ωb: ordinary matter (baryons)

• H0: Hubble constant

• As: normalization of the power spectrum

• ns: tilt of the primordial power spectrum

• τ: reionization optical depth

The parameter τ only is relevant when analyzing the cosmic microwave background, which will briefly be
described in the following section. Because of the assumption of spatial flatness the dark energy density
parameter is not a free parameter but is directly linked to the matter density as ΩΛ = 1 − Ωm. Further note
that the normalization of the power spectrum can be defined in two ways: 1) directly normalize P(k) at some
scale, or 2) use the variance σ(M) from Equation 1.16. In the latter case, the common choice is σ8, where
the radius of the top-hat filter is 8 h−1Mpc. Another common choice is to replace the Hubble parameter by the
CMB acoustic scale θMC since both are related quantities that can be converted to each other.

An obvious generalization of the flat ΛCDM model is to relax the assumption of spatial flatness and to
consider ΩΛ as a free parameter. The curvature density is zero to within ±0.005 (Planck Collaboration et al.
2015a) and throughout the rest of this thesis we will assume spatial flatness. The following list provides an
overview of further extensions that are relevant for this thesis:

• w: The standard assumption about the dark energy equation of state parameter w = −1 is relaxed.

•
∑

mν: The sum of the neutrino masses is allowed to vary.

• γ: The growth factor of matter fluctuations in the late Universe is assumed to evolve according to some
model that is parametrized by γ.

All these extensions can either be considered as one-parameter extensions to the base-line model, or one ana-
lyzes combinations of two or more. Of course there are many more extensions to the ΛCDM model considered
in the literature such as an altered number of relativistic species Neff, a running of the spectral index, evolution
of w, and tensor perturbations, just to name a few of them.

We will now review how the cosmological parameters can be constrained. Before focusing on the formation
of galaxy clusters and their use as a cosmological probe, we will briefly review other standard cosmological
probes. We will be referring to these in the main body of this thesis.

1.1.4 The Cosmic Microwave Background
In the early, hot Universe photons, electrons and baryons are tightly coupled to form a hot plasma. As the
Universe expands and cools down to temperatures below ∼ 3000 K, electrons and protons recombine to form
hydrogen. At this point, which corresponds to an age of the Universe of about 380,000 years, photons do not
interact with the neutral atoms any more and travel freely. Today, this omnipresent radiation can be detected
with microwave receivers, and provides a direct image of the early Universe. During their way to us, the pho-
tons’ energy has decreased due to the expansion of the Universe, and today the cosmic microwave background
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Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Figure 1.4 CMB temperature power spectrum as measured by Planck. The red line corresponds to the best-
fitting ΛCDM model, which is a remarkably good fit to the data (Planck Collaboration et al. 2015a).

(CMB) radiation has a temperature of 2.73 K. This corresponds to a redshift of recombination zrec = 1100.
To first order, the CMB is homogeneous and isotropic, and exhibits a black body spectrum. However, it also
contains fluctuations that are as small as 10−5; these correspond to the anisotropies discussed in the previous
section.

Figure 1.4 shows the CMB angular temperature power spectrum as measured by the Planck satellite. The
spectrum can be accurately calculated by a Boltzmann code such as CAMB. Note that the fluctuations at the scales
of interest are well described by linear perturbation theory which makes this cosmological probe particularly
powerful. For example, the angular scale of the first peak (about 1◦) can be related to the sound horizon at re-
combination which provides a powerful way of measuring the curvature of the Universe. Assuming the ΛCDM
model, spatial flatness is confirmed with a spectacular uncertainty on Ωk of ±0.005 (Planck Collaboration et al.
2015a). Then, the position and amplitudes of the peaks carry information about the baryon and CDM densities
and also allow to distinguish between adiabatic and isocurvature primordial fluctuations. Finally, the power in
CMB anisotropies can be used to normalize the matter power spectrum (Planck makes this measurement at the
scale k0 = 0.05 Mpc−1).

1.1.5 Other cosmological probes

The standard cosmological toolbox further contains two distance-measurement techniques. Supernovae of type
Ia (SNIa) feature a characteristic relationship between their light curve and absolute luminosity. With this
relation, one can use SNIa as standard candles and measure their distance as a function of redshift. In practice,
one measures the luminosity distance, which is a function of the Hubble parameter H(z). In fact, applying this
technique lead to the discovery of the accelerated expansion of the Universe (Riess et al. 1998; Perlmutter et al.
1999). In this thesis we will use the Union2.1 compilation of 580 SNIa (Suzuki et al. 2012). Another technique
relies on measuring the BAO peak at some redshift z using data from large galaxy surveys. One typically
constrains the combination DV(z)/rs, where rs is the comoving sound horizon at the baryon drag epoch and
DV(z) ≡ [(1 + z)2D2

A(z)cz/H(z)]1/3, where DA is the angular diameter distance (which itself is a function of
H(z)). In this thesis, we will use a combination of several such measurements at different redshifts z = 0.106
(Beutler et al. 2011), z = 0.35 (Padmanabhan et al. 2012) and z = 0.57 (Anderson et al. 2012).

Both SNIa and BAO effectively probe H(z), and are therefore sensitive to the matter density Ωm, the dark
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Figure 1.5 Constraints on a non-flat ΛCDM model from different probes (Suzuki et al. 2012). Their different
and partially orthogonal degeneracies make them very complementary. The combination of all probes leads to
very tight constraints.
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9.5 Abundance of premature objects

The spherical collapse model is in general a very crude approximation to reality,
but there is one situation in which it may be fairly accurate. This is when the
collapse occurs long before the end of the linear regime, for the relevant smoothing
scale R(M). In that case the collapsing region, where the density contrast is of
order 1, represents an exceptionally high peak of the density, and it can be shown
that the density contrast near the peak becomes spherically symmetric in the limit
where the background density goes to zero. This means that spherical collapse may
be a reasonable approximation for premature objects of a given mass, forming well
before the bulk of such objects appear at the end of the linear era.

We learned earlier that collapse occurs if the density contrast exceeds some
threshold δc, which the spherical collapse model estimates as δc = 1.69. The
fraction of the volume of the Universe with δ(R, z,x) > δc at a given epoch, pro-
vides a rough estimate of the fraction f of the mass of the Universe which collapses
into objects with mass M(R) at the same epoch. This is known as Press–Schechter
theory, illustrated schematically in Figure 9.6. To allow for the transfer of material
from underdense to overdense regions, usually the fraction of mass is estimated as
twice the volume

f(> M(R), z) = erfc

(
δc√

2 σ(R, z)

)
. (9.29)

Figure 1.6 Schematic illustration of the smoothed matter density field. Regions with densities exceeding the
threshold will collapse according to the Press-Schechter theory. Figure taken from Lyth & Liddle (2009).

energy density ΩΛ, and dark energy (e.g., w). Also note that both methods measure relative distances, but they
are insensitive to the overall normalization of the Hubble relation H0. This quantity can be measured using the
cepheid method. Cepheids feature a direct relationship between their pulsation period and luminosity and can
therefore be used to constrain H0 at low redshifts (e.g., H0 = 73.8 ± 2.4 km s−1 Mpc−1, Riess et al. 2011).

The cosmological probes discussed so far exhibit characteristic parameter degeneracies. Figure 1.5 shows
this situation in the Ωm − ΩΛ plane for a ΛCDM model with non-zero curvature. In this example, the three
probes are very complementary because of their degeneracies that do not align. Therefore, the combination of
these datasets leads to much tighter constraints than obtained from the individual probes.

1.1.6 Cluster Formation, the Halo Mass Function, and Cosmology
So far, we have discussed density fluctuations that are small enough to be described by linear perturbation
theory. However, it is clear that extended, overdense regions will continue contracting beyond the linear regime.
We will now discuss the formation of dark matter haloes due to the collapse of overdense regions.

We can train our intuition with an analytic approach. The spherical collapse model predicts that the linear
density contrast of a collapsed (spherical) perturbation is δc = 1.69. As a consequence, any overdensity ex-
ceeding the threshold δc will collapse. The size and therefore the mass of the collapsed object then depends on
the size of the region exceeding the threshold, as illustrated in Figure 1.6. Obviously, given a Gaussian den-
sity field, high-mass objects are much less likely to form than their smaller, low-mass counterparts. It is now
straightforward to predict the number density of collapsed objects as a function of their mass. The probability
that a region enclosing the mass M exceeds the threshold is given by

P(M, z) = erfc
(

δc√
2σ(M, z)

)
, (1.17)

expressed in terms of the complementary error function. The halo mass function dn/dM is then obtained by
differentiating the above equation with respect to mass, and multiplying with the volume of a halo of mass M
in the initial density field ρm/M. Effectively, this sets a number density of objects. In the end, this yields the
Press-Schechter mass function (Press & Schechter 1974)

dn(M, z)
dM

= −
√

2
π

ρm

M
δc

σ2(M, z)
dσ(M, z)

dM
exp

(
− δ2

c

2σ2(M, z)

)
. (1.18)

The mass function is shown in Figure 1.7. For low-mass cluster M . 1014M�, the number density evolves
as a power-law with mass. More massive objects, however, are much less likely, resulting in an exponential
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Figure 1.7 The halo mass function per unit mass and redshift. The number density decreases as a function of
mass and redshift. Note how it quickly drops for high masses ∼ 1015M�.

drop of the mass function toward the highest masses. As one would expect, the number density of objects
increases with cosmic time (decreasing redshift), as σ(M) increases and they have more time to form.

Given its level of simplicity, the Press-Schechter formalism is still a surprisingly good description of the
halo abundance. However, for actual studies of cluster cosmology, one uses a halo mass function calibrated
against large numerical N-body simulations. In this case, the functional form motivated by the Press-Schechter
approach is kept, but the parameters are set by the simulations. The standard reference is Tinker et al. (2008).

The mass function as discussed so far is given for unit mass and redshift. In order to use it for any cosmo-
logical purpose, one needs to multiply with the survey volume. In general, the survey will comprise some solid
angle Ω of the sky, and the redshift volume element is

dV(z,Ω) = DH
D2

M(z)
E(z)

dΩdz (1.19)

with the Hubble distance DH ≡ c/H0 and the transverse comoving distance DM. For a flat universe, DM equals
the line-of-sight comoving distance

DC(z) = DH

∫ z

0

dz′

E(z′)
. (1.20)

An overview of further cosmological distance measures and the generalization of the measures summarized
here to non-flat cosmologies can be looked up in Hogg (1999).

With the predicted halo abundance from Equations 1.18 and 1.19 we are now set to perform a cluster
cosmology analysis. However, as can be seen from the derivation of the cluster abundance, this analysis is
not sensitive to all cosmological parameters; in particular, there is no dependence on τ. The matter density
enters through ρm. The amplitude of the matter power spectrum enters through σ(M) and clusters therefore
are an ideal probe for measuring σ8. Indeed, as shown in Figure 1.8(a), clusters provide tight constraints on
Ωm and σ8. These are particularly complementary with CMB anisotropy constraints given their approximate
orthogonality. A particular strength of cluster cosmology is that the cluster abundance is both affected by the
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Figure 1.8 Illustration of cluster constraints compared with other cosmological probes (Mantz et al. 2015).

geometry of the Universe (through ρm and dV/dz) as well as growth of structure through the power spectrum.
Since both are affected by a change in the dark energy equation of state parameter w, clusters provide some of
the tightest single-probe constraints on dark energy. This is shown in Figure 1.8(b) together with constraints
from other probes. The combination of all probes leads to very tight constraints on w at the few percent level
(Mantz et al. 2015).

1.2 Galaxy Cluster Astrophysics

In the previous section we have motivated the use of galaxy clusters in cosmology. In particular, the results
in Figure 1.8 show that clusters can indeed be used as a competitive cosmological probe. However, in the
theoretical derivation of the halo abundance, we have not yet accounted for the fact that cluster masses are not
directly accessible observables. In fact, both the Press-Schechter approach as well as numerical simulations
predict the abundance of dark matter haloes (plus gas if running a hydrodynamic simulation). These haloes
host the galaxies and intergalactic gas. One therefore needs a way to relate observations of cluster galaxies or
the gas component to the total mass of the clusters. This is a challenging task since ordinary, baryonic matter
only contributes about 10% of the total cluster mass. Luckily, there are several different methods that provide
cluster mass estimates. In this section, we will address the most important observational and methodological
aspects of cluster cosmology. Comparisons of these different methods will be presented in the main body of
this thesis.

1.2.1 Mass-Observable Scaling Relation and Sample Selection
As we will discuss in detail in the next sections, there is a variety of different techniques to estimate a cluster’s
mass. Not too surprisingly, all of them have in common that a precise measurement requires good (and therefore
expensive) data. Let us set aside what exactly “good” means here and discuss the idea of scaling relations.
The basic concept is to relate the observable O that a given technique provides to the cluster mass through a
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parametric relation. We assume a power-law expression in mass M:

O = A MB f (z)C (1.21)

with normalization A, mass slope B, and redshift evolution C. The redshift-dependent function f (z) ideally has
a theoretical motivation; common choices are f (z) ≡ 1+z or f (z) ≡ E(z). Given that each cluster is intrinsically
a unique object, we must account for an intrinsic scatter between the true cluster true mass and the measured
observable. Throughout this work, we will denote the scatter with D. Finally, the measurement of O will be
affected by some (known) measurement uncertainty.

The key advantage of working with scaling relations is that once its parameters A, B, C, and D are properly
calibrated, it can be used to readily estimate masses for all clusters with a measurement of O. In practice of
course, this only works under the assumption that it is possible to calibrate the parameters in some reliable
way in the first place. Luckily, there are such techniques: for example, measuring the shear induced by weak
gravitational lensing by a massive cluster allows to obtain an accurate mass estimate (e.g., Applegate et al.
2014; Hoekstra et al. 2015), and the dispersion in the velocities of cluster galaxies can be calibrated against
numerical N-body simulations (e.g., Evrard et al. 2008; Saro et al. 2013).

The basic strategy for a cluster cosmology analysis is to start with a survey catalog. In practice, the survey
observable will be an observationally cheap one in order to be able to cover reasonable survey volumes. Be-
cause of the intrinsic scatter in the mass-observable relation, it is crucially important to construct the catalog
based on some well-defined selection function (i.e., all clusters with O > threshold). Otherwise, the analysis
will suffer from the Eddington bias and produce wrong results: Given the steep decline of the mass function
with increasing (true) cluster mass, a cluster with a measured O is more likely to have scatter up in mass than to
have scattered down. We show this in Figure 1.9, where for a given cluster with measured O the dashed green
curve is obtained by “naively” inverting the scaling relation from Equation 1.21. However, as just discussed,
this approach overestimates the mass of the cluster. The unbiased estimate is obtained by multiplying this esti-
mate with the distribution from which the cluster was drawn from in the first place (which is the mass function
P(M) is the equation below, shown as the thick black line in the figure):

P(M|O) = P(O|M)P(M). (1.22)

The correct, unbiased mass estimate is shown as the blue curve in the figure. The effect of Eddington bias on a
cluster sample is nicely illustrated in the set of figures A1 in Mantz et al. (2010a).

Finally, to calibrate the survey scaling relation, one collects follow-up data for survey clusters. Given pa-
rameter covariances between the parameters of the different scaling relations and with cosmology, it is prefer-
able to perform the survey observable calibration simultaneously with the cosmological analysis, instead of
applying a fixed, previously calibrated scaling relation. We will discuss the details of such a joint analysis with
multiple observables in the main part of the thesis in Section 2.4.1.

1.2.2 Optical Cluster Observables
Optical data is of prime importance for obtaining redshifts and for confirming galaxy clusters proposed by other
detection techniques. Furthermore, there are optical observables that can serve as cluster mass proxies. We will
make use of two such observables in the main body of this thesis.

A way of characterizing clusters in optical data is through their richness, which is essentially the number of
member galaxies weighed with their probabilities of actually being cluster members (Rykoff et al. 2012). This
technique is implemented in the red-sequence Matched-Filter Probabilistic Percolation (redMaPPer) cluster
finder which has been applied to data of the Sloan Digital Sky Survey (SDSS), and, relevant for this thesis, data
of the Dark Energy Survey. We will present a study of the richness-mass scaling relation, and how it relates to
other mass estimates in Chapter 3.

Another optical mass proxy relies on spectroscopic data. Besides their use for obtaining accurate and pre-
cise redshift measurements, these data can also be used to measure galaxy velocity dispersions σv. The motion
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Figure 1.9 Illustration of how to obtain an unbiased mass estimate. The green dashed curve is obtained by
directly inverting the mass-observable relation P(O|M) for a given observation O. The correct, unbiased mass
estimate (Equation 1.22, blue solid curve) is obtained by multiplying with the mass function P(M) (thick black
curve).

of galaxies, which nearly behave as non-interacting particles in the cluster potential well, can be well studied
and calibrated in numerical simulations (e.g., Evrard et al. 2008; Saro et al. 2013). Using dispersions as a mass
proxy is an interesting and complementary method to the following two methods because it is independent of
the physics of the ICM. We will discuss mass calibration from σv in detail in Chapter 2.

1.2.3 X-ray Observations

Most of the ordinary matter contained in a cluster is inter galactic gas, the so called intracluster medium (ICM).
As it falls into the deep gravitational well of the cluster, the gas is heated to ∼ keV temperatures. The emitted
Bremsstrahlung can therefore be detected in the X-ray. The observationally cheapest X-ray observable is the
luminosity LX which can be obtained down to very low photon counts ∼ 50 and is therefore a suitable survey
observable (e.g., for eROSITA, Pillepich et al. 2012). However, at fixed cluster mass, the luminosity quickly
drops with redshift and a LX-selected sample is therefore restricted to rather low redshifts z . 0.8.

In the present work, we focus on another X-ray observable: YX which is the product of the gas mass Mg

with the temperature TX. The YX observable is ideally suited as a follow-up measurement because it tightly
correlates with cluster mass with small scatter in mass σM ' 0.07 (Vikhlinin et al. 2009b).

1.2.4 The Sunyaev-Zel’dovich Effect

Another technique of observing the ICM is through the (thermal) Sunyaev-Zel’dovich effect (SZE, Sunyaev
& Zel’dovich 1972): CMB photons passing through the hot ICM eventually gain energy by inverse Compton
scattering off thermal electrons which leads to a characteristic distortion of the CMB spectrum at the location of
the cluster. This is illustrated in Figure 1.10. To first order, the net effect is a slight blue-shift of the black-body
spectrum of the CMB. The resulting distortion of the CMB spectrum is shown in the right panel.

In a high-resolution image of the CMB, one can indeed detect a galaxy cluster as a “shadow” in frequency
bands < 218 GHz, and as a bright spot at higher frequencies; there is no SZE signal at 218 GHz. Such surveys
have been carried out by the South Pole Telescope (SPT, Carlstrom et al. 2011), the Atacama Cosmology
Telescope (ACT, Fowler et al. 2007), and the Planck satellite (Planck Collaboration et al. 2011). Three of the
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be proportional to the total temperature-weighted mass (total integrated pres-
sure) and, of course, inversely proportional to the square of the angular diameter
distance. Adopting a reasonable cosmology and accounting for the increase in
the universal matter density with redshift, the mass limit for a given SZE survey
flux sensitivity is not expected to change more than a factor of ∼ 2 − 3 for any
clusters with z > 0.05.

SZE surveys therefore offer an ideal tool for determining the cluster density
evolution. Analyses of even a modest survey covering ∼ 10 square degrees will
provide interesting constraints on the matter density of the universe. The pre-
cision with which cosmological constraints can be extracted from much larger
surveys, however, will be limited by systematics due to our insufficient under-
standing of the structure of clusters, their gas properties and evolution.

Insights into the structure of clusters will be provided by high resolution SZE
observations, especially when combined with other measurements of the clusters.
Fortunately, many of the cluster properties derived directly from observational
data can be determined in several different ways. For example, the gas mass
fraction can be determined by various combinations of SZE, X-ray, and lensing
observations. The electron temperature, a direct measure of a cluster’s mass,
can be measured directly through X-ray spectroscopy, or determined through the
analysis of various combinations of X-ray, SZE, and lensing observations. Several
of the desired properties of clusters are therefore over-constrained by observation,
providing critical insights to our understanding of clusters, and critical tests of
current models for the formation and evolution of galaxy clusters. With improved
sensitivity, better angular resolution, and sources out to z ∼ 2, the next gener-
ation of SZE observations will provide a good view of galaxy cluster structure
and evolution. This will allow, in principle, the dependence of the cluster yields
from large SZE surveys on the underlying cosmology to be separated from the
dependence of the yields on cluster structure and evolution.

We outline the properties of the SZE in the next section and provide an
overview of the current state of the observations in §3. This is followed in §4 by
predictions for the expected yields of upcoming SZE surveys. In §5, we provide
an overview of the cosmological tests which will be possible with catalogs of SZE-
selected clusters. This is followed by a discussion of backgrounds, foregrounds,
contaminants, and theoretical uncertainties that could adversely affect cosmolog-
ical studies with the SZE and a discussion of observations which could reduce or
eliminate these concerns. Throughout the paper, h is used to parametrize the
Hubble constant by H0 = 100h km s−1 Mpc−1, and ΩM and ΩΛ are the matter
density and vacuum energy density, respectively, in units of the critical density.

4 Carlstrom, Holder, & Reese

Figure 1: The Cosmic Microwave Background (CMB) spectrum, undistorted
(dashed line) and distorted by the Sunyaev-Zel’dovich effect (SZE) (solid line).
Following Sunyaev & Zel’dovich (1980a) to illustrate the effect, the SZE distortion
shown is for a fictional cluster 1000 times more massive than a typical massive
galaxy cluster. The SZE causes a decrease in the CMB intensity at frequencies

∼< 218 GHz and an increase at higher frequencies.

2 THE SUNYAEV-ZEL’DOVICH EFFECT

2.1 Thermal Sunyaev-Zel’dovich Effect

The Sunyaev-Zel’dovich effect (SZE) is a small spectral distortion of the cosmic
microwave background (CMB) spectrum caused by the scattering of the CMB
photons off a distribution of high energy electrons. Here we focus only on the SZE
caused by the hot thermal distribution of electrons provided by the intra-cluster
medium (ICM) of galaxy clusters. CMB photons passing through the center of
a massive cluster have only a ≈ 1% probability of interacting with an energetic
ICM electron. The resulting inverse Compton scattering preferentially boosts
the energy of the CMB photon by roughly kBTe/mec

2 causing a small (∼< 1 mK)
distortion in the CMB spectrum. Figure 1 shows the SZE spectral distortion for
a fictional cluster that is over 1000 times more massive than a typical cluster to
illustrate the small effect. The SZE appears as a decrease in the intensity of the

(a) Undistorted CMB spectrum (dashed) and CMB spectrum dis-
torted by the presence of a cluster (solid). Note that the effect is
dramatically exaggerated for illustrational purposes.
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Figure 2: Spectral distortion of the cosmic microwave background (CMB) radia-
tion due to the Sunyaev-Zel’dovich effect (SZE). The left panel shows the intensity
and the right panel shows the Rayleigh Jeans brightness temperature. The thick
solid line is the thermal SZE and the dashed line is the kinetic SZE. For reference
the 2.7 K thermal spectrum for the CMB intensity scaled by 0.0005 is shown by
the dotted line in the left panel. The cluster properties used to calculate the
spectra are an electron temperature of 10 keV, a Compton y parameter of 10−4,
and a peculiar velocity of 500 km s−1.

CMB at frequencies ∼< 218 GHz and as an increase at higher frequencies.
The derivation of the SZE can be found in the original papers of Sunyaev

and Zel’dovich (Sunyaev & Zel’dovich 1970, 1972), in several reviews (Sunyaev
& Zel’dovich 1980a; Rephaeli 1995; Birkinshaw 1999), and in a number of more
recent contributions which include relativistic corrections (see below for refer-
ences). This review discusses the basic features of the SZE that make it a useful
cosmological tool.

The SZE spectral distortion of the CMB expressed as a temperature change
∆TSZE at dimensionless frequency x ≡ hν

kBTCMB
is given by

∆TSZE

TCMB
= f(x) y = f(x)

∫
ne

kBTe

mec2
σT dℓ, (1)

where y is the Compton y-parameter, which for an isothermal cluster equals
the optical depth, τe, times the fractional energy gain per scattering, σT is the
Thomson cross-section, ne is the electron number density, Te is the electron tem-
perature, kB is the Boltzmann constant, mec

2 is the electron rest mass energy,
and the integration is along the line of sight. The frequency dependence of the
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SZE is

f(x) =

(
x

ex + 1

ex − 1
− 4

)
(1 + δSZE(x, Te)), (2)

where δSZE(x, Te) is the relativistic correction to the frequency dependence. Note
that f(x) → −2 in the non-relativistic and Rayleigh-Jeans (RJ) limits.

It is worth noting that ∆TSZE/TCMB is independent of redshift as shown in
Eq. 1. This unique feature of the SZE makes it a potentially powerful tool for
investigating the high redshift universe.

Expressed in units of specific intensity, common in millimeter SZE observations,
the thermal SZE is

∆ISZE = g(x)I0y, (3)

where I0 = 2(kBTCMB)3/(hc)2 and the frequency dependence is given by

g(x) =
x4ex

(ex − 1)2

(
x

ex + 1

ex − 1
− 4

)
(1 + δSZE(x, Te)) . (4)

∆TSZE and ∆ISZE are simply related by the derivative of the blackbody with
respect to temperature, |dBν/dT |.

The spectral distortion of the CMB spectrum by the thermal SZE is shown in
Figure 2 (solid line) for a realistic massive cluster (y = 10−4) in units of intensity
(left panel) and Rayleigh-Jeans (RJ) brightness temperature (right panel). The
RJ brightness is shown because the sensitivity of a radio telescope is calibrated in
these units. It is defined simply by Iν = (2kBν2/c2)TRJ where Iν is the intensity
at frequency ν, kB is Boltzmann’s constant, and c is the speed of light. The
CMB blackbody spectrum, Bν(TCMB), multiplied by 0.0005 (dotted line) is also
shown for comparison. Note that the spectral signature of the thermal effect
is distinguished readily from a simple temperature fluctuation of the CMB. The
kinetic SZE distortion is shown by the dashed curve (§2.2). In the non-relativistic
regime, it is indistinguishable from a CMB temperature fluctuation.

The gas temperatures measured in massive galaxy clusters are around kBTe ∼
10 keV (Mushotzky & Scharf 1997; Allen & Fabian 1998) and are measured to
be as high as ∼ 17 keV in the galaxy cluster 1E 0657 − 56 (Tucker et al 1998).
The mass is expected to scale with temperature roughly as Te ∝ M2/3. At these
temperatures, electron velocities are becoming relativistic and small corrections
are required for accurate interpretation of the SZE. There has been consider-
able theoretical work to include relativistic corrections to the SZE (Wright 1979;
Fabbri 1981; Rephaeli 1995; Rephaeli & Yankovitch 1997; Stebbins 1997; Itoh
et al 1998; Challinor & Lasenby 1998; Sazonov & Sunyaev 1998a,b; Nozawa et al
1998b; Challinor & Lasenby 1999; Molnar & Birkinshaw 1999; Dolgov et al 2001).
All of these derivations agree for kBTe ∼< 15 keV, appropriate for galaxy clusters.

For a massive cluster with kBTe ∼ 10keV (kBTe/mec
2 ∼ 0.02) the relativistic cor-

rections to the SZE are of order a few percent in the RJ portion of the spectrum,

(b) Spectral distortion of the CMB by the SZ effect. The net effect
of the thermal SZ effect vanishes at a characteristic frequency of
∼ 218GHz.

Figure 1.10 Illustration of the Sunyaev-Zel’dovich effect as shown in Carlstrom et al. (2002).

studies presented here use data from the SPT, and we will discuss details of this survey together with these
analyses in the main part of the thesis.

A key feature of using the SZE to detect clusters of galaxies is that the detection threshold in mass is in
principle nearly redshift-independent. As a consequence, in a survey conducted with a telescope that provides
sufficient angular resolution, all clusters above that mass threshold are detected out to the highest redshifts
where clusters exist. This makes SZE-selected cluster samples particularly suitable for all studies that ben-
efit from a large redshift leverage. These comprise cluster evolution studies and of course measurements of
properties of dark energy and growth of structure.

1.3 Parameter Estimation
In the studies presented in this thesis we face multi-dimensional spaces of fit parameters p. Given some data
and a model – either phenomenological or predicted from theory – we would like to know what parameter set
p best describes the data. In a cosmological context, the default fit parameters would be the set of six base
parameters describing the ΛCDM model. Adding the parameters of the scaling relations for three different
observables one can easily end up with 20 or more free parameters. As a further complication, we do not only
want to know the set of best-fitting parameters, but we are also interested in the uncertainties on each parameter.

The first ingredient for such a fit is the likelihood function L, telling how well the set of parameters p
fits the data. The likelihood function is equivalent to the probability of the data given p. In practice, we will
consider Gaussian and Poisson processes, and then L is simply a Gaussian or Poisson distribution centered on
the theoretical prediction.

In order to obtain best-fitting values and confidence intervals for N parameters, it is in principle as simple
as evaluating the likelihood of each point p on a N-dimensional parameter grid. However, in a cosmological
analysis, the evaluation of the likelihood of a single point p takes between 1–10 seconds (depending on the
implementation it can easily take a factor few times longer). Assuming a 10-dimensional parameter space, and
applying a modestly resolved grid with 20 bins in each direction, the calculation will take at least 2010×1 sec or
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over 32,470 years. As the goal is to obtain a PhD within about 10−4 of this time scale, more efficient sampling
methods are needed. The weakness of the proposed sampling method is that every region of the parameter
space gets sampled with the same density of points. However, we are in fact only interested in the ∼ 99%
confidence region or so. We therefore need a sampling method that cleverly distributes points in the region of
high likelihood without wasting time on low-likelihood parts of parameter space. It is then sufficient to only
obtain of the order of 104 − 105 sample points, which already represents a factor ∼ 108 speed-up compared to
the naive example just discussed. In the next subsections, I will briefly discuss three such methods. In practice,
the density of points sampled by each algorithm is proportional to the likelihood; sometimes an additional
weight is assigned to each point.

My experience during this thesis has shown that every fit will be repeated a significant number of times
prior to obtaining the final result, which will be presented in the publication. These repetitions are not only due
to debugging and code testing, but also to different data combinations that one might wish to consider. I would
therefore argue that any fit that takes longer than 24 hours is too slow. Throughout my thesis I have used three
different sampling algorithms and spent a significant amount of time understanding, implementing, and testing
them. I therefore find it useful to present a brief overview, highlighting basic features as well as advantages and
disadvantages of each method. Note that this comparison necessarily contains some level of personal taste.

1.3.1 Markov Chain Monte Carlo: Metropolis-Hastings algorithm

The Markov chain Monte Carlo (MCMC) method is probably the most basic, yet very popular sampling algo-
rithm: Assuming that the chain is currently at the point p0 of likelihood L0, draw a proposal p′ and calculate
its likelihood L′ as well as R ≡ L′/L0. Draw a random number r ∼ [0, 1]. If R > r, accept p′ as the next step
in the chain, else reject p′ and draw a new proposal. In other words, if the new point has a higher likelihood
than the current one, then it is accepted, otherwise, there is still a chance to keep it depending on the ratio R/r.

After a sufficient number of steps – typically thousands or tens of thousands depending on the dimension-
ality and complexity of the target distribution – the chain will have become stationary. The accepted points are
then a fair sampling of the target likelihood distribution and their density can be used to extract marginalized
confidence intervals. The acceptance rate can be tuned by providing a suitable proposal distribution that will
favor new proposals to be drawn from a region of high likelihood.

The main inconvenience of this algorithm is that it is hardly parallelizable, because each proposal point
needs to be considered at a time. Obviously, one can speed up the likelihood evaluation itself, but typically one
can only achieve a speed-up by a factor ∼ 10 (factor 8 for CAMB, which is the main bottleneck in the analyses
performed in this thesis).

1.3.2 Population Monte Carlo

For the first work presented in this thesis I used the Population Monte Carlo (PMC) method as implemented in
the CosmoPMC3 code (Kilbinger et al. 2011). The PMC method is an iterative process: In each iteration, a large
sample of trial points (a population of O(103 − 104) points) is spread across the parameter space according to
some proposal distribution. Then, the likelihood of each trial point of the population is calculated. This task
can be performed in parallel, since the individual likelihood evaluations are independent. Then, the calculated
likelihood of each member of the population is compared to the probability of this point according to the
proposal distribution, and the proposal distribution is updated. The updated proposal distribution is used to
create a new population for the next iteration. The overall convergence can estimated for each iteration by
comparing the ratio of the calculated likelihood to the proposal likelihood for each trial point. If this ratio is
constant or close to constant throughout the whole population, then the proposal and target distributions are
basically identical: the algorithm has converged. Typically, this happens after a few iterations.

3http://www2.iap.fr/users/kilbinge/CosmoPMC/
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The obvious advantage of this method is that the slowest part in the process can be run in parallel on a big
computing cluster, speeding up the overall run time by orders of magnitudes. However, the performance of this
method critically depends on the accuracy of the proposal distribution. Since the proposal is updated by an im-
portance sampling technique, it is mandatory that the proposal has significant overlap with the target likelihood
distribution at the 1σ level roughly. The initial proposal can be estimated by a Fisher matrix approach.

For target likelihood distributions that are Gaussian or reasonably close to Gaussian, the PMC is extremely
efficient in quickly producing a large number of sample points that can be used for parameter estimations. I
successfully ran PMC codes for up to 30 dimensions. In principle, the code can be run on as many CPU cores as
there are sample points in each population, and, together with a good initial proposal distribution, the runtime
on the wall clock can be as short as tens of minutes.

However, I did encounter limitations of this method when the posterior distributions were not Gaussian;
narrow, bent degeneracies between parameters were particularly problematic. In these cases, the proposal
update by importance sampling does not work as well as in the Gaussian case, and convergence can be very
slow.

1.3.3 Affine Invariant Ensemble Sampling

Another approach is the so called affine invariant ensemble sampling, as implemented in the emcee4 code
(Foreman-Mackey et al. 2013). The ensemble consists of a large number of typically hundreds of so-called
walkers. The proposal distribution of walker i is then given by the distribution of all other walkers, and every
walker is subject to an acceptance-rejection procedure similar to the Metropolis-Hastings method. This proce-
dure is repeated for each walker over and over again until the required number of sample points in the chain is
reached. A slight modification to the method just described allows this code to be run in parallel with as many
separate processes as there are walkers in the ensemble.

This algorithm has two main advantages: 1) It is extremely robust and performs well for arbitrarily shaped
posterior distributions because it does not assume any functional form for the proposal. Remember that the
proposal distribution is given by the current position of all walkers themselves and is therefore updated at
each step. 2) It can be run in parallel on hundreds of CPU cores. By the time I am writing this thesis I have
updated and reorganized all my codes and am using emcee for all parameter fits. According to my personal
experience it outperforms both the standard MCMC and PMC methods. More discussion can also be found in
Foreman-Mackey et al. (2013) and references therein.

1.4 Conclusions and Outlook
In this introduction, we have reviewed the basic ingredients of cluster cosmology. In particular, we discussed
the foundation of modern cosmology and showed that the abundance of galaxy clusters is deeply linked to
several key properties. With this background knowledge we are now ready to focus on some particular aspects,
which are discussed in the scientific work presented in the main part of this thesis.

In the first study we use an SZE-selected cluster sample from the SPT survey to constrain cosmology. As
anticipated, the limiting factor in such an analysis is the systematic uncertainty in cluster masses. This work
uses two types of mass calibration data: X-ray YX measurements, and cluster galaxy velocity dispersions σv.
First, we discuss in detail how such a multi-wavelength cluster cosmology analysis is conducted and introduce
the analysis method. This builds upon the introduction given in Section 1.2.1. Then, we compare how the
choice of the mass calibration dataset (or their combination) affects the recovered cosmological results. We
compare our cluster-based results to constraints from CMB anisotropy measurements and find them to be in
agreement. As anticipated in Figure 1.8, the combination of the different cosmological probes leads to tighter
joint constraints. Finally, we consider some extensions of the baseline ΛCDM cosmological model. This work
bridges the gap between astrophysical properties of clusters and cosmology.

4http://dan.iel.fm/emcee/current/
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The second study is dedicated to measuring optical properties of SPT-selected galaxy clusters found in the
Dark Energy Survey (DES) science verification data. In particular, we focus on the optical richness, which
essentially is the number of cluster member galaxies. After discussing the catalog matching algorithm, we
establish a richness-mass scaling relation and calibrate its parameters against mass estimates derived from the
SZE. Once more, this step crucially relies on correcting for selection effects as illustrated in Figure 1.9. We
finally compare the cluster positions in the optical and SZE and measure the offset distribution. This study is an
important step towards using large, high-quality optical datasets that will be available in the very near future.
It demonstrates once more how multi-wavelength survey data are useful for performing cross-comparisons like
the one presented here.

The third analysis builds upon the methods and tools developed for the first project, and we now use the
full SPT-SZ survey data to constrain cosmology. This work focuses specifically on constraints on the growth of
cosmic structure. Assuming a flat ΛCDM cosmology, we find our growth measurement to be in good agreement
with the prediction from General Relativity. Going one step further, we also allow the dark energy equation of
state parameter to vary, and thus constrain both the expansion and growth histories of the Universe. We do not
find any evidence for departure from the ΛCDM model.

Finally, in a fourth, theoretical project, we focus on the halo mass function itself. As discussed earlier,
the commonly used fitting functions are calibrated against N-body simulations and baryons are neglected.
However, one does expect – and this has been shown previously – that baryonic effects play a role at least in
low-mass clusters and groups. However, typical hydrodynamic simulations do not yet cover enough volume to
provide reliable statistics for the most massive and therefore rarest systems. In this study, we use the largest
hydrodynamic simulations available to date to provide a fitting function that takes cluster baryons properly into
account. We discuss technical and theoretical aspects of the fitting procedure. In particular, we argue that the
functional form of the fit should depend on the halo mass definition to provide a universal description that is
independent of redshift and cosmology. We then compare our new established fit with previous work. Baryonic
effects will have to be accounted for in the next-generation of cluster surveys that will extend to lower cluster
masses. Neglecting this baryonic impact could then lead to biases that are as large as the overall expected error
budget.

Together, these four studies cover a sizable range of topics in the vast area of cluster cosmology. In partic-
ular, they represent an important step towards using cluster data obtained from different observational methods
to perform multi-wavelength studies that will play an important role in the future of cluster cosmology.





Mass Calibration and Cosmology

In the following, three studies related to cluster mass calibration and cosmology are presented. The studies all
use data from the South Pole Telescope, and each focuses on another specific aspect. First, a comprehensive
multi-wavelength mass calibration and cosmological analysis is presented as published in ApJ (Bocquet et al.
2015b). In the second study, we compare optical richness measurements with cluster properties in the SZE.
This work is to be submitted to MNRAS (Saro, Bocquet, et al. in preparation). Finally, we present a study
of the full SPT cluster data set which we use to put tight constraints on cosmic growth (Bocquet et al., in
preparation).
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Mass calibration and cosmological anal-
ysis of the SPT-SZ galaxy cluster sample
using velocity dispersion σv and X-ray YX
measurements
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ABSTRACT
We present a velocity dispersion-based mass calibration of the South Pole Telescope Sunyaev-
Zel’dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of
100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σv) and 16 X-
ray YX measurements of sample clusters, we simultaneously calibrate the mass-observable relation
and constrain cosmological parameters. Our method accounts for cluster selection, cosmological
sensitivity, and uncertainties in the mass calibrators. The calibrations using σv and YX are consis-
tent at the 0.6σ level, with the σv calibration preferring ∼16% higher masses. We use the full SPTCL
dataset (SZ clusters+σv+YX) to measureσ8(Ωm/0.27)0.3 = 0.809±0.036 within a flat ΛCDM model.
The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 po-
larization (WP) data, but assuming the sum of the neutrino masses is

∑
mν = 0.06 eV, we find the

datasets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger∑
mν further reconciles the results. When we combine the SPTCL and Planck+WP datasets with in-

formation from baryon acoustic oscillations and supernovae Ia, the preferred cluster masses are 1.9σ
higher than the YX calibration and 0.8σ higher than the σv calibration. Given the scale of these shifts
(∼44% and ∼23% in mass, respectively), we execute a goodness of fit test; it reveals no tension,
indicating that the best-fit model provides an adequate description of the data. Using the multi-probe
dataset, we measure Ωm = 0.299 ± 0.009 and σ8 = 0.829 ± 0.011. Within a νCDM model we find∑

mν = 0.148±0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters.
Allowing both the growth index γ and the dark energy equation of state parameter w to vary, we find
γ = 0.73 ± 0.28 and w = −1.007 ± 0.065, demonstrating that the expansion and the growth histories
are consistent with a ΛCDM Universe (γ = 0.55; w = −1).
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2.1 Introduction

Galaxy cluster surveys provide important insights into cosmological questions such as the nature of cosmic
acceleration (Wang & Steinhardt 1998; Haiman et al. 2001; Holder et al. 2001; Battye & Weller 2003; Molnar
et al. 2004; Wang et al. 2004; Lima & Hu 2007), the Gaussian character of underlying density perturbations
(Dalal et al. 2008; Cayón et al. 2011; Williamson et al. 2011) and the cosmic growth rate (Rapetti et al. 2013).
Because their distribution in mass and redshift depends on both the geometry of the Universe and the growth
rate of structure, galaxy clusters are complementary to distance-based probes such as Type Ia Supernovae
(e.g., Sullivan et al. 2011) and Baryon Acoustic Oscillations (e.g., Percival et al. 2010). Indeed, recent studies
demonstrate the constraining power of galaxy clusters using real cluster samples in X-ray (e.g., Vikhlinin
et al. 2009b; Mantz et al. 2010b), optical (e.g., Rozo et al. 2010) and Sunyaev-Zel’dovich effect (SZE; e.g.,
Vanderlinde et al. 2010; Sehgal et al. 2011; Benson et al. 2013; Reichardt et al. 2013; Hasselfield et al. 2013;
Planck Collaboration et al. 2014c) surveys.

Today, the largest available cluster catalogs come from X-ray and optical surveys. However, galaxy clusters
can also be detected through their thermal SZE signature, which arises from the interaction of the cosmic mi-
crowave background (CMB) photons with the hot, ionized intracluster medium (Sunyaev & Zel’dovich 1972).
The surface brightness of the SZE signature is independent of redshift, and the integrated signature is expected
to be a low-scatter mass proxy (Barbosa et al. 1996; Holder et al. 2001; Motl et al. 2005; Nagai et al. 2007;
Stanek et al. 2010). Therefore, SZE cluster surveys with sufficient angular resolution are expected to generate
nearly mass-limited samples extending to the highest redshifts at which clusters exist. Dedicated millimeter-
wave SZE surveys over large areas of the sky are being carried out by the South Pole Telescope (SPT, Carlstrom
et al. 2011), the Atacama Cosmology Telescope (Fowler et al. 2007), and Planck (Planck Collaboration et al.
2011).

The first cosmological analysis of an SPT cluster sample used 21 clusters selected from 178 deg2 of survey
data (Vanderlinde et al. 2010). The observed SPT signal-to-noise ξ was used as a proxy for cluster mass,
assuming a relationship that was calibrated from simulations. Using the same cluster sample, Benson et al.
(2013) repeated the cosmological analysis using additional mass calibration from the X-ray observable YX ≡
MgTX, where Mg is the intracluster gas mass and TX is the X-ray temperature. The X-ray data were obtained
for a sub-sample of 14 clusters using Chandra and XMM-Newton (Andersson et al. 2011). The combination of
the cluster abundance measurements with CMB anisotropy data improved constraints on Ωm and σ8 by a factor
of 1.5 over the results from CMB data alone (WMAP7, Komatsu et al. 2011). Most recently, Reichardt et al.
(2013) analyzed a sample of 100 cluster candidates extracted from the first 720 deg2 of the SPT-SZ survey,
including X-ray data on the same 14 clusters. The uncertainty in the derived cosmological constraints was
dominated by the systematic uncertainties in the mass calibration of the sample.

Given the importance of the cluster mass calibration, the SPT collaboration has undertaken a comprehen-
sive follow-up program to make use of multiple mass measurement techniques to better characterize the SPT
mass-observable relation. Our strategy is to obtain direct mass constraints from X-ray observations and cluster
velocity dispersions, and these will be supplemented with mass constraints from weak lensing in future studies.
Both velocity dispersions and weak lensing exhibit significant uncertainties on individual cluster mass mea-
surements but can be studied in detail using N-body studies of structure formation in order to characterize and
correct for the systematic biases (e.g., White et al. 2010; Becker & Kravtsov 2011; Saro et al. 2013). Therefore,
large ensembles of these measurements can be combined to deliver precise and accurate mass information. In
a complementary fashion, the X-ray mass proxy YX is tightly correlated with the cluster virial mass, and can be
calibrated using weak lensing or velocity dispersions to provide accurate and reasonably precise single cluster
mass measurements (e.g., Sun et al. 2009; Vikhlinin et al. 2009a; Mantz et al. 2010a). In addition, we expect
the small scatter X-ray observable to play an important role as we want to constrain not only the masses of our
SPT clusters, but also the scatter about the SPT mass-observable relation. The latter plays a central role in the
SPT cluster survey selection, and is critically important for the cosmological interpretation of the sample (e.g.,
Lima & Hu 2005).
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In this work, we report a detailed analysis of the SZE mass-observable relation calibration using the cluster
sample of the 720 deg2 SPT-SZ survey together with a subset of 64 SZE detected galaxy clusters with addi-
tional spectroscopic and/or X-ray observations. The cluster sample with its mass calibration data and external
cosmological datasets are described in Section 2.2. In Section 2.3 we summarize how velocity dispersions are
used as mass calibrators, and largely follow the recent theoretical exploration of this issue (Saro et al. 2013).
We present our analysis method in Section 2.4, and show how we tested it on simulated data. In Section 2.5 we
compare the X-ray and velocity dispersion constraints. Because they are in good agreement, we combine them
and present our best current constraints from SPT clusters alone assuming a flat ΛCDM model, showing that
these results are in agreement with constraints from external datasets. We then carry out a joint cosmological
analysis that combines our SPT clusters with external data to deliver the tightest constraints on cluster masses
and cosmological parameters. We also explore constraints on the sum of the neutrino masses, cosmic growth,
and the Dark Energy equation of state parameter w. We review our conclusions in Section 2.6.

In this work, unless otherwise specified, we assume a flat ΛCDM cosmology with massless neutrinos.
Cluster masses refer to M500,c, the mass enclosed within a sphere of radius r500, in which the mean matter
density is equal to 500 times the critical density. The critical density at the cluster’s redshift is ρcrit(z) =

3H2(z)/8πG, where H(z) is the Hubble parameter.

2.2 Observations and Data

2.2.1 South Pole Telescope Observations, Cluster Catalog, and Scaling Relations
The SPT is a 10 m telescope located within 1 km of the geographical South Pole. From 2007 to 2011, the tele-
scope was configured to observe in three millimeter-wave bands (centered at 95, 150, and 220 GHz). The ma-
jority of this period was spent on a survey of a contiguous 2500 deg2 area within the boundaries 20h ≤R.A. ≤ 7h
and −65◦ ≤ Dec. ≤ −40◦, which we term the SPT-SZ survey. The survey was completed in November 2011,
and achieved a fiducial depth of 18 µK-arcmin in the 150 GHz band. Details of the survey strategy and data
processing can be found in Schaffer et al. (2011).

Galaxy clusters are detected via their thermal SZE signature in the 95 and 150 GHz maps. These maps
are created using time-ordered data processing and map-making procedures equivalent to those described in
Vanderlinde et al. (2010), and clusters are extracted from the multi-band data as in Williamson et al. (2011); Re-
ichardt et al. (2013). A multi-scale matched-filter approach is used for cluster detection (Melin et al. 2006). The
observable of the cluster SZE signal is ξ, the detection significance maximized over all filter scales. Because
of the impact of noise biases, a direct scaling relation between ξ and cluster mass is difficult to characterize.
Therefore, an unbiased SZE significance ζ is introduced, which is the signal-to-noise at the true, underlying
cluster position and filter scale (Vanderlinde et al. 2010). For ζ > 2, the relationship between ξ and ζ is given
by

ζ =

√
〈ξ〉2 − 3. (2.1)

The unbiased significance ζ is related to mass M500,c by

ζ = ASZ

(
M500,c

3 × 1014M�h−1

)BSZ
(

E(z)
E(0.6)

)CSZ

(2.2)

where ASZ is the normalization, BSZ the mass slope, CSZ the redshift evolution parameter and E(z) ≡ H(z)/H0.
An additional parameter DSZ describes the intrinsic scatter in ζ which is assumed to be log-normal and constant
as a function of mass and redshift. The scaling parameters and the priors we adopt are summarized in Table 2.1,
and further discussed in Section 2.4.3.
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We use SPT-selected clusters for the cosmological cluster number count and mass calibration analysis,
described in Section 2.4. For the number counts, we use a cluster sample identical to the one used in Reichardt
et al. (2013). This sample uses data from the first 720 deg2 of the SPT-SZ survey and is restricted to ξ > 5 and
redshift z > 0.3; it contains 100 cluster candidates. No optical counterparts were found for six of these SZE
detections; we discuss their treatment in the analysis in Section 2.4.1. The SPT-SZ 720 deg2 survey comprises
5 fields with different depths which are accounted for by rescaling the SPT ζ-mass relation normalization ASZ
for each field (Reichardt et al. 2013). Our mass calibration data consists of a sub-sample of 64 SPT clusters
with additional X-ray and/or spectroscopic follow-up data, as described in Section 2.2.3 and 2.2.4. Twenty-two
clusters with velocity dispersion σv measurements lie outside the SPT-SZ 720 deg2 survey. The depths of these
fields and the corresponding scaling factors for ASZ will be presented elsewhere together with the analysis of the
full 2500 deg2 survey catalog (de Haan et al. in preparation). These scaling factors are all between 1.08 − 1.27
with a median value of 1.17.

2.2.2 Optical and Near-Infrared Imaging

The galaxy clusters analyzed here have been followed up in optical and near infrared in the context of the SPT
follow-up program, as described in Song et al. (2012a), to which we refer the reader for details of the strategy
and data reduction. Briefly, the SPT strategy is to target all galaxy clusters detected at SZE significance ξ > 4.5
for multiband imaging in order to identify counterparts to the SZE signal and obtain photometric redshifts. We
also obtain Spitzer/IRAC near-infrared imaging for every cluster with SZE significance ξ > 4.8, and we target
those systems at lower ξ which are not optically confirmed or have a redshift above 0.9 with ground based near
infrared imaging using the NEWFIRM imager on the CTIO Blanco 4 m telescope.

2.2.3 Optical Spectroscopy

We use follow-up optical spectroscopy to measure the velocity dispersion σv of 63 clusters. Of these, 53 were
observed by the SPT team (Ruel et al. 2014) and 10 have data taken from the literature (Barrena et al. 2002;
Buckley-Geer et al. 2011; Sifón et al. 2013). In Ruel et al. (2014), four additional clusters with spectroscopic
data are listed, but we choose not to include them in our analysis as they are all at relatively low redshifts below
z < 0.1 where the SZE mass-observable scaling relation we adopt is likely not valid. The lowest redshift cluster
entering our mass calibration analysis is SPT-CL J2300-5331 at z = 0.2623.

Our own data come from a total observation time of ∼ 70 h on the largest optical telescopes (Gemini South,
Magellan, and VLT) in the southern hemisphere; we specifically designed these observations to deliver the
data needed for this velocity dispersion mass calibration study. We obtained low-resolution (R ' 300) spectra
using several different instruments: GMOS1 on Gemini South, FORS2 (Appenzeller et al. 1998) on VLT Antu,
LDSS3 on Magellan Clay and IMACS/Gladders Image-Slicing Multislit Option (GISMO2) on Magellan Baade.

Apart from early longslit spectroscopy using the Magellan LDSS3 spectrograph on a few SPT clusters, the
general strategy is to design two masks per cluster for multi-object spectroscopy to get a final average number
of 25 member galaxy redshifts per cluster. We typically obtained deep (m? + 1) pre-imaging in i′-band for
spectroscopic observation to (1) accurately localize galaxies to build masks for multi-object spectroscopy, and
(2) identify possible giant arcs around cluster cores. This deep pre-imaging is used together with existing
shallower optical imaging and near infrared photometry, where available, to select galaxy cluster members
along the red sequence. We refer the reader to Ruel et al. (2014) for a detailed description of the cluster
member selection and the data reduction.

1http://www.gemini.edu/node/10625
2http://www.lco.cl/telescopes-information/magellan/instruments/imacs/gismo/gismoquickmanual.pdf
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2.2.4 X-ray Observations and YX Scaling Relation Parametrization

Sixteen clusters of our sample have been observed in X-ray using either Chandra or XMM-Newton. The derived
properties of 15 of these clusters are published in Andersson et al. (2011). This sub-sample corresponds to the
highest SZE significance clusters in the first 178 deg2 of the SPT-SZ survey that lie at z & 0.3. We obtained
Chandra observations of SPT-CL J2106-5844 in a separate program whose results are published elsewhere
(Foley et al. 2011). All of these observations have > 1500 source photons within 0.5 × r500 and in the 0.5–
7.0 keV energy band. X-ray observations are used to derive the intracluster medium temperature TX and
the gas mass Mg. For a detailed description of the data reduction method, we refer the reader to Andersson
et al. (2011). Note that there is a calibration offset between temperature measurements from the two satellites
(Schellenberger et al. 2014). For our analysis, we adopt priors on the YX-mass relation that come from an
analysis of Chandra data. Given that only 2/16 systems in this study rely on XMM-Newton data, and the
amplitude of the calibration offset is ∼30% in temperature for these massive clusters, we expect an overall
temperature bias of ∼4%, corresponding to a ∼2% bias in our mass scale, assuming that the Chandra-derived
temperatures are unbiased. Given that this is much smaller than the systematic uncertainty in our YX-mass
calibration, we neglect any cross-calibration.

Following Benson et al. (2013) we rely on the X-ray observable YX ≡ MgTX. For the cosmological analysis
performed in this work we need to evaluate YX as a function of cosmology and scaling relation parameters. In
practice, for a given set of cosmological and scaling relation parameters, we iteratively fit for r500 and YX(r)
which is then used to estimate the cluster mass.

We adopt a calibrated scaling relation derived from hydrostatic masses at low redshifts (Vikhlinin et al.
2009a):

M500,c

1014M�
= AXh1/2

(
YX

3 × 1014M�keV

)BX

E(z)CX , (2.3)

where AX is the normalization, BX the slope and CX the redshift evolution parameter. We assume an intrinsic
log-normal scatter in YX denoted DX and an observational log-normal uncertainty for each cluster. The fiducial
values and priors we adopt for the YX parameters are discussed in Section 2.4.3 and shown in Table 2.1.

2.2.5 External Cosmological Datasets

In addition to our cluster sample, we include external cosmological datasets such as measurements of the CMB
anisotropy power spectrum, the baryon acoustic oscillations (BAO), Type Ia Supernovae (SNIa), the Hubble
constant (H0), and Big Bang nucleosynthesis (BBN). We use these abbreviations when including the datasets in
the analysis. We refer to the SPT SZE cluster sample without the follow-up mass information as N(ξ, z)(which
stands for the distribution of the clusters in ξ-z space), and we refer to the full cluster sample with mass
measurements from σv and YX as SPTCL.

We include measurements of the CMB anisotropy power spectrum from two all-sky surveys. We use
data from the Wilkinson Microwave Anisotropy Probe (WMAP, 9-year release; Hinshaw et al. 2013) and data
from the Planck satellite (1-year release, including WMAP polarization data (WP); Planck Collaboration et al.
2014a,b). The BAO constraints are applied as three measurements: DV(z = 0.106) = 457 ± 27 Mpc (Beutler
et al. 2011), DV(z = 0.35)/rs = 8.88 ± 0.17 (Padmanabhan et al. 2012), and DV(z = 0.57)/rs = 13.67 ±
0.22 (Anderson et al. 2012); rs is the comoving sound horizon at the baryon drag epoch, DV(z) ≡ [(1 +

z)2D2
A(z)cz/H(z)]1/3, and DA is the angular diameter distance. We include distance measurements coming from

Type Ia supernovae using the Union2.1 compilation of 580 SNe (Suzuki et al. 2012). We adopt a Gaussian prior
on the Hubble constant H0 = 73.8 ± 2.4 km s−1 Mpc−1 from the low-redshift measurements from the Hubble
Space Telescope (Riess et al. 2011). Finally we use a BBN prior from measurements of the abundance of 4He
and deuterium which we include as a Gaussian prior Ωbh2 = 0.022 ± 0.002 (Kirkman et al. 2003). Note that
both the BBN and H0 priors are only applied when analyzing the cluster samples without CMB data.



28 Mass Calibration and Cosmological Analysis of SPT-SZ Galaxy Clusters

2.3 Velocity Dispersions σv as Mass Calibrators

Multiple studies highlight the fact that the line-of-sight velocity dispersion of galaxies within clusters may be
used to measure galaxy cluster masses (e.g., Biviano et al. 2006; Evrard et al. 2008; White et al. 2010; Munari
et al. 2013; Saro et al. 2013). The motivation to use velocity dispersions as a mass probe for galaxy clusters
stems from the fact that the galaxy dynamics are unaffected by the complex physics of the intracluster medium.
Therefore, the dominant source of scatter and bias in the σv-mass scaling relation is related to gravitational
dynamics of subhalos, an effect that can be studied using high-resolution N-body simulations. As we will
discuss in Section 2.4.3, the systematic floor on dynamical mass, which is due to uncertainties in modeling the
velocity bias, is currently of the order of 15% in mass (equivalent to 5% in σv).

Saro et al. (2013) used the publicly available galaxy catalogs produced with the semi-analytic model (De
Lucia & Blaizot 2007) from the Millennium simulation (Springel et al. 2005) to precisely characterize the
σv-mass scaling relation as a function of parameters such as redshift, number of selected red-sequence galaxy
cluster members and aperture size centered on the cluster. Their approach provides a mapping between σv

and cluster mass that includes the effects of galaxy selection, departures from equilibrium and sample size,
all of which can be used to interpret the velocity dispersions available for our SPT clusters. There are two
important, but opposing effects that may lead to a potential bias: (1) dynamical friction, which biases the
velocity dispersion low, and (2) interlopers, which for our selection tend to bias dispersions high. For our
selection approach, these contributions effectively cancel, producing no net bias. The intrinsic scatter on an
individual dynamical mass is typically 80% due to the random projection of the velocity ellipsoid along the
line of sight and interlopers in the calculation of velocity dispersion.

Given the large mass uncertainty associated with the dispersion from an individual cluster, we use a large
ensemble of dispersion measurements for our mass calibration analysis. Within this context, we should be able
to constrain the normalization ASZ of the SZE ξ-mass relation to a level where it is dominated by the 15%
systematic uncertainty in the dispersion mass estimates. However, because the intrinsic scatter in the velocity
dispersion scaling relation is much larger than the scatter in the SZE ξ-mass scaling relation, we do not expect
to improve our constraints on the scatter of the SZE ξ-mass scaling relation using velocity dispersions.

We assume the scatter in σv to be uncorrelated with the scatter in SZE. In principle, cluster triaxiality might
induce such a correlation; however, for our sample, the intrinsic scatter in σv is dominated by the effect of
interlopers, which do not affect the SZE signal.

We adopt the mass-observable scaling relation for velocity dispersions σv presented in Saro et al. (2013):

M200,c =

(
σv

Aσv h70(z)Cσv

)Bσv

1015M� (2.4)

where M200,c is the mass expressed relative to the critical density, Aσv is the normalization, Bσv the slope,
and Cσv the redshift evolution parameter. We express the scatter in σv as a function of Ngal, the number of
spectroscopically observed cluster galaxies. The scatter is described by a log-normal distribution of width

Dσv = Dσv0 + DσvN/Ngal (2.5)

where Dσv0 and DσvN are two parameters extracted from the simulations. Given that the typical number of
spectroscopically observed galaxies is small for our sample, this dependency of the scatter on Ngal is important
for our analysis. The fiducial values and priors adopted for the parameters are discussed in Section 2.4.3 and
shown in Table 2.1.

Note that the SZE and X-ray mass scaling relations are defined in terms of M500,c whereas the dynamical
mass is defined as M200,c. The mass conversion is performed using the NFW profile (Navarro et al. 1997) and
the Duffy et al. (2008) mass-concentration relation.
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2.4 Analysis Method
In this Section we introduce the likelihood model adopted for analyzing the data. When combining the cluster
experiment with other cosmological probes, we multiply the individual likelihoods. The multi-dimensional
parameter fit varying all relevant cosmological and scaling relation parameters is performed using a Population
Monte Carlo (PMC) algorithm as implemented in the CosmoPMC code (Kilbinger et al. 2011). In contrast to
the widely used Markov Chain Monte Carlo (MCMC) method, which explores the parameter space based on an
acceptance-rejection algorithm, the PMC algorithm iteratively fits for the posterior distribution using samples
of points (populations) in parameter space. This leads to a significant reduction of computational time as (1)
the calculations of the likelihood at individual points in parameter space are independent and therefore can be
computed in parallel and (2) the overall efficiency is higher than when using MCMC as there are no rejected
points. For a detailed description of the PMC algorithm and its comparison with MCMC see e.g., Wraith et al.
(2009).

When analyzing the SPTCL sample without CMB data we fit for up to 18 parameters: 4 SZE, 4 YX, 5 σv

scaling relation parameters, and 5 cosmological parameters (σ8, Ωm, Ωb, H0, ns); we fix the optical depth
because it is not constrained by the data. When combining with the CMB dataset from WMAP we also include
the optical depth τ as a free parameter in the fit; when analyzing Planck data we include further nuisance
parameters.

We finally describe the priors that we adopt for each of the mass-observable scaling relations and explain
how we tested our code using mock data.

2.4.1 Likelihood Model
The cluster number count analysis in the SZE observable ξ can be separated from the additional mass cali-
bration in an unbiased way. This approach allows for an easy comparison and combination of the different
mass calibrators as we will discuss in Section 2.4.2. For a detailed derivation of our likelihood function, see
Appendix.

Cluster Mass Function

At each point in the space of cosmological and scaling-relation parameters we use the Code for Anisotropies
in the Microwave Background (CAMB, Lewis et al. 2000) to compute the matter power spectrum at 180
evenly spaced redshift bins between 0.2 < z < 2. We then use the fitting function presented in Tinker et al.
(2008) to calculate the cluster mass function dN/dM for 500 mass bins evenly distributed in log-space be-
tween 1013.5h−1M� ≤ M ≤ 1016h−1M�. This fitting function is accurate at the 5% level across a mass range
1011h−1M� ≤ M ≤ 1015h−1M� and for redshifts z ≤ 2.5.

We move the mass function from its native mass and redshift space to the observable space in ξ-z:

dN(ξ, z|p)
dξdz

=

∫
dMdz Θ(ξ − 5, z − 0.3)P(ξ|M, z, p) ⊗ dn(M, z|p)

dM
dV(z)

dz
(2.6)

where dV/dz is the comoving volume within each redshift bin, p is a vector containing all scaling relation
and cosmological parameters, and Θ is the Heaviside step function describing cluster selection in the SZE
observable ξ > 5, and observed redshift z > 0.3. The term P(ξ|M, z, p) describes the relationship between
mass and the SZE observable from the scaling relation (Equations 2.1 and 2.2), and contains both intrinsic and
observational uncertainties. In practice, we convolve the mass function with this probability distribution.

Finally, the logarithm of the likelihood L for the observed cluster counts is computed following Cash
(1979). After dividing up the observable space in small bins, the number of expected clusters in each bin is
assumed to follow a Poisson distribution. With this the likelihood function is

lnL(p) =
∑

i

ln
dN(ξi, zi|p)

dξdz
−

∫
dN(ξ, z|p)

dξdz
dξdz, (2.7)
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up to a constant offset, and where i runs over all clusters in the catalog. For clusters without spectroscopic data,
we integrate the model over redshift weighting with a Gaussian whose central value and width correspond to
the cluster’s photometric redshift measurement.

The 720 deg2 survey area contains five fields of different depths, see Section 2.2.1. In practice, we perform
the above calculation for each field rescaling ASZ with the corresponding factor, and sum the resulting log
likelihoods.

Mass Calibration

For each cluster in our sample containing additional mass calibration information from X-ray and/or velocity
dispersions, we include the YX or σv measurement as follows: At every point in cosmological and scaling
relation parameter space p, we calculate the probability distribution P(M|ξ, z, p) for each cluster mass, given
that the cluster has a measured significance ξ and redshift z:

P(M|ξ, z, p) ∝ P(ξ|M, z, p)P(M|z, p). (2.8)

In practice, we calculate the probability distribution P(ξ|M, z, p) from the SZE scaling relation (Equations 2.1
and 2.2) taking both intrinsic and observational scatter into account, and weight by the mass function P(M|z, p),
thereby correcting for Eddington bias. We then calculate the expected probability distribution in the follow-up
observable(s) which we here call O for simplicity:

P(O|ξ, z, p) =

∫
dM P(O|M, z, p)P(M|ξ, z, p). (2.9)

The term P(O|M, z, p) contains the intrinsic scatter and observational uncertainties in the follow-up observable.
We assume the intrinsic scatter in the SZE scaling relation and the follow-up measurements to be uncorrelated.
For each cluster in the mass calibration sample, we compare the predicted P(O|ξ, z, p) with the actual measure-
ment and extract the probability of consistency. Finally, we sum the log-likelihoods for all these clusters and
add the result to the number count likelihood (Equation 2.7).

It is important that any cosmological dependence of the mass calibration observations be accounted for. In
the case of a single velocity dispersion σv, the measurement comes from the combination of redshift measure-
ments from a sample of cluster galaxies; the cosmological sensitivity, if any, is subtle. On the other hand, the
X-ray observable YX is calculated from the measured temperature and gas mass within r500, and the limiting
radius and the gas mass are both cosmology dependent. Therefore, YX has to be extracted from the observations
for each set of cosmological and scaling relation parameters as described in Section 2.2.4.

Unconfirmed Cluster Candidates

Out of the 100 cluster candidates in the survey, 6 detections could not be confirmed by the optical follow-up
and were assigned lower redshift limits based on the depth of the imaging data (Song et al. 2012a). In addition,
each of these unconfirmed candidates has some probability of being a noise fluctuation.

Our treatment of these candidates takes into account the false detection rate at the detection signal-to-noise
as well as the expected number of clusters exceeding the lower redshift bound of the candidate as predicted by
the cluster mass function. We calculate the probability of a candidate i to be a true cluster according to

Pi
true =

Nexpected(ξi, zi
low|p)

Nexpected(ξi, zi
low|p) + Nfalse detect(ξi)

(2.10)

where the number of clusters Nexpected above some lower redshift limit is given by
∫ ∞

zi
low

N(ξi, z|p)dz. The expected
number of false detections as a function of ξ has been estimated from simulations and cross-checked against
direct follow-up and is assumed to be redshift independent (Song et al. 2012a; Reichardt et al. 2013).
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In the cosmological analysis, each of the unconfirmed candidates is treated like an actual cluster but
weighted with its Pi

true. However, the specific treatment of the unconfirmed candidates has little effect on
the cosmological and scaling relation parameters; for example, simply removing these candidates from the
catalog leads to negligible changes in the results.

2.4.2 Discussion of the Analysis Method

In previous SPT cluster cosmology studies, we have used a somewhat different method. In that method the
expected number density of clusters as a function of ξ, YX, and z is calculated on a three-dimensional grid. The
likelihood is evaluated by comparing this prediction to the cluster sample in a way analogous to Equation 2.7.
For clusters without YX data the likelihood is integrated over the full range of YX (Benson et al. 2013).

As we show in the Appendix, the method we employ in the current analysis is mathematically equivalent
to this other method; here we assume uncorrelated scatter. For the current application, where we have σv and
YX follow-up measurements, we do not work in the four-dimensional ξ-YX-σv-z-space, but rather we treat the
number count part of the likelihood in its ξ-z-space, and the mass calibration part of the likelihood P(O|ξ, z, p)
separately. The results obtained with this analysis method do not show any sign of biases when tested against
different sets of mock data (see Section 2.4.4). This method is convenient when analyzing a cluster sample
with multiple different mass observables where only a fraction of the clusters have those observables. In the
limit where every cluster in the survey has the same follow-up mass measurements, the likelihood presented
and used in our previous analyses (Benson et al. 2013; Reichardt et al. 2013) would be more computationally
efficient.

2.4.3 Priors Used in the Analysis

We present the priors used in our analysis and discuss their motivation. All priors are also listed in the first
column of Table 2.1.

Priors on SZE ξ-mass Scaling Relation Parameters

The SZE scaling relation parameters were estimated from simulations of the SZE sky of about 4000 deg2 in size
(Reichardt et al. 2013). We adopt 30%, 20%, 50% Gaussian uncertainties on ASZ, BSZ, and CSZ, respectively
(e.g., Vanderlinde et al. 2010). For the scatter DSZ, we adopt a conservative 67% uncertainty (Benson et al.
2013; Reichardt et al. 2013).

Priors on YX-mass Scaling Relation Parameters

The priors used in the X-ray scaling relation parameters are motivated by published constraints from X-ray
measurements and simulations. The absolute mass scale of the YX-mass scaling relation has been calibrated
using hydrostatic mass estimates of a sample of 17 low-redshift (z < 0.3) relaxed clusters (Vikhlinin et al.
2009a). Simulations were used to estimate an upper limit of 4% on the systematic offset in the YX-mass
relation between relaxed and unrelaxed clusters (Kravtsov et al. 2006) . Also, simulations predict that biases
in hydrostatic mass estimates are less for relaxed clusters and are of the order of 15% (Nagai et al. 2007).
Therefore, the YX-mass relationship calibrated from hydrostatic mass of a sample of relaxed clusters should be
in principle applicable to less relaxed systems.

We adopt the best-fit value of AX = 5.77 ± 0.20 for the normalization and BX = 0.57 ± 0.03 for the
slope where uncertainties are statistical only (Vikhlinin et al. 2009a). The systematic uncertainty on AX was
determined by comparing to weak-lensing mass estimates for a sample of 10 low-redshift clusters (Hoekstra
2007). The derived 1σ systematic uncertainty is 9% on the Chandra mass calibration. Adding this in quadrature
to the statistical uncertainty yields the Gaussian prior AX = 5.77 ± 0.56 we use in this study.
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For the redshift evolution parameter, we assume a Gaussian prior CX = −0.4 ± 0.2. The 50% uncertainty
is motivated by simulations (Kravtsov et al. 2006) and matches the prior used in the hydrostatic calibration
analysis (Vikhlinin et al. 2009a).

We apply a Gaussian prior DX = 0.12 ± 0.08 on the log-normal intrinsic scatter. The central value of the
prior is chosen to be consistent with simulations (e.g., Kravtsov et al. 2006), while the uncertainty is chosen
to encompass the range found in simulations and in measured values in the literature (Vikhlinin et al. 2009a;
Mantz et al. 2010a).

Priors on σv-mass Scaling Relation Parameters

The statistical uncertainty on the normalization Aσv of the relation is of the order of 0.06% (Saro et al. 2013).
However, there is a systematic uncertainty associated with the poorly determined galaxy velocity bias b, and
this has been the focus of multiple investigations. Remember that b = 1 means no bias. For example, from
the analysis of the Millennium simulation (Springel et al. 2005), a weak velocity bias of 1.02 is claimed (Fal-
tenbacher & Diemand 2006), while Biviano et al. (2006) derive a bias of 0.95 using gas dynamic simulations
(Borgani et al. 2004). Based on the comparison of different simulations, Evrard et al. (2008) estimates a bias of
1.00 ± 0.05, and White et al. (2010) derives a value ∼ 1.06 from their own N-body simulation. In more recent
studies comparing different simulations, Wu et al. (2013) and Gifford et al. (2013) find a spread in velocity
bias of the order of 10%. Taking into account these different results, we adopt a Gaussian 5% prior on the
normalization of the scaling relation centered at the value given by Saro et al. (2013): Aσv = 939 ± 47 km s−1.
This corresponds to a 15% systematic uncertainty floor in the velocity dispersion mass estimates used in our
analysis. We expect future studies to help in providing more accurate estimations of the velocity bias.

In our recent presentation of the velocity dispersion data on the SPT cluster sample (Ruel et al. 2014) we
note a 10% offset in the dispersion normalization of the dataset as compared to the predicted dispersions (Saro
et al. 2013) when using the previously published SPT cluster masses (Reichardt et al. 2013). Stated in another
way, this offset is an indication that if the dispersions were used for mass calibration, then they would lead to
a change in the mass scale of the SPT cluster sample. This expectation is confirmed in the results presented
below (see Section 2.5.1).

Saro et al. (2013) find the statistical uncertainties for the slope Bσv and the evolution term Cσv to be O(10−4)
and O(10−3), respectively, and hence completely negligible. However, these results do not include potential
systematic uncertainties. We adopt conservative 5% Gaussian uncertainties on both parameters and apply
Bσv = 2.91 ± 0.15 and Cσv = 0.33 ± 0.02. We confirm that the width of those priors plays a negligible role in
our analysis by tightening both priors to the levels of the statistical uncertainties quoted above; the results on
all other parameters remain essentially unchanged.

The effect of interlopers is the dominant contribution to the intrinsic scatter (Saro et al. 2013) and we assume
a 20% uncertainty on the scatter normalization Dσ0 = 0.2±0.04 as well as a 20% uncertainty on its dependence
on the number of observed galaxies DσN = 3 ± 0.6. The results from our observed velocity dispersion sample
support this approach; we measure the scatter in the observed sample to be Dσv = 0.31±0.03 (Ruel et al. 2014).
In the present analysis we use a parametrization of the scatter that includes the number of spectroscopically
observed galaxies (see Section 2.3). For the typical number of observed galaxies in our sample 〈Ngal〉 = 25, we
model the scatter to be Dσv (Ngal = 25) = 0.32, which is in very good agreement with the direct measurement.

Additional Priors on Cosmological Parameters

Galaxy clusters are not sensitive to all cosmological parameters. Therefore, when not including the CMB
dataset in a cosmological analysis, we fix the optical depth at reionization to the WMAP9 best-fit value τ =

0.089 and we adopt a Gaussian prior on the spectral index ns = 0.972 ± 0.013 representing the WMAP9 result.
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2.4.4 Validation of the Analysis Tool using Mock Data
We validate the analysis method using simulated data. In a first step we test the number count part in SZE
significance and redshift space using simulated cluster catalogs that match the SPT data but contain orders of
magnitude more clusters; our goal here is to minimize statistical noise so as to resolve possible systematics in
the analysis at a level far below the statistical noise in our real sample. Our mock generator produces clusters in
mass-redshift space, converts the cluster masses to the SZE observable ξ using Equations 2.1 and 2.2 with log-
normal and normal scatter, respectively, and then applies the survey selection. The crucial part of the analysis -
that is the conversion from mass to observable - is thereby computed differently than in the likelihood code we
use to explore cosmological parameter space.

We generate large catalogs using different sets of input values and obtain samples containing on the order
of 104 clusters. We then run our analysis pipeline on the mock data using priors equivalent to the ones listed
in Table 2.1; our tests show that we are able to recover the input values to within 1σ statistical uncertainties,
verifying that there are no biases in our codes at a level well below the statistical noise in our real cluster
ensemble.

We further analyzed mock catalogs produced using the analysis pipeline used in our previous analyses
(Benson et al. 2013; Reichardt et al. 2013), recovering the input parameters at the 1σ statistical level. To test
the mass calibration module, we use a subset of 500 clusters drawn from the SZE mock catalog described above
and additionally convert the cluster masses to X-ray YX and velocity dispersion σv measurements. We then run
our analysis code on the mass calibration part alone, that is without using the number count information and
use YX and/or σv, showing that we are able to recover the input values. Finally we confirm that the combination
of number counts and mass calibration produces unbiased results by combining the SZE mock catalog with the
X-ray and spectroscopic cluster mass observables. These tests give us confidence that our code is producing
unbiased constraints.

2.5 Results
In this section, we present the results of our mass calibration and cosmological analysis. As we discuss in detail,
the constraints obtained using σv mass calibration are statistically consistent with those we obtain using YX, but
the dispersions prefer higher cluster masses. Assuming a flat ΛCDM cosmology, we compare the constraints
obtained from the SPT galaxy clusters and mass calibration with independent cosmological constraints from
CMB anisotropies, and finally combine the datasets in order to obtain tighter cosmological constraints. We
then use the combined datasets to constrain extensions of the standard cosmological model in which the Dark
Energy equation of state or the sum of neutrino masses are allowed to vary. Finally, we present the first SPT
result on the cosmological growth of structure.

2.5.1 Using σv and YX as Mass Calibrators
In Table 2.1, we present the results of the analysis of the SPT-SZ survey cluster sample and its mass calibration
assuming a flat ΛCDM model. For now we do not include CMB, BAO, or SNIa data, because we first wish
to isolate the galaxy cluster constraints and the impact of the mass calibration data. However, we include the
BBN and H0 priors, because not all parameters are well constrained by the cluster data.

We present results using the SPT cluster sample N(ξ, z) only, N(ξ, z) with YX data, N(ξ, z) with σv data, and
N(ξ, z) with both YX and σv. It is clear that the additional mass information from σv or YX help in improving the
results obtained from N(ξ, z) only. The constraints on the SZE scaling relation normalization ASZ, the scatter
in that relation DSZ, and the cosmological parameter combination σ8(Ωm/0.27)0.3 tighten. The uncertainty on
this parameter reflects the width of the likelihood distribution in Ωm-σ8 space in the direction orthogonal to the
cluster degeneracy (see Figure 2.1).

There is agreement between the results obtained using the mass calibrators σv or YX, which provides an
indication that both methods are reliable and that systematics are under control. The normalization ASZ de-
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creases by 22% when replacing the YX calibration dataset with the σv dataset. Due to the skewness of the
probability distributions with tails towards larger values, the constraints on ASZ from σv and YX measurements
have significant overlap, with the YX-favored value displaced 1.15σ from the result obtained from σv (see also
Figure 2.2). The constraints on the slope BSZ, the redshift evolution parameter CSZ, as well as the scatter DSZ
are not much affected by the choice of the mass calibrator. We note that the YX scaling relation is calibrated by
observations at z ∼ 0.3 which is extrapolated to higher redshifts using priors motivated by simulations, whereas
the σv scaling relation is calibrated to simulations over the full redshift range. In terms of the cosmological
results, both follow-up methods perform similarly in constraining the fully marginalized values for Ωm and σ8.
However, the YX calibration does better in constraining σ8(Ωm/0.27)0.3.

Our constraints using SPT clusters with mass calibration from X-ray YX only are comparable with pre-
viously published results from nearly the same cluster sample (Reichardt et al. 2013). Note that the X-ray
sample used here contains measurements of YX for two additional clusters (see Section 2.2.4). We recover
almost identical constraints on the SZE and X-ray scaling relation parameters. However, in the Ωm-σ8 plane,
the constraints presented here extend further along the degeneracy direction towards higher values of Ωm. This
difference is due to a prior on the power spectrum normalization ln(10−10As) = [2.3, 4] that was narrow enough
to affect the cosmological constraints in Reichardt et al. (2013); we fit for σ8 in the range [0.4, 1.2] which
is much broader than the recovered probability distribution and hence our choice of prior does not affect our
results.

We estimate the effect of potentially larger galaxy velocity bias (see discussion in Section 2.3 and 2.4.3)
by loosening our prior on Aσv from the 5% recommended by Saro et al. (2013) to 10% when analyzing the
N(ξ, z)+σv+BBN+H0 data. There is a broadening of the uncertainty on ASZ by 25%, and a ∼ 0.3σ shift to a
higher value. The constraint on σ8(Ωm/0.27)0.3degrades by 14% and shifts only by a negligible amount. In
addition, we examine the impact of tightening the prior on Aσv to 1%. In this case, we observe improvements
on the constraints on ASZ (28%) and σ8(Ωm/0.27)0.3 (23%).

Because of the consistency of the two calibration datasets, we combine them into a joint mass calibration
analysis. We observe that the SZE normalization ASZ remains close to the value favored by the σv measure-
ments, while its 68% confidence region decreases by roughly 20% compared to the individual results. This
impact on ASZ is the best improvement on the SZE parameters we observe when combining the mass calibra-
tors. The constraints on Ωm and σ8 lie between the individual results with similar uncertainties. However,
σ8(Ωm/0.27)0.3 clearly benefits from the combined mass information, and its uncertainty is 10% (23%) smaller
than when using the individual YX (σv) calibration data.

2.5.2 ΛCDM Results with WMAP9
We now compare the results from our cluster data with constraints from CMB anisotropies as obtained from
WMAP9. The probability distributions of the cluster datasets and WMAP9 overlap, indicating agreement
between both sets of constraints (see also Figure 2.1). Moreover, the parameter degeneracies in the Ωm-σ8
space for clusters are nearly orthogonal to the ones of CMB data.

We quantify the agreement between two datasets by testing the degree to which their probability distri-
butions P(x) overlap in some parameter space x. We measure this by first drawing representative samples of
points {x1} and {x2} from the two probability distributions P1(x) and P2(x). We then compute the distances
between pairs of sampled points δ ≡ x1 − x2 and estimate the probability distribution Pδ from this ensemble
{δ}. We then evaluate the likelihood p that the origin lies within this distribution:

p =

∫
S

dy Pδ(y) (2.11)

where the space S is that where Pδ < Pδ(0), and Pδ(0) is the probability at the origin. We convert p to a
significance assuming a normal distribution. Within the PMC fitting procedure used to obtain the probability
distributions P, each sample point x is assigned a weight. We calculate the agreement between two distributions
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Figure 2.1 Likelihood contours (68% and 95%) in Ωm-σ8 space for SPT clusters with σv and YX (SPTCL), CMB
from WMAP9 and Planck+WP, and the combination of clusters with CMB data. The independent cluster and
CMB constraints overlap, and their approximate orthogonality make them particularly complementary. We
quantify the agreement between SPTCL and WMAP9 (Planck+WP) to be 1.3σ (1.9σ) (see Section 2.5.2).
Accounting for a single massive neutrino (mν = 0.06 eV) shifts these values to 1.0σ (1.5σ); treating the sum
of neutrino masses as a free parameter yields 0.7σ (1.1σ).

using the method presented above, assigning each point δ a weight that is the product of the weights of the
points x1 and x2.

We apply this method in the two-dimensional Ωm-σ8 space. Within our baseline model that assumes
massless neutrinos we report good consistency (1.3σ) between the results from our cluster sample and from
WMAP9. Changing the baseline assumptions to account for one massive neutrino with mass mν = 0.06 eV de-
creases the tension to 1.0σ. We note that this increase in neutrino mass shifts CMB constraints towards lower
values of σ8 by about ∆σ8 ≈ −0.012 while having negligible impact on the cluster constraints. We fit for the
sum of neutrino masses in Section 2.5.7; this further reduces the tension.

Given the overlap between the probability distributions from our clusters and WMAP9 we combine the
datasets to break degeneracies and thereby tighten the constraints. In Table 2.2, we show how the combination
of the N(ξ, z) cluster sample with WMAP9 data benefits from the additional mass calibration from σv and/or

Table 2.2 Impact of σv and/or YX mass calibration on results from SPT clusters N(ξ, z)+WMAP9.
Dataset ASZ Ωm σ8 σ8(Ωm/0.27)0.3

N(ξ, z)+WMAP9 3.59+0.60
−1.04 0.284 ± 0.027 0.823 ± 0.026 0.835 ± 0.047

N(ξ, z)+WMAP9+σv 3.51+0.65
−0.63 0.288 ± 0.022 0.824 ± 0.020 0.840 ± 0.035

N(ξ, z)+WMAP9+YX 3.85+0.62
−0.66 0.273 ± 0.019 0.811 ± 0.019 0.813 ± 0.032

N(ξ, z)+WMAP9+YX+σv 3.79+0.57
−0.63 0.276 ± 0.018 0.812 ± 0.017 0.817 ± 0.027

Note. — These are fully marginalized constraints. The results from N(ξ, z)+YX+σv+WMAP9 are presented in more detail in Table 2.1.
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YX. It is clear that, even if the cosmological constraints are dominated by the CMB data, the mass calibration
from either observable leads to tighter constraints on all four parameters shown in the table. We also observe
that the constraints on the cosmological parameters Ωm, σ8, and σ8(Ωm/0.27)0.3 obtained when including YX
data are systematically lower by about half a σ than results obtained without these data; the constraints on ASZ
are higher. These shifts correspond to lower cluster masses; we will come back to this in Section 2.5.4.

When adding the WMAP9 data to our full cluster sample SPTCL we observe shifts in the SZE scaling
relation parameters, as shown in Table 2.1. There is a decrease in the SZE normalization ASZ by 19%, and
the uncertainty tightens by 42%. We further observe a notable shift in the redshift evolution CSZ towards
a lower value at the 1σ level. This is due to the degeneracy between CSZ and Ωm, as the latter also shifts
significantly when the WMAP9 data are added. The remaining scaling relation parameters do not benefit from
the additional data. Conversely, the SPT cluster data improve the cosmological constraints from the WMAP9
data by reducing the uncertainty on Ωm by 36%, on σ8 by 33%, and on σ8(Ωm/0.27)0.3 by 47%. Figure 2.1
shows how the combination of the datasets leads to improved constraints due to the nearly orthogonal parameter
degeneracies of the individual results (red contours in figure).

Finally, we add data from BAO and SNIa which carry additional information on cosmic distances. As ex-
pected, we see a further tightening of the constraints on Ωm = 0.292±0.011 and H0 = 68.6±1.0 km s−1 Mpc−1.

2.5.3 ΛCDM Results with Planck+WP
In Figure 2.1, we also show the constraints in the Ωm-σ8 plane from Planck+WP and report a mild 1.9σ
tension between our cluster sample and this CMB dataset. The tension is slightly larger than when comparing
the clusters to WMAP9. The Planck+WP data favor a larger value of σ8 than our cluster sample. Assuming
one massive neutrino with mass mν = 0.06 eV relaxes the tension to 1.5σ.

We proceed and combine our cluster sample with the CMB data from Planck+WP. This data combination
prefers a value for σ8 that is about 1σ lower than suggested by the CMB data. Adding our cluster sample to
Planck+WP leads to improvements on the constraints on Ωm, σ8 and σ8(Ωm/0.27)0.3, all on the order of 15%
(see Table 2.1, and black/cyan contours in Figure 2.1).

We add BAO and SNIa data to further improve the cosmological constraints, and measure Ωm = 0.297 ±
0.009, σ8 = 0.829±0.011, σ8(Ωm/0.27)0.3= 0.855±0.016, and H0 = 68.3±0.8 km s−1 Mpc−1. These represent
improvements of 18% (Ωm), 8% (σ8), and 11% (σ8(Ωm/0.27)0.3) over the constraints from Planck+WP+BAO+

SNIa without SPTCL. In addition, these represent improvements of 18% (Ωm), 31% (σ8), 20% (σ8(Ωm/0.27)0.3)
and 20% (H0) over the corresponding parameter uncertainties when using WMAP9 instead of Planck+WP.

2.5.4 Impact on Cluster Masses
Combining the mass calibration from YX with σv data and further with CMB data leads to shifts in the SZE
scaling relation parameters which ultimately shift the mass estimates of the clusters. As shown in Figure 2.2,
there is a systematic increase of the cluster mass scale as we move from X-ray to dispersion only calibration,
further on to YX+σv and finally on to analyses of our SPTCL dataset in combination with external datasets
(remember that a decrease in ASZ corresponds to an increase in cluster mass, see Equation 2.2). Also, it is clear
that the constraints on the SZE normalization ASZ obtained when including CMB data are much stronger than
the constraints from the cluster data alone. The Gaussian prior on ASZ is in some tension with the ASZ con-
straints after including the CMB data. In this case, we note that the recovered values of ASZ do not significantly
change when removing the prior, because it is much broader than the recovered constraints.

We quantify the agreement between these distributions in the space of ASZ in a way equivalent to the one
presented in Section 2.5.2. We find that the results from both YX and σv mass calibration are consistent at the
0.6σ level. There is a mild tension (1.9σ) between mass calibration from YX and SPTCL+Planck+WP+BAO+

SNIa, while the mass calibration from σv is consistent with the multi-probe dataset at the 0.8σ level. These
shifts would approximately correspond to an increase in the preferred cluster mass scale by 44% and 23%, re-
spectively, when using the multi-probe dataset. Note that there are shifts in BSZ and CSZ when adding CMB data
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Figure 2.2 Posterior probability distributions for the normalization ASZ of the SZE ζ-mass relation for different
combinations of mass calibration, CMB, and additional datasets. The Gaussian prior is shown by the black
dashed curve. Note the systematic trend towards lower ASZ values and smaller uncertainty when adding external
cosmological data, corresponding to an increase in the characteristic scale of SPT cluster masses by ∼44% from
N(ξ, z)+YX (magenta) to SPTCL+CMB+BAO+SNIa (cyan/red).

to our cluster sample which add a slight ξ (or equivalently mass), and redshift dependence to this comparison
of cluster masses.

On average, our cluster mass estimates are higher by 32% than our previous results in Reichardt et al.
(2013), primarily driven by using new CMB and BAO datasets. Relative to Reichardt et al. (2013), we have
updated the CMB data set from WMAP7 and SPT (Komatsu et al. 2011; Keisler et al. 2011) to Planck+WP
(Planck Collaboration et al. 2014a,b), and also updated the BAO dataset from Percival et al. (2010) to a combi-
nation of three measurements (Beutler et al. 2011; Anderson et al. 2012; Padmanabhan et al. 2012). The new
datasets have led to more precise constraints on the cosmological parameters, in particular σ8(Ωm/0.27)0.3, and
drive shifts in the preferred cluster mass scale through ASZ, to improve consistency between the cluster data set
and the cosmological constraints. For example, using WMAP9 data instead of Planck+WP+BAO+SNIa leads
to an average 11% decrease of the cluster masses. Finally, we observe an increase in the slope BSZ as compared
to Reichardt et al. (2013) which reduces the mass change to only ∼ 15% on the high-mass end of the sample.

2.5.5 Goodness of Fit of Cluster Data

Our analysis to this point has focused on extracting parameter confidence regions that emerge from different
combinations of our cluster sample with external datasets. We observed shifts especially in the SZE scaling
relation parameters when switching among the different data combinations. In the following, we investigate
whether the adopted SZE mass-observable scaling relation parametrization is adequate for describing the clus-
ter sample. We execute two tests: (1) we evaluate the goodness of fit of the SZE selected clusters in the ξ-z
plane, and (2) we compare the predicted values for the follow-up observables YX and σv to their actual mea-
surements. Both tests are performed adopting parameter values at the best-fit location in cosmological and
scaling relation parameter space from the SPTCL+Planck+WP+BAO+SNIa analysis.

We compare the distribution of the SZE clusters in the observable ξ-z plane with its prediction. This is done
using a two-dimensional Kolmogorov-Smirnov (KS) test as described in Press et al. (1992): At the location of
each cluster in ξ and z space, we split the observational space into four quadrants, and calculate the absolute
difference between the number of clusters and the number predicted by the model within that area. The largest
of these 4 × Ncl values is taken as the maximum difference D between the data and the model. We characterize
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Figure 2.3 The goodness of fit of our cluster dataset to the best-fit cosmological model is evaluated using a
two-dimensional KS test on the distribution of clusters in SZE signature ξ and redshift z (see Section 2.5.5).
The blue histogram is the expected distribution of differences D between the observations and the model for an
ensemble of 10,000 simulated realizations of the best-fit cosmology. The SPTCL dataset is marked by the red
line and exhibits no tension with the parametrization from the best-fit model.

this difference measure by calculating it for 10,000 independent catalogs that we produce using the best-fit
cosmology and scaling relation parameters. Figure 2.3 contains a histogram of the distribution of differences
D from the set of catalogs, and the red line marks the difference for the real sample. This test indicates that
there is a 90% chance of obtaining a larger difference D than observed in our real dataset. We conclude that
there is no tension between our SPT cluster sample and the way we model it through the SZE scaling relation
parametrization.

We now go one step further and ask whether there is tension between the predicted values for the follow-up
observables YX and σv and their actual measurements. Remember that the predicted probability distributions
are obtained from the observed SZE signal ξ according to Equation 2.9. For each cluster, we calculate the
percentile of the observed value in its predicted distribution. We get a distribution of percentiles which we
convert to a distribution of pulls (Eadie & Frederick 1983; Lyons 1989) using the inverse error function:

pull =
√

2 × erf−1(2 × percentile − 1). (2.12)

This distribution is finally compared to a normal distribution of unit width centered at zero using the KS test.
In Figure 2.4 we show the distribution of pulls for the YX and σv measurements. For each observable, we show
the distribution for two different sets of cosmological and scaling relation parameters: (1) the results obtained
from clusters with mass calibration only, and (2) the results from clusters with mass calibration combined with
the external cosmological probes. In all 4 cases, the KS test provides p-values in the range 0.1 < p < 0.8,
indicating no tension between the predicted follow-up mass observables and their measurements. This is an
interesting observation given the shifts we observe in the scaling relation and cosmological parameters when
adding CMB data to the cluster sample. It shows that the adopted form of the SZE mass-observable scaling
relation has enough freedom to compensate for the shifts in cosmological parameters. With a larger cluster and
mass calibration dataset we could expect to make a more precise consistency test of the data and our adopted
scaling relation parametrization.

2.5.6 Dark Energy Equation of State
The first extension of the ΛCDM model we analyze is the flat wCDM cosmology which includes the Dark
Energy equation of state parameter w. As the Dark Energy becomes relevant only in the late Universe and
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Figure 2.4 Difference of the X-ray and dispersion follow-up mass measurements and their predictions from
SZE. We show the distribution of pulls (see Section 2.5.5), and the expected Gaussian distribution in black.
The result obtained from clusters alone is shown in blue, and the combined results from all cosmological
probes are shown in red. A KS test indicates there is no tension between our cluster mass calibration data and
the expected mass distribution in the best-fit cosmology.

affects the cluster mass function through its impact on the cosmological growth rate and volume we expect our
cluster sample to provide an important contribution in constraining its nature.

Analyzing our cluster sample using priors on H0 and BBN, we obtain w = −1.5 ± 0.5. This measurement
is compatible with external constraints from WMAP9+H0 (w = −1.13 ± 0.11) and Planck+WP+BAO (w =

−1.13 ± 0.25, 95% confidence limits; Planck Collaboration et al. 2014b), and consistent with the ΛCDM value
w = −1. Remember that the results obtained from clusters might in principle be subject to systematics in
the mass estimates, while, on the other hand, the CMB anisotropy measurements are most sensitive to the
characteristics of the Universe at z ∼ 1100, and the distance measurements are subject to their own systematics.

Combining datasets breaks degeneracies and leads to tighter constraints. When adding our SPTCL sample
to the WMAP9+H0 data, we measure w = −1.07 ± 0.09, or an 18% improvement over the constraint without
clusters. Combining our cluster sample with Planck+WP+BAO+SNIa (w = −1.051 ± 0.072) data leads to an
even tighter constraint, and we measure w = −0.995 ± 0.063 (12% improvement, see also Table 2.3).

2.5.7 Massive Neutrinos
We now extend the ΛCDM model and include the sum of neutrino masses

∑
mν as a free parameter. We will

refer to this model as νCDM in the following, and we assume three degenerate mass neutrino species.
Massive neutrinos are still relativistic at the epoch of recombination and hence do not significantly affect

the structure of CMB anisotropies (as long as mν < 0.6 eV for each species, Komatsu et al. 2009). In the late
Universe, massive neutrinos contribute to Ωm but do not cluster in structures smaller than their free streaming
length, leading to a lowerσ8. Therefore, results from CMB anisotropy data exhibit a strong degeneracy between∑

mν and σ8. Using the Planck+WP+BAO+SNIa data combination we measure
∑

mν = 0.092± 0.058 eV and
an upper limit

∑
mν < 0.182 eV (95% confidence limit, hereafter CL).

Galaxy clusters are ideal probes for measuring σ8 and therefore represent a valuable piece of information
when constraining the νCDM model. When adding our SPTCL sample to the dataset, we observe that the
mean of the recovered

∑
mν increases significantly; we measure

∑
mν = 0.148 ± 0.081 eV, and an upper limit∑

mν < 0.270 eV (95% CL). As discussed earlier, our cluster sample prefers lower values for σ8 than the CMB
data, which here leads to increased neutrino masses due to their degeneracy with σ8. The results on νCDM
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Table 2.3 Constraints on extensions of flat ΛCDM cosmology from the SPTCL+Planck+WP+BAO+SNIa data
combination.

Parameter wCDM νCDM γ+ΛCDM γ+νCDM γ+wCDM

Ωm 0.301 ± 0.014 0.309 ± 0.011 0.302 ± 0.010 0.309 ± 0.012 0.301 ± 0.014

σ8 0.827 ± 0.024 0.799 ± 0.021 0.793+0.046
−0.075 0.796+0.057

−0.080 0.794+0.054
−0.078

H0 (km s−1 Mpc−1) 68.1 ± 1.6 67.5 ± 0.9 68.2 ± 0.8 67.5 ± 0.9 68.3 ± 1.6

w −0.995 ± 0.063 (−1) (−1) (−1) −1.007 ± 0.065∑
mν (eV) (0) 0.148 ± 0.081 (0) 0.143+0.066

−0.100 (0)∑
mν (eV), 95% CL (0) < 0.270 (0) < 0.277 (0)

γ (0.55) (0.55) 0.72 ± 0.24 0.63 ± 0.25 0.73 ± 0.28

.

Note. — These are fully marginalized constraints.

from the full data combination are also shown in Table 2.3.
We recalculate the difference between results from SPTCL and CMB data as in Section 2.5.2, but we now

adopt our best-fit sum of neutrino masses
∑

mν = 0.148 eV. This decreases the tension to 0.7σ for WMAP9,
and 1.1σ for Planck+WP.

2.5.8 Testing the Cosmological Growth of Structure
Our constraints on the Dark Energy equation of state parameter confirm once more that the flat ΛCDM model
provides an excellent fit to the best currently available cosmological data. However, it still remains unclear
what exactly is causing the accelerating expansion in the present epoch. Possible explanations include a new
energy component or a modification of gravity on large scales. While measurements of CMB anisotropies
and cosmic distances (BAO and SNIa) have proven extremely useful for probing the expansion history of the
Universe, galaxy clusters provide a unique probe for testing its growth history. Combining these tests allows
for an interesting consistency test of General Relativity (GR) on large scales (e.g., Rapetti et al. 2013).

Parametrized Growth of Structure

We parametrize the linear growth rate of density perturbations f (a) at late times as a power law of the matter
density (e.g., Peebles 1980; Wang & Steinhardt 1998)

f (a) ≡ d ln δ
d ln a

= Ωm(a)γ (2.13)

where γ is the cosmic growth index and δ ≡ δρm/〈ρm〉 is the ratio of the comoving matter density fluctuations
and the mean matter density. Solving for γ and assuming GR one obtains

γGR ≈ 6 − 3(1 + w)
11 − 6(1 + w)

(2.14)

where the leading correction depends on the dark energy equation of state parameter w and so γGR = 0.55 for a
cosmological constant with w = −1. Normalizing the parametrized cosmic growth factor D(z) ∝ δ(z) at some
high redshift zini we can express it as

Dini(z) =
δ(z)
δ(zini)

= δ(zini)−1 exp
∫

d ln a Ωm(a)γ (2.15)
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and the parametrized matter power spectrum becomes

P(k, z) = P(k, zini)D2
ini(z). (2.16)

Note that the complete wavenumber-dependence is contained in P(k, zini) while the growth factor Dini(z), which
now depends on γ, evolves with redshift only.

In our analysis, we choose an initial redshift of zini = 10 as a starting point for the parametrized growth
which corresponds to an era well within matter domination when f (a) = 1 is a very good approximation.
We modify the likelihood code presented in Section 2.4.1 so that the matter power spectrum at redshift zini is
provided by CAMB and then evolves depending on the growth index γ according to Equations 2.15 and 2.16.

We note that this parametrization is in principle degenerate with a cosmological model containing neutrino
mass as a free parameter; given a particular power spectrum constrained by the CMB anisotropies at very high
redshift, variations in both neutrino mass and γ modify the low-redshift power spectrum. However, the SPT
sample spans a broad redshift range which should ultimately allow one to differentiate between the two effects.

Constraints on the Cosmic Growth Index

We fit for a spatially flat ΛCDM model with the additional degree of freedom γ (we will refer to this model
as γ+ΛCDM). Using our SPTCL sample with BBN and H0 priors, we get results that are consistent with the
prediction of GR, γGR = 0.55. However, the uncertainty on γ is large, and the 68% confidence interval is
[−0.2, 0.7]. We tighten the constraints by including the CMB dataset which serves as a high-redshift “anchor”
of cosmic evolution. To isolate the constraining power clusters have on growth of structure, we choose not
to use the constraints on γ that come from the Integrated Sachs-Wolfe (ISW) effect, which has an impact on
the low l CMB temperature anisotropy. Regardless, we would expect the additional constraints on γ from the
ISW to be less constraining than the cluster-based constraints presented here (see, e.g., Rapetti et al. 2010).
We further use distance information from BAO and SNIa. As presented in Table 2.3, we find γ = 0.72 ± 0.24,
which agrees with the prediction of GR. In Figure 2.5(a), we show the two-dimensional likelihood contours for
γ and the most relevant cosmological parameters Ωm and σ8. The degeneracy between γ and Ωm is weak. We
see a strong degeneracy with σ8, as would be expected given the dependence of σ8 on growth history.

Our constraints are weaker than those obtained from an X-ray cluster sample (Rapetti et al. 2013). Using
238 clusters from different X-ray catalogs together with CMB anisotropy data from the 5-year WMAP release
these authors obtain γ = 0.415 ± 0.127.

We also consider a γ+νCDM cosmological model, where we additionally allow a non-zero sum of the
neutrino masses. There is only a mild degeneracy between γ and

∑
mν, which does not significantly degrade

our constraints on cosmic growth or neutrino masses (see upper panel of Figure 2.5(a) and Table 2.3). However,
the best-fit value for γ shifts by ∼ 0.5σ closer to the GR value.

Finally, we consider a γ+wCDM cosmological model, where we fix
∑

mν = 0 eV, and allow a varying
Dark Energy equation of state parameter w. In doing so we can simultaneously account for possible departures
from the standard cosmic growth history as well as departures from the expansion history as described by the
ΛCDM model. As presented in Table 2.3, the results show consistency with the fiducial values γGR = 0.55 and
wΛCDM = −1. Joint parameter constraints are shown in the bottom panel of Figure 2.5(b). This combined test
confirms that the standard cosmological model accurately describes the evolution of the cosmic expansion and
structure formation throughout a wide redshift and distance range.

2.6 Summary

We use an SZE selected galaxy cluster sample from 720 deg2 of the SPT-SZ survey in combination with follow-
up data from optical spectroscopy and X-ray observations to carry out a calibration of the SPT mass-observable
relation. This work improves on previous analyses by the inclusion of the velocity dispersion data.
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We present a method to fit for the SPT mass-observable relation through comparison of the SZE observable
to the external calibrators σv and/or YX. The method accounts for selection effects in the SPT cluster survey, for
intrinsic scatter in the mass-observable scaling relations, for observational uncertainties, and for uncertainties
in the scaling relation parameters. With this method we compute the likelihood for the cluster counts in the
space of ξ and z, and for the mass calibration using measurements in the follow-up observables.

Before combining the YX and σv mass calibration datasets we show that their individual constraints on the
SPT ζ-mass scaling relation parameters are comparable, agreeing at the 0.6σ level. Given the different nature
of YX and σv and their different calibration schemes, we argue that this agreement is a useful crosscheck of sys-
tematics present in either calibrating dataset. Combining the mass calibration datasets leads to an improvement
of the constraints on ASZ and σ8(Ωm/0.27)0.3. Cosmological constraints from SPT clusters with external BBN
and H0 priors differ from the independent CMB anisotropy constraints from WMAP9 (Planck+WP) at the 1.3σ
(1.9σ) level (see Figure 2.1 and Table 2.1). Accounting for the impact of one massive neutrino (mν = 0.06 eV)
reduced the differences to 1.0σ (1.5σ).

Combining our SPT cluster sample with CMB data from WMAP9, we show that the mass calibration from
σv or YX lead to tighter constraints on key cosmological parameters; the use of both mass calibration datasets
together furthers tightens these constraints. Throughout the different combinations of cluster mass calibration
and external data, we observe that the cluster mass scale from dispersions is higher than the one inferred from
YX. As we summarize in Figure 2.2, the SZE scaling relation normalization ASZ obtained using the multi-probe
dataset is in better agreement with the σv calibration results (0.8σ) than with the YX calibration results (1.9σ).
Analyzing the cluster sample with data from Planck+WP, BAO, and SNIa, we find that the average cluster
masses in this work have increased by ∼32% relative to Reichardt et al. (2013), primarily driven by the use of
new CMB and BAO datasets, which prefer a ΛCDM cosmology with a higher σ8(Ωm/0.27)0.3.

Assuming a flat ΛCDM model, and using the SPT cluster catalog, σv and YX mass calibration, and ex-
ternal data from Planck+WP, BAO, and SNIa, we measure Ωm = 0.299 ± 0.009, σ8 = 0.829 ± 0.011, and
σ8 (Ωm/0.27)0.3 = 0.855 ± 0.016. These correspond to 18% (Ωm), 8% (σ8), and 11% (σ8(Ωm/0.27)0.3) im-
provements over the constraints from Planck+WP+BAO+SNIa without SPTCL.

We execute two goodness of fit tests to evaluate whether the adopted SZE mass-observable scaling relation
parametrization is adequate to describe our cluster sample. As shown in Figure 2.3, there is good agreement
between the distribution of the observed cluster sample in ξ and z, and the prediction by the model. We also
find good agreement between the predicted SZE mass estimates, and the follow-up mass measurements, using
either σv and YX (see Figure 2.4).

We examine an extension of the standard ΛCDM model by adding the Dark Energy equation of state
parameter w. Our results are all compatible with w = −1, and our best constraint is w = −0.995± 0.063, which
we obtained from our cluster sample in combination with Planck+WP, BAO, and SNIa (12% improvement
after adding SPTCL). We consider another extension to ΛCDM in which we fit for the sum of neutrino masses,
and find

∑
mν = 0.148 ± 0.081 eV, with

∑
mν < 0.270 eV (95% CL).

We then allow for another additional cosmological degree of freedom by parametrizing the cosmic growth
rate. The growth index is constrained to γ = 0.72 ± 0.24 when assuming a ΛCDM background. This agrees
with the GR prediction γGR = 0.55, indicating that the growth of structure is correctly described by GR. We
consider the effect on γ when additionally allowing a non-zero sum of the neutrino masses, and find only a
weak degeneracy between the two parameters, with relatively small changes in the constraints on γ and

∑
mν.

Finally, we consider a γ+wCDM model, and allow both γ and w to vary. We recover results (γ = 0.73 ± 0.28
and w = −1.007 ± 0.065) that are consistent with the predictions of the standard GR+ΛCDM cosmological
model.

Velocity dispersions haven proven to be useful follow-up mass calibrators in our analysis. However, much
of their constraining power relies on a precise knowledge of the scaling relation normalization Aσv , which we
assume to be calibrated to within 5% from N-body simulations (Saro et al. 2013). When relaxing this prior to
10% in an analysis that uses only the SZE clusters and the measured σv’s, the constraint on the SZE normal-
ization ASZ degrades by 25%, and the cosmological constraints relax modestly (14% on σ8(Ωm/0.27)0.3). A
better knowledge of the systematics in the σv mass-observable relation, in particular the galaxy velocity bias, is
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therefore crucial for obtaining better constraints from ongoing and future galaxy cluster surveys. This improved
knowledge could be obtained with detailed numerical simulations as well as large spectroscopic datasets.

The next steps in the SPT mass calibration consist of the inclusion of weak lensing masses and a larger
number of dispersions from an ongoing program on Gemini focused at z < 0.8 and a complementary program
focused at z > 0.8 on the VLT. In addition, X-ray observations of a sample of approximately ∼ 100 systems with
Chandra and XMM-Newton are complete. Improved calibration of the mass-observable relations for YX and σv

would lead to stronger cosmological constraints. Combined analyses of these calibration data together with the
full SPT cluster sample (Bleem et al. 2015) will enable significant progress in cluster studies of cosmology and
structure formation.
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Appendix: Analysis Method and Likelihood Function

We show that the analysis method we use in the present work is equivalent to the method used in previous
SPT analyses. Specifically, we show how we separate the mass calibration from the cluster number counts. As
presented in Equation 4 in Benson et al. (2013), the expected number density in terms of ξ, z and the follow-up
observable YX is

dN(ξ,YX, z|p)
dξdYXdz

dξdYXdz =

∫
dMP(ξ,YX|M, z, p)P(M, z|p)Θ(ξ − 5, z − 0.3), (2.17)

and the likelihood function is evaluated according to Poisson statistics

lnL(p) =
∑

i

ln
dN(ξi,YXi, zi|p)

dξdYXdz
−

∫
dN(ξ,YX, z|p)

dξdYXdz
dξdYXdz, (2.18)

up to a constant offset, and where the sum over i runs over all clusters in the sample.
We assume no correlated scatter in the different observables, i.e. we assume that P(ξ,YX|M, z, p) =

P(ξ|M, z, p)P(YX|M, z, p) holds, and transform Equation 2.17 into two separate factors; this is the analysis
method we use here. In the following, and for ease of reading, we omit z and p (e.g., P(M) ≡ P(M|z, p)), and
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the selection function Θ(ξ − 5) as it does not depend on mass for a given cluster with measured ξ. We use
Bayes’ theorem twice, e.g. P(ξ|M)P(M) = P(M|ξ)P(ξ).

dN(ξ,YX, z|p)
dξdYXdz

=

∫
dMP(ξ,YX|M)P(M)

=

∫
dMP(YX|M)P(ξ|M)P(M)

∫
dM′P(M′|ξ)

=

"
dMdM′P(YX|M)P(M|ξ)P(ξ)

P(ξ|M′)P(M′)
P(ξ)

=

∫
dMP(YX|M)P(M|ξ)

∫
dM′P(ξ|M′)P(M′)

≡ P(YX|ξ, z, p)
dN(ξ, z|p)

dξdz
(2.19)

With this, the likelihood function we use in this work is

lnL(p) =
∑

j

ln P(YX j|ξ j, z j, p) +
∑

k

ln
dN(ξk, zk |p)

dξdz
−

∫
dN(ξ, z|p)

dξdz
dξdz (2.20)

where the sum over k runs over the full SPT-SZ cluster catalog, and j runs over all clusters with YX measure-
ments, thereby marginalizing over YX for clusters without X-ray data. Note that the total number of expected
clusters

∫ dN(ξ,z|p)
dξdz dξdz does not depend on YX. The generalization to include the σv observable is straightfor-

ward.
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ABSTRACT
We cross-match galaxy cluster candidates selected via their Sunyaev-Zel’dovich effect (SZE) sig-
natures in 129.1 deg2 of the South Pole Telescope SPT-SZ survey with optically selected clusters
selected from the Dark Energy Survey (DES) science verification data. We identify 25 clusters
between 0.1 . z . 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an op-
tical cluster finding algorithm that also returns a richness estimate for each cluster. We model the
richness λ-mass relation with the following function 〈ln λ|M500〉 ∝ Bλ ln M500 + Cλ ln E(z) and use
SPT-SZ cluster masses and RM richnesses λ to constrain the parameters. We find Bλ = 1.14+0.21

−0.18 and
Cλ = 0.73+0.77

−0.75. The associated scatter in mass at fixed richness is σln M|λ = 0.18+0.08
−0.05 at a characteris-

tic richness λ = 70. We demonstrate that our model provides an adequate description of the matched
sample, showing that the fraction of SPT-SZ selected clusters with RM counterparts is consistent
with expectations and that the fraction of RM selected clusters with SPT-SZ counterparts, while
lower than expected, exhibits no more than 2σ tension with the predictions of our model. We model
the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that
it is consistent with a dominant, centrally peaked population and a sub-dominant population char-
acterized by larger offsets. We also cross-match the RM catalog with SPT-SZ candidates below the
official catalog threshold significance ξ = 4.5, using the RM catalog to provide optical confirmation
and redshifts for additional low-ξ SPT-SZ candidates. In this way, we identify 15 additional clusters
with ξ ∈ [4, 4.5] over the redshift regime explored by RM in the overlapping region between DES
science verification data and the SPT-SZ survey.

Key words: galaxy clusters: general – galaxies: clusters: individual
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3.1 Introduction

Clusters of galaxies were first identified as over-dense regions in the projected number counts of galaxies (e.g.,
Abell 1958; Zwicky et al. 1968). Nowadays, clusters are also regularly identified through their X-ray emission
(e.g., Gioia et al. 1990; Vikhlinin et al. 1998; Böhringer et al. 2000; Pacaud et al. 2007; Šuhada et al. 2012) and
at millimeter wavelengths through their Sunyaev-Zel’dovich effect (SZE) signatures (Sunyaev & Zel’dovich
1972). Large, homogeneously selected samples of clusters are useful for both cosmological and astrophysical
studies, and such samples have recently begun to be produced using SZE selection (Staniszewski et al. 2009;
Hasselfield et al. 2013; Planck Collaboration et al. 2015b; Bleem et al. 2015). There is a longer history of
large cluster samples selected from optical and near infrared photometric surveys (e.g., Gladders & Yee 2000;
Koester et al. 2007; Eisenhardt et al. 2008; Menanteau et al. 2010; Hao et al. 2010; Wen et al. 2012; Rykoff

et al. 2014; Bleem et al. 2014; Ascaso et al. 2014, and references therein), and even larger samples will soon
be available from ongoing and future surveys like the Dark Energy Survey (DES, The Dark Energy Survey
Collaboration 2005)1, KiDS (de Jong et al. 2013), Euclid (Laureijs et al. 2011) and LSST (LSST Dark Energy
Science Collaboration 2012).

Reliable estimates of galaxy cluster masses play a key role in both cosmological and astrophysical cluster
studies. First, the abundance of galaxy clusters as a function of mass is a well-known cosmological probe
(White et al. 1993; Bartlett & Silk 1994; Eke et al. 1998; Viana & Liddle 1999; Borgani et al. 2001; Vikhlinin
et al. 2009b; Rozo et al. 2010; Mantz et al. 2010b; Allen et al. 2011; Benson et al. 2013; Bocquet et al. 2015b,
and many others). Second, accurate estimates of cluster masses are crucial in disentangling environmental
effects from the secular evolution processes shaping galaxy formation (Mei et al. 2009; Zenteno et al. 2011;
Muzzin et al. 2012).

In this paper, we calibrate the richness-mass relation for SZE-selected galaxy clusters detected in the DES
science verification data (SVA1) using the redMaPPer (Rykoff et al. 2014) cluster-finding algorithm. Specifi-
cally, we study the clusters detected via their SZE signatures in the South Pole Telescope SPT-SZ cluster survey
(Bleem et al. 2015, hereafter B15) that are also present in the redMaPPer catalog. We also study the distribution
of offsets between the SZE derived centers and the associated optical centers, properly including the SZE posi-
tional uncertainties. Finally, we demonstrate our ability to push to even lower candidate significance within the
SPT-SZ candidate catalog by taking advantage of the contiguous, deep, multiband imaging available through
DES. In this respect, our study points towards the combined use of DES and SPT datasets to provide highly
reliable extended SZE-selected cluster samples. We note that historically the optical follow-up of SPT selected
clusters was the original motivation for proposing DES.

The plan of the paper is as follows. In Section 3.2 we describe the galaxy cluster catalogs and the matching
metric we use in this work. Section 3.3 describes the method we adopt to calibrate the SZE-mass and richness-
mass relations. Our results are presented in Section 3.4. Section 3.5 contains a discussion of our findings
and our conclusions. In the Appendix, we provide a preliminary analysis of a cluster sample created using
an independent cluster finding algorithm — the Voronoi Tessellation (VT) cluster finder — which helps to
highlight areas where the VT algorithm can be improved. Throughout this work, we adopt ΩM = 0.3, ΩΛ = 0.7,
H0 = 70 km s−1 Mpc−1, and σ8 = 0.8. Cluster masses are defined within R500, the radius within which the
density is 500 times the critical density of the Universe. Future analyses will include the dependence of the
derived scaling relation parameters on the adopted cosmology by simultaneously fitting for cosmological and
scaling-relation parameters (e.g. Mantz et al. 2010b; Rozo et al. 2010; Bocquet et al. 2015b).

1http://www.darkenergysurvey.org



3.2 Cluster Sample 49

3.2 Cluster Sample

3.2.1 SPT-SZ Cluster Catalog
The SPT-SZ galaxy cluster sample used in this analysis has been selected via the cluster thermal SZE signatures
in the 2365 deg2 SPT-SZ survey using 95 GHz and 150 GHz data. Typical instrumental noise is approximately
40 (18) µK-arcmin and the beam FWHM is 1.6 (1.19) arcmin for the 95 (150) GHz maps. We use a multi-
frequency matched filter to extract the cluster SZE signal in a manner designed to optimally measure the cluster
signal given knowledge of the cluster profile, the SZE spectrum and the noise in the maps (Haehnelt & Tegmark
1996; Melin et al. 2006). The cluster gas profiles are assumed to be described by a projected isothermal β
model (Cavaliere & Fusco-Femiano 1976) with β = 1. Note that, as discussed in Vanderlinde et al. (2010), the
resulting SPT-SZ candidate catalogs are not sensitive to this assumption. The adopted model provides a SZE
temperature decrement that is maximum at the cluster center and weakens with separation θ from the cluster
centre as:

∆T (θ) = ∆T0[1 + (θ/θc)2]−1, (3.1)

where ∆T0 is the central value and θc is the core radius. We adopt 12 different cluster profiles linearly spaced
from θc = 0.25 to 3 arcmin (Vanderlinde et al. 2010; Reichardt et al. 2013, B15). For each cluster, the maximum
signal-to-noise across the 12 filtered maps is denoted as ξ. The SPT-SZ cluster candidates with ξ > 4.5 have
been previously published in B15.

3.2.2 DES Optical Cluster Catalogs
The DES Science Verification Data (DES-SVA1) that overlap SPT have been used to produce optically selected
catalogs of clusters. In Section 3.2.2 we describe the acquisition and preparation of the DES-SVA1 data, and
in Section 3.2.2 we describe the production of the redMaPPer cluster catalog used in the primary analysis. We
remind the reader that in Appendix 3.6 we present results of a preliminary analysis of the VT cluster catalog.

DES-SVA1 Data

The DES-SVA1 data include imaging of ∼ 300 deg2 over multiple disconnected fields (Melchior et al. 2014;
Sánchez et al. 2014; Banerji et al. 2015), most of which overlap with the SPT-SZ survey. The DES-SVA1 data
were acquired with the Dark Energy Camera (Diehl & For Dark Energy Survey Collaboration 2012; Flaugher
et al. 2012, 2015) over 78 nights, starting in Fall 2012 and ending early in 2013. The data have a range in depth,
up to the nominal depth of the full DES survey (Rykoff et al., in preparation).

Data have been processed through the DES Data Management (DESDM, Desai et al. 2012) pipeline that
is an advanced version of development versions described in several publications (Ngeow et al. 2006; Mohr
et al. 2008, 2012). The data were calibrated in several stages leading to a Gold catalog of DES-SVA1 galaxies
(Rykoff et al., in preparation). The Gold catalog covers ∼ 250 deg2 and is optimized for extragalactic science.
In particular it masks regions south of declination δ = −61◦, avoiding the Large Magellanic Cloud and its
high stellar densities. Furthermore, the footprint is restricted to the regions where we have coverage in all four
bands.

redMaPPer Cluster Catalog

The red-sequence Matched-Filter Probabilistic Percolation (redMaPPer, hereafter RM) algorithm is a cluster-
finding algorithm based on the richness estimator of Rykoff et al. (2012). RM has been applied to photometric
data from the Eighth Data Release (DR8) of the Sloan Digital Sky Survey (Aihara et al. 2011, SDSS,) and
to the SDSS Stripe 82 coadd data (Annis et al. 2014), and has been shown to provide excellent photometric
redshifts, richness estimates that tightly correlate with external mass proxies, and very good completeness and
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purity (Rozo & Rykoff 2014; Rozo et al. 2014b,c). We refer the reader to the paper by Rykoff et al. (2014) for
a detailed description of the algorithm. Here, we briefly summarize the most salient features.

We employ an updated version of the algorithm (v6.3.3), with improvements summarized in Rozo & Rykoff

(2014), Rozo et al. (2015, in preparation), and Rykoff et al. (2015, in preparation). RM calibrates the colour of
red-sequence galaxies using galaxy clusters with spectroscopic redshifts. RM uses this information to estimate
the membership probability of every galaxy in the vicinity of a galaxy cluster. The richness λ is thus defined as
the sum of the membership probabilities (pRM) over all galaxies:

λ =
∑

pRM. (3.2)

In addition to the estimate of membership probabilities, the RM centering algorithm is also probabilistic. With
the assumption that there is a cluster galaxy at the center, we can estimate centering probabilities using a
luminosity filter, a photometric redshift filter, and a local density filter. These probabilities have been tested on
SDSS DR8 data using X-ray selected galaxy clusters, and have been shown to produce cluster centers that are
consistent with the X-ray centers (Rozo & Rykoff 2014).

The DES-SVA1 RM catalog was produced by running on a smaller footprint than that for the full SVA1
Gold sample. In particular, we restrict the catalog to the regions where the z-band 10σ galaxy limiting mag-
nitude is z > 22. In total, we use 148 deg2 of DES-SVA1 imaging, with 129.1 deg2 overlapping the SPT-SZ
footprint. In this area, the largest fraction (124.6 deg2) is included in the so called DES-SVA1 SPT-E field. The
final catalog used in this work consists of 9281 clusters with λ > 5 and redshifts in the range 0.1 < z < 0.9. Due
to the varying depth of the DES-SVA1 catalog, RM produces a mask that determines the maximum redshift of
the cluster search at any given location in the survey. As an example, the effective area in the SPT-E region
at the highest redshift (z > 0.85) is only ∼ 30 deg2. In addition to the cluster catalog, the RM algorithm also
uses the survey mask to produce a set of random points with the same richness and redshift distribution as the
clusters in the catalog. The random points take into account the survey geometry and the physical extent of the
clusters, and as with the clusters, only includes points that have < 20% of the local region masked (see Rykoff

et al. 2014).

3.2.3 Catalog Matching
We cross-match the SPT-SZ catalog with the RM optical cluster catalog following the method of Rozo et al.
(2014c). First, we sort the SPT-SZ clusters to produce a list with decreasing SZE observable ξ, and we sort the
RM catalog to produce a list with decreasing richness. Second, we go down the SPT-SZ sorted list, associating
each SPT cluster candidate with the richest RM cluster candidate whose centre lies within 1.5 R500 of the SZE
centre. Third, we remove the associated RM cluster from the list of possible counterparts when matching the
remaining SPT-selected clusters.

R500 is first computed assuming the redshift of the optical counterpart and using the SZE-mass scaling
relation parameters adopted in B15. We subsequently check that our sample does not change when adopting
our best fitting scaling relation parameters (see Section 3.3.1).

To test the robustness of our matching algorithm against chance associations, we first perform the above
described procedure on a sample of randomly generated RM clusters as described in the previous Section. Po-
sitions of clusters in this randomly generated sample do not correlate with the positions of the SPT-SZ clusters.
Using an ensemble of 104 random catalogs we measure the distribution of richness in chance associations for
each SPT-SZ candidate. In Figure 3.1 (left panel) we show the resulting 84% and 97.5% confidence limits
(solid and dotted lines, respectively) in the richness distribution of the chance associations as a function of the
SPT-SZ observable ξ. This test allows us to estimate the probability of chance superposition for each SPT-SZ
cluster candidate. As detailed below, we use this information to determine whether or not to include particular
matches for further analysis. As Figure 3.1 shows, this filtering of the matched sample then ensures that chance
superpositions are playing no more than a minor role even at 4 < ξ < 4.5.

We then apply the algorithm to match the real RM cluster catalog with the SPT-SZ candidate list where
ξ > 4.5. Within the DES-SVA1 region explored by RM there are 36 such SPT-SZ cluster candidates. Using
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information on the contamination fraction at ξ > 4.5 of the SPT-SZ candidate list and on the redshift distribution
of the confirmed cluster candidates (Song et al. 2012b, B15), we expect ∼ 9 of these candidates to be noise
fluctuations and ∼ 80% of the real clusters to lie at z < 0.8. Therefore, assuming the optical catalog is complete,
the expected number of real cluster matches is ∼ 22. Similarly, one can estimate an expected number of real
cluster matches (23.6) by scaling the total number of confirmed clusters in B15 below z = 0.8 (433) in the
2365 deg2 of the SPT-SZ survey by the DES-SVA1 area overlapping SPT-SZ that has been processed with the
RM cluster finder (129.1 deg2 ).

The actual number of matches to the SPT-SZ candidates is 33. Eight systems are foreground, low-richness
RM clusters that have been erroneously associated with SPT-SZ candidates with either previously measured
redshifts (four systems) or lower limits estimated in B15 (the remaining four candidates) that are at z & 0.8;
these systems are either noise fluctuations or real clusters that are at redshifts too high for them to be detected
by RM. In fact, all of these systems have a probability p of chance associations estimated from the randomly
generated sample that is p > 84%. Therefore, we remove these matches from the sample. This leaves 25
SPT-SZ candidates at ξ > 4.5 that have RM counterparts, and the expectation is that within this sample of 25
candidates there is less than one false association. The associated optical richness as a function of the SPT-SZ
significance is shown in the left panel of Figure 3.1. This number is somewhat larger but statistically consistent
with the expected number of matches presented above. All 22 of the SPT-SZ confirmed clusters presented in
B15 that lie at redshifts where they could be detected by RM are in this matched sample. According to our
matching metric (which differs from the approach in B15) there are also three unconfirmed SPT-SZ candidates
(i.e., candidates without identified optical counterparts in the B15 analysis) that have RM counterparts: SPT-CL
J0502-6048, SPT-CL J0437-5307 and SPT-CL J0500-4551. The newly confirmed clusters are highlighted with
large circles in Figure 3.1.

Of the 25 SPT-SZ candidates with robust RM counterparts, we use 19 of them to calibrate the RM richness-
mass relation. Six clusters are excluded from the analysis for the following reasons. Clusters with estimated
redshift z < 0.25 in the SPT-SZ catalog from B15 are highlighted in cyan in the left panel of Figure 3.1. Be-
cause the ξ-mass relation is robust only above this redshift (Vanderlinde et al. 2010), these systems are not used
in the following analysis. Two systems (SPT-CL J0440-4744 and SPT-CL J0441-4502) are excluded from this
analysis as they are detected in SPT-SZ regions that have been masked due to their proximity to point sources,
which can compromise the SZE signal-to-noise measurement. In addition, we exclude the three clusters high-
lighted in magenta: SPT-CL J0417-4748, SPT-CL J0456-5116 and SPT-CL J0502-6048. These systems are
strongly masked in the DES-SVA1 data; based on the SZE position, the masks cover 40% of the total cluster
region. As a result, the associated optical counterparts are highly mis-centered, and the corresponding richness
is severely biased. We note that the average centering failure rate caused by the detection mask is 12% (3
clusters out of 25), in comparison to the corresponding rate in the SDSS RM catalog, which is ≈1% - 2%. The
difference reflects the fact that SDSS has a much larger contiguous area, as well as the more aggressive star
mask that is used in SVA1. We expect this failure rate will decrease as the DES coverage increases, and object
masking improves. Furthermore, improvements will be made to the RM algorithm to estimate the masked area
not only at the putative center of the cluster, but at all possible centers. In this way, clusters at high risk of
mask-induced mis-centering will be properly removed from the sample.

The B15 catalog contains only SPT-SZ candidates with ξ ≥ 4.5. In this work we also apply the matching
algorithm to SPT-SZ candidates at 4 < ξ < 4.5. We identify 26 matches in this signal to noise range. Similarly
to the ξ > 4.5 case, we exclude 11 of these systems, which have estimated probabilities p of chance associations
p > 84%. For the 15 matched systems, the expected number of false associations is also smaller than one. The
remaining cleaned sample is shown as red points on the left panel of Figure 3.1. The resulting total number of
SPT-SZ and RM associations at ξ > 4 is 40. This number is in good agreement with the expectation (∼ 36)
obtained using the number of SPT-candidates above ξ > 4 in the DES-SVA1 region explored by RM (88) and
correcting it by the expected number of noise fluctuations (∼ 45) and the number of clusters above z > 0.8 (∼7).
We find that two ξ < 4.5 SPT-SZ candidates, SPT-CL J0501-4717 and SPT-CL J0439-5611, have probabilities
of random associations larger than 5%, and therefore it is not clear whether these low richness associations are
correct (see Figure 3.1).
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Figure 3.1 Left panel: Richness as a function of the SZE significance ξ for the matched cluster sample. SPT-
SZ candidates with ξ < 4.5 (vertical line) are shown in red. Clusters at z < 0.25 (cyan) and clusters with
miscentering due to a high masked fraction (magenta) are not used in the richness analysis. Large circles
indicate the newly confirmed SPT-SZ candidates with ξ > 4.5. Solid and dashed lines represent the upper 84
and 97.5 percentiles in richness of chance associations of SPT-SZ candidates and clusters from the randomly
generated RM catalog. Right panel: The estimated redshift for the RM sample as a function of SPT redshifts
as presented in B15 from independent optical follow-up data. SPT-SZ candidates with spectroscopic redshift
are shown in red. Magenta symbols are the same as in the left panel.

The right panel of Figure 3.1 contains a comparison of the redshifts from the RM catalogs with the redshifts
published in B15 (zSPT) for the same clusters (obtained through dedicated optical/NIR followup by the SPT
team or taken from the literature). Clusters with spectroscopic redshifts are highlighted in red. We note that the
redshift estimates are not biased for the clusters affected by masking (magenta points). For SPT-SZ candidates
with 4 < ξ < 4.5 the SPT collaboration did not complete followup optical imaging, and therefore we adopt the
redshifts of the RM optical cluster counterpart.

Table 3.1 contains all SPT candidates with RM counterparts used in this work. For newly confirmed SPT-SZ
clusters, the associated zSPT redshift is not given. We caution that the masses for low-redshift clusters (z < 0.25)
may be underestimated due to filtering that is done to remove the noise component associated with the primary
CMB.

3.3 Mass Calibration Method

We apply the method described in Bocquet et al. (2015b) to characterize the λ-mass relation of SPT-selected
clusters. We refer the reader to the original paper for a detailed description of the method. A similar approach
has been adopted by Liu et al. (2015) for studying the SZE properties of an X-ray selected cluster sample from
the XMM-BCS survey (Šuhada et al. 2012; Desai et al. 2012). In this analysis, we consider the RM richness
as a follow-up observable to the SZE-selected cluster sample. This choice is adequate as there are no SPT-SZ
candidates with ξ > 4.5 missing RM counterparts in the redshift and spatial regime explored by the RM catalog,
so that the cross-sample can indeed be thought of as solely SPT-selected. We note that this is not the case for
SPT-SZ candidates with 4 < ξ ≤ 4.5 that do not have RM counterparts. However, the adopted method is
also accurate under the assumption that cross-matching the SPT-SZ candidate list with the RM cluster catalog
cleans the SPT-SZ candidate list, removing the expected noise fluctuations. Within this context the resulting
cluster sample is therefore drawn from the halo mass function through the SPT-SZ selection in the redshift
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Table 3.1 SPT-SZ cluster candidates with RM counterpart. We report the SPT-ID (1), right ascension (2) and
declination (3), SPT peak detection significance ξ (4), corresponding core radius (5), richness λ (6), associated
redshift from the RM catalog (7) and SPT catalog (8), and SPT derived masses (9). Coordinates are J2000.

SPT ID R.A. DEC ξ θc [arcmin] λ zRM zSPT M500[1014h−1
70 M�]

SPT-CL J0438-5419 69.574 −54.319 22.88 0.50 144.76 ± 5.52 0.42 ± 0.01 0.42 10.19 ± 1.33
SPT-CL J0040-4407 10.199 −44.133 19.34 0.50 137.45 ± 7.03 0.37 ± 0.01 0.35 9.71 ± 1.28
SPT-CL J0417-4748 64.344 −47.812 14.24 0.25 54.22 ± 6.75 0.58 ± 0.01 0.58 7.41 ± 1.00
SPT-CL J0516-5430 79.149 −54.510 12.41 1.50 178.93 ± 8.71 0.33 ± 0.02 0.29 7.05 ± 0.97
SPT-CL J0449-4901 72.273 −49.023 8.91 0.50 91.37 ± 4.75 0.80 ± 0.01 0.79 5.24 ± 0.78
SPT-CL J0456-5116 74.115 −51.275 8.58 1.00 73.08 ± 5.39 0.56 ± 0.01 0.56 5.39 ± 0.81
SPT-CL J0441-4855 70.450 −48.917 8.56 0.50 86.96 ± 4.55 0.81 ± 0.01 0.79 ± 0.04 5.10 ± 0.77
SPT-CL J0439-4600 69.807 −46.012 8.28 0.25 55.18 ± 3.52 0.34 ± 0.02 0.34 ± 0.04 5.52 ± 0.84
SPT-CL J0440-4657 70.229 −46.964 7.13 1.25 67.95 ± 3.62 0.33 ± 0.02 0.35 ± 0.04 4.95 ± 0.81
SPT-CL J0447-5055 71.843 −50.921 5.97 0.25 77.84 ± 5.26 0.40 ± 0.01 0.39 ± 0.05 4.24 ± 0.81
SPT-CL J0422-5140 65.591 −51.674 5.86 1.00 49.28 ± 5.32 0.58 ± 0.01 0.59 ± 0.03 3.98 ± 0.78
SPT-CL J0439-5330 69.928 −53.502 5.61 0.75 60.77 ± 3.81 0.43 ± 0.01 0.43 ± 0.04 3.97 ± 0.81
SPT-CL J0433-5630 68.249 −56.502 5.32 1.75 60.75 ± 4.82 0.71 ± 0.02 0.69 3.56 ± 0.78
SPT-CL J0535-5956 83.791 −59.939 5.20 0.25 50.25 ± 4.09 0.67 ± 0.02 0.58 ± 0.03 3.46 ± 0.77
SPT-CL J0440-4744 70.242 −47.736 5.12 1.25 82.55 ± 3.80 0.30 ± 0.02 − 3.75 ± 0.83
SPT-CL J0428-6049 67.026 −60.828 5.11 1.25 55.91 ± 5.95 0.73 ± 0.02 0.64 ± 0.03 3.46 ± 0.79
SPT-CL J0444-4352 71.162 −43.872 5.01 1.50 70.53 ± 5.91 0.57 ± 0.01 0.57 ± 0.03 3.53 ± 0.82
SPT-CL J0458-5741 74.598 −57.695 4.87 2.50 37.90 ± 2.68 0.19 ± 0.00 0.19 ± 0.02 3.69 ± 0.85
SPT-CL J0534-5937 83.606 −59.625 4.74 0.25 40.43 ± 3.42 0.58 ± 0.01 0.58 3.15 ± 0.76
SPT-CL J0502-6048 75.724 −60.810 4.69 0.25 30.73 ± 4.32 0.79 ± 0.02 − 3.03 ± 0.76
SPT-CL J0441-4502 70.345 −45.040 4.62 2.50 51.22 ± 4.11 0.15 ± 0.01 − 3.49 ± 0.85
SPT-CL J0429-5233 67.430 −52.559 4.56 0.75 33.84 ± 3.97 0.52 ± 0.01 0.53 ± 0.03 3.15 ± 0.79
SPT-CL J0452-4806 73.002 −48.108 4.52 0.50 56.54 ± 4.89 0.42 ± 0.01 0.37 ± 0.04 3.26 ± 0.81
SPT-CL J0437-5307 69.259 −53.119 4.51 0.25 36.89 ± 3.56 0.29 ± 0.02 − 3.20 ± 0.80
SPT-CL J0500-4551 75.209 −45.856 4.51 0.75 32.68 ± 4.82 0.26 ± 0.01 − 3.66 ± 0.91
SPT-CL J0453-5027 73.307 −50.451 4.47 0.25 31.99 ± 3.44 0.77 ± 0.02 − 2.89 ± 0.74
SPT-CL J0449-4440 72.473 −44.672 4.37 0.75 54.50 ± 5.43 0.15 ± 0.00 − 3.42 ± 0.86
SPT-CL J0423-5506 65.809 −55.104 4.36 1.25 38.65 ± 3.44 0.27 ± 0.02 − 3.26 ± 0.83
SPT-CL J0451-5057 72.937 −50.965 4.34 0.50 83.11 ± 4.62 0.76 ± 0.01 − 2.81 ± 0.74
SPT-CL J0438-4629 69.564 −46.488 4.31 0.50 41.01 ± 3.37 0.43 ± 0.01 − 3.07 ± 0.79
SPT-CL J0456-4531 74.099 −45.523 4.30 0.25 32.45 ± 3.18 0.29 ± 0.02 − 3.17 ± 0.81
SPT-CL J0431-5353 67.970 −53.896 4.22 0.50 57.23 ± 4.76 0.75 ± 0.02 − 2.74 ± 0.73
SPT-CL J0501-4717 75.274 −47.294 4.20 3.00 19.47 ± 2.50 0.35 ± 0.02 − 3.34 ± 0.88
SPT-CL J0518-5740 79.507 −57.670 4.19 0.25 65.22 ± 4.82 0.82 ± 0.01 − 2.60 ± 0.70
SPT-CL J0438-4907 69.655 −49.117 4.19 1.75 76.20 ± 4.16 0.24 ± 0.01 − 3.13 ± 0.81
SPT-CL J0513-5901 78.273 −59.029 4.17 0.25 33.29 ± 3.58 0.61 ± 0.01 − 2.75 ± 0.73
SPT-CL J0451-4910 72.888 −49.178 4.14 0.25 54.10 ± 4.10 0.73 ± 0.02 − 2.71 ± 0.73
SPT-CL J0439-5611 69.978 −56.192 4.14 0.50 17.82 ± 2.93 0.28 ± 0.02 − 3.10 ± 0.81
SPT-CL J0532-5752 83.237 −57.877 4.11 0.50 48.49 ± 3.81 0.77 ± 0.02 − 2.59 ± 0.71
SPT-CL J0449-5908 72.472 −59.142 4.11 1.25 107.14 ± 5.29 0.77 ± 0.01 − 2.68 ± 0.73
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range explored by the RM catalog.
In the following subsections we describe the model we use to simultaneously constrain the SZE-mass

relation (Section 3.3.1) and the richness-mass relation (Section 3.3.2).

3.3.1 The SZE-mass Relation
Following previous SPT papers (Vanderlinde et al. 2010; Benson et al. 2013; Reichardt et al. 2013; Bocquet
et al. 2015b, B15), we define the unbiased SZE significance ζ as the average signal-to-noise a cluster would
produce over many realizations of SPT data, if the cluster position and core radius were perfectly known. This
quantity is related to the expectation value of ξ over many realizations of the SPT data by:

ζ =

√
〈ξ〉2 − 3, (3.3)

where the bias in 〈ξ〉 is due to maximizing the signal-to-noise over three variables (cluster right ascension,
declination, and core radius). The scatter of the actual observable ξ with respect to 〈ξ〉 is characterized by a
Gaussian of unit width. The SPT observable-mass relation P(ζ |M500, z) is modeled as a log-normal distribution
of mean

〈lnζ |M500, z〉 = lnASZE + BSZE ln
(

M500

3 × 1014h−1 M�

)
+ CSZE ln

(
E(z)

E(z = 0.6)

)
(3.4)

and scatter DSZE, and where E(z) ≡ H(z)/H0. At low significance ζ . 2, there is a non-negligible chance
of multiple low-mass clusters overlapping within the same resolution element of the SPT beam. We account
for this by only considering the brightest of these objects per approximate resolution element and we com-
pute P(ζmax|ζ) following Crawford et al. (2010). The SPT observable-mass relation is therefore expanded to
P(ζmax|ζ)P(ζ |M500, z) and ζmax is then converted to the observable ξ as in Eq.3.

To calibrate the ζ–M relation we use the subsample of clusters with ξ > 5 and z > 0.25 from the 2365 deg2

SPT-SZ catalog (B15). We determine the parameter values by abundance-matching the catalog against our
fixed reference cosmology. We predict the expected number of clusters as a function of mass and redshift using
the halo mass function (Tinker et al. 2008). We convolve this mass function with the observable-mass relation
accounting for its associated uncertainties, and compare the prediction with the data. Our approach here is
effectively the opposite of the typical analysis, where cosmological parameters are deduced from the cluster
sample using both priors and calibrating information to constrain the scaling relation parameters (e.g. Benson
et al. 2013; Bocquet et al. 2015b); here, we assume perfect knowledge of cosmology to calibrate the scaling
relation. Note that this method does not depend on any assumptions about hydrostatic equilibrium.

We assume flat priors on ASZE, BSZE, CSZE and a Gaussian prior on DSZE = 0.18±0.07; the latter corresponds
to the posterior distribution derived from the cosmological analysis of the full SPT sample (de Haan et al., in
preparation). We obtain the following parameters for the ζ-mass relation by maximizing the likelihood of
obtaining the observed sample in ξ and redshift under the model derived from Eq. 3-5. The results are

ASZE = 4.02 ± 0.16, BSZE = 1.71 ± 0.09,
CSZE = 0.49 ± 0.16,DSZE = 0.20 ± 0.07. (3.5)

For every cluster in the sample we also calculate the associated mass distribution, accounting for selection
effects:

P(M500|ξ, z, ~p) ∝ P(ξ|M500, z, ~p) P(M500|z, ~p), (3.6)

where the vector ~p encapsulates cosmological and scaling relation parameters and P(ξ|M500, z, ~p) is obtained
from the ξ-mass scaling relation as described by Eq. 3.3 and 3.4. The halo mass function P(M500|z, ~p) is the
prior on the mass distribution at redshift z.

Masses derived for the matched cluster sample are shown in Table 1. We note that both these masses and
the SZE scaling relation parameters quoted here are different from the ones reported in B15. We adopt the
same fixed cosmology as in B15, but in this analysis we consider data from the full 2365 deg2 SPT-SZ survey
as opposed to just the sample from the initial 720 deg2 (Reichardt et al. 2013).
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Table 3.2 Best fitting parameters and 68% confidence level of the richness-mass scaling relation parameters
described by Equation 3.7 and 3.8.

Catalog Aλ Bλ Cλ Dλ

SPT-SZ+RM ξ > 4.5 66.1+6.3
−5.9 1.14+0.21

−0.18 0.73+0.77
−0.75 0.15+0.10

−0.07

SPT-SZ+RM ξ > 4 69.8+6.0
−4.9 1.17+0.19

−0.17 1.71+0.63
−0.57 0.20+0.09

−0.08

3.3.2 Richness-mass Relation
As for the SZE-mass relation (Eq.3.4), we assume a power law form for the λ-mass relation:

〈lnλ|M500, z〉 = lnAλ + Bλ ln
(

M500

3 × 1014h−1 M�

)
+ Cλ ln

(
E(z)

E(z = 0.6)

)
(3.7)

where Aλ is the normalization, Bλ characterizes the mass dependence, and Cλ characterizes the redshift
evolution. An additional parameter Dλ describes the intrinsic scatter in λ, which is assumed to be log-normal
and uncorrelated with the SZE scatter, with variance given by:

Var(lnλ|M500) = exp(−〈lnλ|M500〉) + D2
λ. (3.8)

The first term above represents the Poisson noise associated with the number of galaxies in a halo at fixed mass,
and therefore we define the intrinsic scatter Dλ as log-normal scatter in addition to Poisson noise. We assume
flat priors on the distributions of Aλ, Bλ, Cλ and a positive flat prior for Dλ.

The probability that a cluster with SPT-SZ signal-to-noise ξ is observed to have a richness λ is

P(λ|ξ, z, ~p) =

∫
dM500P(λ|M500, z, ~p)P(M500|ξ, z, ~p). (3.9)

The term P(λ|M500, z, ~p) contains the lognormal intrinsic scatter and normal measurement uncertainties in the
observable λ. We use the above distribution to evaluate the likelihood of the matched cluster sample defined
through our cross-matching procedure. Note that we simultaneously vary both the optical and SZE scaling
relation parameters, further including the SZE data set from B15 with ξ > 5, z > 0.25 for constraining the
SZE–mass relation.

3.4 Results
We present here the constraints on the richness-mass relation (Section 3.4.1) and then use these best fit parame-
ters to explore whether the cumulative distribution of the matched samples are consistent with the expectations
from the model (Section 3.4.2). Finally, in Section 3.4.3 we analysis the optical-SZE positional offset distribu-
tion.

3.4.1 redMaPPer Richness-mass Relation
We marginalize over the SZE-mass scaling relation parameters and constrain the posterior distributions for the
RM λ-mass scaling relation. Our best fit parameters and 68% confidence level intervals are reported in Table
3.2 and shown in Figure 3.2. We note that the slope of the λ-mass relation is consistent with 1 within 1σ and the
model is consistent with no redshift evolution within 1σ (Andreon & Congdon 2014). Furthermore the resulting
λ-mass relation is characterized by a remarkably low asymptotic intrinsic scatter, with σlnλ|M500 −→ 0.15+0.10

−0.07 as
〈lnλ|M500〉 → ∞ (Eq. 3.8). Following Evrard et al. (2014), we estimate the characteristic scatter in mass at
fixed richness to arrive at σln M = 0.18+0.08

−0.05 at λ = 70, ∼ 25% larger than the corresponding characteristic scatter
in mass at fixed ξ. We present in Figure 3.3 the RM richness as a function of the SPT derived masses. Colour
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Figure 3.2 Posterior distribution for the four parameters of the λ-mass scaling relation (Equations 3.7 and 3.8).
Predictions from the scaling relation of Rykoff et al. (2012) are shown as dashed black lines. Best fitting
parameters and associated 1σ uncertainties appear in Table 3.2.

coding of the data points is as in the left panel of Figure 3.1. Blue lines describe the best fitting model and
intrinsic scatter as derived from this analysis (Table 2) at a pivot point of z = 0.6.

We have verified that our results are not dominated by uncertainties in the SZE-mass scaling relation by
fixing these parameters to their best fit values. Our results are only marginally improved in this case. Con-
sequently, future analyses with larger samples are expected to considerably reduce the uncertainties of the
recovered λ-mass scaling relation parameters.

In Figure 3.3, two ξ > 4.5 clusters appear to be obvious outliers: SPT-CL J0417-4725 (ξ = 14.2, λ =

54.2, M500=7.41×1014 h−1
70 M�) and SPT-CL J0516-5435 (ξ = 12.4, λ = 178.9, M500=7.05×1014 h−1

70 M�). SPT-
CL J0417-4725 is one of the clusters that we removed from our analysis because of the cluster being highly
masked. SPT-CL J0516-5345 is a well-known merger that is elongated in a north-south direction in the plane of
the sky with an X-ray mass estimate nearly a factor of two larger than the SZE mass estimate. This cluster was in
fact the strongest outlier in the sample of 14 clusters in Andersson et al. (2010). High et al. (2012) made a weak
lensing measurement of SPT-CL J0516-5345, and found that there was a significant offset between the brightest
central galaxy (BCG) and the weak-lensing center, consistent with the merger hypothesis. Additionally, High
et al. (2012) found that the weak-lensing mass was in better agreement with the SZE-mass estimate than the
X-ray mass estimate, at a level consistent with elongation observed in the plane of the sky. Therefore, SPT-
CL J0516-5345 appears to be an outlier due to true intrinsic scatter in the observable-mass relations, so we
leave it in our analysis. We note, however, that whether or not we include SPT-CL J0516-5345 in the fit has a
significant impact on our results. Our best fit parameters shift from Bλ = 1.14+0.21

−0.18 and Dλ = 0.15+0.10
−0.07 with this

cluster, to Bλ = 1.00+0.17
−0.15 and Dλ = 0.05+0.07

−0.03 when SPT-CL J0516-5345 is not included in the fit. Whether SPT-
CL J0516-5345 represents a rare event in a non-Gaussian tail in the distribution of richness of galaxy clusters
or the recovered log-normal scatter obtained when cluster SPT-CL J0516-5349 is included is more correct will
thus need to await future analyses with larger samples.

We convert the P(M500|λ) scaling relation derived by Rykoff et al. (2012) using abundance matching and
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Figure 3.3 Richness as a function of the SPT derived masses. Blue lines show the best fit richness mass relation
and 1σ intrinsic scatter. Colour coding and symbols are the same as in the left panel of Figure 1.

the SDSS RM catalog to a richness–mass relation so that we can compare it to our results (see also Evrard et al.
2014). The predictions from Rykoff et al. (2012) are shown as dashed lines in Figure 3.2 under the assumption
of no redshift evolution in the richness–mass relation. We note that all parameters of our derived RM λ-mass
scaling relation for SPT-selected clusters are consistent with the Rykoff et al. (2012) values.

We repeat these analyses extending the sample to include those with 4 < ξ < 4.5 and find similar results
(Table 3.2). The largest difference is in the redshift evolution term which now has a best fit value Cλ = 1.71+0.63

−0.57.
While formally this difference does not have large statistical significance (1.3σ), it is coming from a sample that
includes a large fraction of the same clusters, so it is likely statistically significant. A larger redshift evolution
term would imply that higher redshift RM clusters are less massive at fixed λ. At the same time the derived
scatter is also larger.

Two of the clusters in the 4 < ξ < 4.5 range are compatible with false associations. Excluding the two
matched clusters with the highest probability of random associations results in a ∼ 1σ shift in Bλ (from Bλ =

1.17 to Bλ = 1.04) and in a ∼ 0.5σ shift in Cλ (from Cλ = 1.71 to Cλ = 1.42), while the other parameters (Aλ

and Dλ) are almost unchanged. Interestingly, even though we have increased the number of clusters in the SPT-
SZ+RM sample by 40%, the constraints on the scaling relation parameters are only mildly tighter. There are
two reasons for this. First these lower signal-to-noise SPT-SZ clusters have larger fractional mass uncertainties
in ξ (〈ξ〉−1 ∼ 0.16 and 〈ξ〉−1 ∼ 0.13 respectively for the ξ > 4 and ξ > 4.5 samples). Second, the richnesses are
also systematically lower, leading to a larger Poisson variance. Thus, each low ξ cluster has less constraining
power than a high ξ cluster, reducing the impact of extending the sample to include the lower mass systems.

3.4.2 Consistency Test of Model

We also test the consistency of the adopted scaling relation model with the data by examining whether we are
finding the expected number of matches with the correct distribution in richness. To do this, we focus on the
SPT-E field, which at ∼ 124.6 deg2 is the largest contiguous region covered by the DES-SVA1 data. We carry
out two different tests.

In the first test, we examine whether we are finding the expected number of SZE-selected clusters and
whether these clusters have the expected number of optical matches with the correct λ distribution. We gen-
erate 106 Monte Carlo realizations of cluster samples extracted from the halo mass function above M500>
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Figure 3.4 Consistency tests of our model (Section 3.3) and the SPT-SZ+RM catalog from the ∼124 deg2

SPT-E field. The solid black lines show the observed cumulative distribution in richness λ of the ξ > 4.5 (left)
and ξ > 4 (right) SZE-selected samples. Upper panels: Gray scale regions show 1, 2, and 3σ regions predicted
by drawing 106 SZE-selected samples from the mass function and assigning λ according to our scaling relation
constraints. There is good agreement with the data. Lower panels: Dashed blue lines show the cumulative
distribution in λ of the full RM sample. Orange, yellow, and red areas define 1, 2, and 3σ regions representing
the predicted cumulative distribution of the SPT-SZ+RM catalog using as input (1) the full RM sample and
(2) the probability (Eq. 3.10) that each RM cluster will have an SPT-SZ counterpart, given our scaling relation
constraints. The data and the model exhibit a 2σ tension at λ > 70 where fewer than expected RM clusters (10
of 17) have SPT-SZ counterparts.
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1013.5 h−1
70 M� and assign richnesses λ and SPT-SZ significance ξ using the parameters we extract from our anal-

ysis of the real matched catalog. These Monte Carlo mocks are generated taking into account the survey area
as a function of redshift sampled by RM in the SPT-E field. We then apply the SZE selection–either ξ > 4.5 or
ξ > 4–and measure the cumulative distribution in λ of the SZE-selected samples. We then compare this to the
same distribution in the real matched catalog.

Shaded regions in the upper panels of Figure 3.4 show 1, 2, and 3σ confidence regions obtained from the
mocks after marginalizing over the scaling relation parameters. The solid black line shows the distribution from
the real catalog, which is in good agreement with the mocks. The largest observed difference is smaller than
1σ indicating that the adopted model provides a consistent description of the observed number and richness
distribution of the SZE-selected sample. Similarly, a Kolmogorov-Smirnov (KS) test for the observed cumu-
lative distribution of matched systems as a function of λ and the corresponding median distribution from the
Monte Carlo simulations, shows that the null hypothesis of data being drawn from same distributions cannot
be excluded and returns p−values 0.76 and 0.96 for ξ > 4.5 and ξ > 4, respectively.

The second test is focused on whether the RM cluster catalog (which is significantly larger than the SPT-SZ
catalog) has the expected number of SZE matches with the correct λ distribution. Essentially, we take the ob-
served RM catalog as a starting point, and calculate the expected number of systems with SPT-SZ counterparts
given the model and parameter constraints from our λ-mass likelihood analysis. This test differs from the first
in that it takes the observed RM selected cluster sample as a starting point, and such a test should be more
sensitive to, for example, contamination in the RM catalog.

We proceed by first computing, for each real RM selected cluster in the SPT-E field, the probability Pm of
that cluster also having ξ > 4.5 and therefore being in the matched sample. We define this probability as:

Pm =

∫ ∞

4.5
P(ξ|λ, z)dξ

=

∫ ∞

4.5
dξ

∫
dM500 P(ξ|M500)P(M500|λ, z), (3.10)

where P(M500|λ, z) ∝ P(λ|M500, z)P(M500, z) and P(M500, z) is the halo mass function (Tinker et al. 2008).
To predict the expected number of RM clusters with SZE counterparts, we then randomly sample the

scaling relation parameters, determining Pm for all the RM clusters in each case and using those probabilities
to produce randomly sampled matched cluster catalogs. We use the results from the ensemble of random
matched catalogs to produce a distribution of the expected cumulative distributions in λ. Orange, yellow, and
red regions in the bottom panels of in Figure 3.4 show the 1, 2, and 3σ confidence regions, respectively, of the
expected cumulative distribution in λ for ξ > 4.5 (left) and ξ > 4 (right), given the RM catalog and scaling
relation parameter constraints as input. The dashed blue line shows the cumulative distribution of the entire
sample of RM clusters in the area, while the solid black line shows the observed cumulative distribution of the
real matched catalog.

We note that the predicted number of SPT-SZ+RM matches in this case tends to be higher than that observed
for λ > 35, but the tension is weak. Of some concern is the high λ end of the sample (λ > 70), where only
10 of the 17 RM selected clusters have SPT-SZ counterparts at ξ > 4.5 despite their having large probabilities
indicating they should be in the SZE-selected sample. However, the mean expected number of matches at λ >
70 is 13.4, providing again no significant tension between the model and the data. A KS test for the observed
cumulative distribution of matched systems as a function of λ and the corresponding median distribution from
the mocks shows that the null hypothesis of data being drawn from the same parent distribution cannot be
excluded and returns p−values 0.90 and 0.33, respectively, for ξ > 4.5 and ξ > 4.

The observed cumulative distribution is in tension with expectations at the 2σ level, providing some indi-
cation of tension between the observed sample and our model. This tendency to observe fewer matches than
expected given the size of the RM selected sample could be explained by either contamination within the RM
sample, additional incompleteness within the SPT-SZ sample beyond that caused by scatter in the SZE-mass
relation, or simply a statistical fluctuation. Future work exploring the SZE properties of the lower mass systems
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Figure 3.5 SPT-CL J0433-5630: DES-SVA1 gri pseudo colour image overplotted with SPT-SZ signal-to-noise
contours (in steps ∆ξ=1). The magenta circle shows the projected R500/2 radius at z = 0.69, while the green
circle describes the 1σ SPT positional uncertainty (Eq.3.11). The cyan label marks the associated λ ∼ 60 RM
cluster.

along with an extension of the current analysis to the full overlap between DES and the SPT-SZ survey will
sharpen this test.

3.4.3 Optical-SZE Positional Offset Distribution
It has been shown that the miscentering in the optical can have a significant impact on the derived SZE signature
for an optically-selected sample (Biesiadzinski et al. 2012; Sehgal et al. 2013; Rozo & Rykoff 2014; Rozo
et al. 2014a,b). We note, however, that in our case the SZE signal has been estimated at the SZE-determined
position, so our results are not affected by optical miscentering. In fact, we can now use our data to constrain
the distribution of offsets between the SZE-determined and the optically-determined cluster centers.

As an example, we show in Figure 3.5 the DES-SVA1 gri pseudo colour image of SPT-CL J0433-5630,
an SPT-SZ selected cluster with ξ ∼ 5.3 at redshift z = 0.69 (B15). Yellow contours show the SPT-SZ signal-
to-noise in steps of ∆ξ = 1, while the magenta circle describes the projected radius R500/2. The cyan label
refers to the associated RM cluster centre. This RM cluster has richness λ ∼ 60. We note that the most
probable central galaxy selected by RM is significantly offset from the SZE defined centre. As a result, the
measured SZE signature at the optical position (ξ = 4.1) would be significantly underestimated with respect to
the derived unbiased quantity ζ = 5 obtained through Eq. 3. We stress that this effect is not important for the
scaling relation results reported in Section 3.4.1, as the sample analyzed here is SZE-selected.

Figure 3.6 contains a normalized histogram of the distribution of cluster positional offsets in units of R500
for the ξ > 4.5 analyzed SPT-SZ sample. Under the assumption that the measurement uncertainty from the
optical side is negligible, we model this distribution as an underlying intrinsic positional offset distribution
convolved with the SPT-SZ positional uncertainty.

The 1σ SPT-SZ positional uncertainty for a cluster with a pressure profile given by a spherical β model
with β = 1 and core radius θc, detected with SPT-SZ significance ξ is described by:

∆θ = ξ−1
√
θ2

beam + θ2
c , (3.11)

where θbeam = 1.19 arcmin is the beam FWHM (see Story et al. 2011 and Song et al. 2012b for more details).
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Figure 3.6 Solid histogram shows the measured fraction of clusters as a function of the SPT-SZ+RM optical-
SZE positional offset in units of R500. The green curve shows the SPT-SZ positional uncertainty, and the blue
curves shows the best fitting SZE-optical positional offset model.

Table 3.3 Best fitting parameters and 68% confidence level of the optical-SZE positional offset distribution.
Catalog ρ0 σ0[R500] σ1[R500]

RM-ξ > 4.5 0.63+0.15
−0.25 0.07+0.03

−0.02 0.25+0.07
−0.06

As a result, the expected distribution of positional offsets in the case in which the intrinsic one is a δ−function
is shown (arbitrarily rescaled) as a green line.

Song et al. (2012b) have shown that the intrinsic optical-SZE positional offset distribution for an SPT-SZ
selected sample is consistent with the optical−X-ray positional offset distribution of X-ray selected clusters
(Lin et al. 2004). In both of these studies, the optical position was taken to be the brightest cluster galaxy
(BCG) position. The offset distribution can be characterized by a large population of central galaxies with
small offsets from the SZE centers and a less populated tail of central galaxies with large offsets (e.g. Lin et al.
2004; Rozo & Rykoff 2014; Lauer et al. 2014). We therefore parametrize the distribution of positional offsets
between the RM centre and the SZE centre for x as:

P(x) = 2πx
 ρ0

2πσ2
0

e
− x2

2σ2
0 +

1 − ρ0

2πσ2
1

e
− x2

2σ2
1

 (3.12)

where x = r/R500. While this model for the distribution was motivated by the expected intrinsic positional
offset distribution, the measured distribution will include both the actual physical SZE-central galaxy offset
distribution and the systematics due to failures in identifying the correct cluster center with the RM algorithm.
For every cluster and parameter ρ0 ∈ [0, 1], σ0 ∈ [0, 1], and σ1 ∈ [σ0, 1], we then compare the predicted offset
distribution obtained by convolving the model with the SPT-SZ positional uncertainty of Eq. 3.11 to extract the
associated likelihood. Best fit parameters and 68% confidence intervals are shown in Table 3.3 and joint and
fully marginalized parameter constraints are shown in Figure 3.7.

We note that the positional offset distribution for the RM sample is consistent with a concentrated dom-
inant population (ρ0 = 0.63+0.15

−0.25) of smaller offsets (σ0 = 0.07+0.03
−0.02 R500) and a sub-dominant population

characterized by larger offsets (σ1 = 0.25+0.07
−0.06 R500), in good agreement with the observed fraction (33%) of
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Figure 3.7 Posterior distribution for the 1 and 2σ level of the three parameter model describing the positional
offset distribution of Equation 3.12. Best fitting parameters are shown in Table 3.3. The RM predicted value of
ρ0 for the adopted sample is shown as a dashed black line.

morphologically disturbed clusters in the X-ray at z = 0.6 (Nurgaliev et al. 2013), which lends support to the
hypothesis that the large positional offsets are due to merger activity. For the analyzed sample, the RM code
(Rykoff et al. 2012, 2014) adopts the normalization of the centrally peaked distribution to be 0.79 (dashed black
line in Figure 3.7), in good agreement with the value obtained here.

3.5 Conclusions

In this paper, we cross-match SZE-selected cluster candidates with ξ > 4.5 from the 2365 deg2 SPT-SZ survey
(B15) with the optically-selected cluster catalog extracted from the DES science verification data DES-SVA1.
The optically-selected catalog is created using the RM cluster-finding algorithm. We study the robustness of
our matching algorithm by applying it to randomly generated RM catalogs.

Using the adopted matching algorithm in the 129.1 deg2 of overlap between the two data sets, we create
a matched catalog of 33 clusters. Eight of these clusters are removed as likely chance superpositions that are
identified using the randomly generated catalogs. The resulting 25 cluster sample includes all previously known
z < 0.8 and ξ > 4.5 SPT-SZ clusters in this area (Song et al. 2012b; Reichardt et al. 2013, B15) in addition to
three previously unconfirmed SPT-SZ clusters.

We then study three characteristics of this cross-matched SPT-SZ+RM cluster sample:
1) The richness mass relation of SPT-SZ selected clusters. We calibrate the λ-mass relation from SZE

measurements by applying the method described in Bocquet et al. (2015b)). In this analysis we assume a fixed
fiducial cosmology and marginalize over the simultaneously calibrated SPT-SZ ξ-mass relation. We adopt flat
priors on the richness–mass relation parameters. We find that the RM λ-mass relation for SPT-SZ selected
clusters is characterized by an small asymptotic intrinsic scatter D = 0.15+0.10

−0.07 and by a slope B = 1.14+0.21
−0.18 that

is consistent with unity. Our constraints are in good agreement with those of Rykoff et al. (2012) and show that
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the scatter in mass at fixed richness at λ = 70 for this sample is only 25% larger than the scatter in mass at fixed
SPT-SZ observable ξ.

2) Consistency test of model and matched catalog. We carry out two consistency tests to determine whether
there is tension between the observed matched sample and the expectations given the scaling relation model we
have adopted. Both tests involve creating Monte Carlo generated cluster catalogs with associated richness and
SPT-SZ significance derived from the fitted scaling relations. The first test checks whether the correct number
of SZE-selected clusters is found and whether those clusters exhibit the correct number of optical matches
with the expected λ distribution. As is clear from Figure 3.4, the observations are perfectly consistent with the
expectations from the model. In the second test we take the much larger observed RM catalog as a starting
point and use the model to test whether the expected number of SZE matches with the expected λ distribution
is found. Unlike the first test, this one would in principle be sensitive to contamination within the RM sample.
Here the agreement is not as good because there is a tendency for there to be fewer observed matches than
expected. However, the tension reaches the 2σ level at worst, and so there is no convincing evidence that
our observed sample is inconsistent with the model. Thus, our analysis shows that the data in our matched
SPT-SZ+RM sample are well described by our adopted model.

3) The SZE-optical positional offset distribution. We identify optical positional biases associated with
12% of the sample due to the masking in the DES-SVA1 data. We study the optical-SZE positional offset
distribution for the matched sample. We model the underlying positional offset distribution as the sum of two
Gaussians, while accounting for the SPT-SZ positional uncertainty. We show that the resulting distribution
is consistent with being described by a dominant (63+15

−25%) centrally peaked distribution with (σ0 = 0.07+0.03
−0.02

R500) and a sub-dominant (∼ 37%) population characterized by larger separations (σ1 = 0.25+0.07
−0.06 R500). For the

same population, the RM algorithm assumes that 79% of the clusters will belong to a small-offset population,
consistent with our observations.

We also match the SPT-SZ cluster candidates with 4 < ξ < 4.5 to the RM optical cluster catalogs from DES-
SVA1 to extend the mass range of the SZE-selected clusters. Including the SPT-SZ candidates between ξ = 4
and ξ = 4.5 increases the sample of matched clusters by ∼ 40% compared to the ξ > 4.5 sample, highlighting
the potential synergies of SPT and DES in producing lower mass extensions of SZE-selected cluster samples.
We show that this larger sample produces results that are broadly consistent with the ξ > 4.5 results, but only
marginally tighter. This is due to the fact that mass constraints from lower signal-to-noise SPT clusters are
somewhat weaker on a per cluster basis compared to the higher ξ sample. Future work benefiting from the
larger region of overlap between the DES and SPT surveys will improve our derived constraints and help to
better characterize the optical and SZE properties of cluster samples in terms of positional offsets, purity, and
completeness. Moreover, the multiwavelength datasets available through DES and SPT enable characterization
of the galaxy populations of large SZE-selected cluster samples, calibration of the SZE-selected cluster masses
using weak lensing constraints, and many other promising studies.
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the ransregio program TR33 “The Dark Universe” and the Ludwig-Maximilians University. The South Pole
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Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation grant
GBMF 947. A.A.S. acknowledges a Pell grant from the Smithsonian Institution. This work was partially
completed at Fermilab, operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359
with the United States Department of Energy.
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3.6 Appendix: Study of mass-richness scatter for clusters found with
the VT method

We have used the same framework to analyze a second DES-SVA1 cluster catalog created with the Voronoi
Tessellation (VT) cluster finder (Soares-Santos et al. 2011). The VT method uses photometric redshifts to
detect clusters in 2+1 dimensions, and is designed to produce a cluster catalog up to z ∼ 1 and down to M ∼
1013.5 M� without any assumptions about the colours of galaxies in cluster environments. The motivation for
its development in DES, in parallel to the development of RM, is the possibility of obtaining two cosmological
measurements with different sensitivity to astrophysical systematics. VT has been tested on DES simulations
(Soares-Santos et al. 2011) and on SDSS data. The mean mass-richness relation has been calibrated using a
stacked weak lensing analysis of the SDSS VT clusters (Wiesner et al. 2015). In this section we describe the
first study of the scatter of the mass-richness relation using our analysis framework.

3.6.1 VT method

To detect clusters with the VT method, we build 2D tessellations in each photometric redshift shell and flag
galaxies that lie in high-density cells as cluster members. The density threshold is set in a non-parametric way
from the 2-point correlation function of that given shell. This takes advantage of the fact that the distribution
of VT cell densities can be uniquely predicted for any given point process. The 2-point function is a good
description of the point process of the background galaxies on the sky. Clusters cause a small deviation from the
predicted distribution, and we take the point where that deviation is maximized as the threshold for detection.

3.6.2 VT catalog for DES SVA1 data

For the DES SVA1 data, the final catalog consists of 12948 clusters with richness Nvt > 5 and redshifts in the
range 0.15 < z < 1. Nvt is defined as the number of member galaxies. The catalog covers the SPT-E and SPT-W
regions of the SVA1 total footprint. We use DESDM data products as inputs, namely the Gold galaxy catalog,
plus photometric redshifts and mask information. We used a mask to apply magnitude cuts 10 < mag auto i
< 23.5. The photometric redshift information was obtained using a neural network method (Sánchez et al.
2014).

We match the VT and SPT-SZ catalogs using the same method as described in Section 2.3. We sort the SPT-
SZ cluster sample according to decreasing SPT observable ξ and sort the VT catalogs according to decreasing
richness. Then we associate the SPT cluster candidate with the richest cluster candidate whose centre lies
within 1.5 R500 of the SPT-SZ centre. We finally remove the associated optical cluster from the list of possible
counterparts when matching the remaining SPT-selected clusters. This procedure results in 42 VT clusters
matched to ξ > 4.5 SPT-SZ clusters.

3.6.3 Results

In Figure 3.8 we show the optical richness Nvt as a function of ξ (left panel) for the 42 matched clusters. The
scatter in the richness-ξ plot indicates that the VT richness performs poorly as a mass indicator. Improvements
to the method are being developed based on these findings. Specifically, future work will explore using the
galaxy magnitudes to calculate total stellar masses, which can then be used as a mass proxy.

Figure 3.8 also shows the VT estimated redshifts versus the redshifts determined in SPT follow-up obser-
vations (right panel). There is good agreement for z > 0.35. Deviations at lower z are found to arise from
problems in the calculation of the 2-point function predictions at z < 0.35, and a fix is underway.

We also obtained the best fit parameters, and the corresponding 68% c.l. uncertainties, for the richness-mass
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Figure 3.8 Left panel: Richness as a function of the SPT-SZ significance ξ for the SPT-SZ+VT cluster sample.
Clusters at z < 0.25 are not not used for the richness-mass fit and are shown in cyan. Right panel: The
estimated redshift for the VT sample as a function of SPT-SZ redshifts as presented in B15. SPT-SZ candidates
with spectroscopic redshift are shown in red.

scaling relation described by Equations 3.7 and 3.8:

AVT = 48.1+6.9
−6.3, BVT = 0.56+0.51

−0.25,

CVT = −0.51+1.82
−1.48, DVT = 0.64+0.29

−0.14. (3.13)

This result is consistent with the calibration for the mean relation obtained with weak lensing (Wiesner et al.
2015). The uncertainties, however, are larger than those obtained for RM. We expect that improvements to
the richness estimator will result in better performance in future applications of the VT method. VT is not
as mature a cluster finder method as RM but the complementarity of the two techniques argues for further
development of this alternative. This study allowed us to identify a key area for improvement and establishes a
framework for future assessment of the mass-richness scatter for VT clusters.
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Chapter 4

The Growth of Cosmic Structure Measured
with Galaxy Clusters in the South Pole Tele-
scope SPT-SZ Survey
S. Bocquet and the South Pole Telescope collaboration, in preparation
to be submitted to The Astrophysical Journal Letters (ApJL)

ABSTRACT
We measure the growth rate of structure as parametrized with the growth index γ using galaxy
clusters from the 2500 deg2 SPT-SZ survey. We uniformly select a sample of 377 cluster candidates
with Sunyaev-Zel’dovich effect (SZE) detection significance ξ > 5 and redshift z > 0.25. Of these,
82 also have deep Chandra X-ray data that is used for calibrating the mass-observable relation
adopting a normalization that is based on weak lensing. We assume a flat ΛCDM background
cosmology with the additional degree of freedom γ describing the growth rate. Using our cluster
data set with H0 and BBN priors we constrain γ = 0.44 ± 0.13, in agreement with the prediction by
General Relativity of γGR = 0.55. This is the most precise measurement from clusters to date, and it
is limited by the uncertainty on the redshift evolution of the SZE mass-observable scaling relation.
Additionally allowing for the dark energy equation of state parameter w to vary, we simultaneously
constrain the growth and expansion histories of the Universe. We find γ = 0.53 ± 0.15 and w =

−1.30 ± 0.30, in agreement with the ΛCDM model. The combination of these constraints with
cosmic microwave background anisotropy constraints will enable even more precise constraints.

Key words: cosmic background radiation — cosmology: observations — galaxies: clusters: individual —
large-scale structure of universe
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4.1 Introduction

Measurements of the abundance of galaxy clusters are a unique cosmological tool because their formation is
affected both by the geometry of the Universe and the rate at which the large-scale structure grows. Their
sensitivity to growth makes cluster analyses particularly complementary to constraints from geometry-based
probes such as measurements of the anisotropies in the cosmic microwave background (CMB) radiation and
distance measurements using type Ia supernovae (SNIa) or baryon acoustic oscillations (BAO) (e.g., Vikhlinin
et al. 2009b; Mantz et al. 2010a; Rozo et al. 2010; Benson et al. 2013; Hasselfield et al. 2013; Reichardt et al.
2013; Planck Collaboration et al. 2014c; Bocquet et al. 2015b; Planck Collaboration et al. 2015b).

One of the biggest challenges in cosmology is to understand and characterize the accelerated expansion that
started when dark energy became the dominant component in the late Universe at z < 1. Various models of dark
energy that differ from a simple cosmological constant Λ are proposed and tested. None of these tests that really
probe the geometry of the Universe have provided evidence that dark energy cannot accurately be described
by a cosmological constant Λ. Another approach to tackle this question is to consider deviations from General
Relativity (GR) on large scales, as this could potentially mimic an accelerating expansion. One particular
aspect within this approach is to measure the growth rate of structure. Note that different modified gravity
models predict different growth rates, and so it is convenient to constrain a parametric, phenomenological
growth model, which can then be compared to theoretical predictions. In an identical fashion, the parametrized
model can be used to challenge the standard ΛCDM model.

Such an approach has been applied using X-ray selected cluster samples (Rapetti et al. 2010, 2013; Mantz
et al. 2015). However, to challenge the dark energy paradigm and the standard model of structure growth,
one does ideally want to probe the cosmic evolution over a larger redshift range. A cluster sample selected by
the Sunyaev-Zel’dovich effect (SZE, Sunyaev & Zel’dovich 1972) in high-resolution mm-wave data is ideally
suited as clusters are detected in a nearly redshift-independent way up to the highest redshifts at which clusters
exist. The SZE arises when CMB photons passing through the hot intra-cluster medium of a massive galaxy
cluster scatter off thermal electrons, introducing a characteristic spectral distortion.

The South Pole Telescope (SPT, Carlstrom et al. 2011) collaboration has previously presented constraints
on the growth rate of structure using an SZE-seledted cluster sample (Bocquet et al. 2015b). However, this
study was restricted to data from the first 720 deg2 of survey data, and the constraints obtained from clusters
were weak. By now, the cluster data from the full 2500 deg2 survey have been published (Bleem et al. 2015),
and the cosmology sample contains 377 cluster candidates. Of these, 82 also have high-quality X-ray data,
which can be used for calibrating the SZE mass-observable scaling relation. The collaboration is currently
preparing a cluster cosmology analysis of that combined sample (de Haan et al., in prep., hereafter dH15). In
the present work, we use this same data and focus on cosmological questions related to structure growth. This
paper is organized as follows. In Section 4.2, we present the cosmological model and the parametrization of
growth that we consider. A brief overview over the SPT-SZ data and the analysis method appears in Section 4.3.
We present and discuss our results in Section 4.4. We conclude with a summary in Section 4.5.

4.2 Cosmological Model and Parametrized Growth

The assumed base-line model is the spatially flat ΛCDM model with a single massive neutrino of mass mν =

0.06 eV. We extend this model through a purely phenomenological parametrization of structure growth. Note
that this particular parametrization does not have any profound theoretical motivation; it can, however, be used
as a consistency test to challenge the standard cosmological model. Following e.g., Peebles (1980); Wang &
Steinhardt (1998), we parametrize the growth rate

f (a) ≡ d ln δ
d ln a

≡ Ωm(a)γ, (4.1)
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where δ is the density contrast, a the scale factor, and Ωm the matter density parameter. The parameter γ is the
growth index, governing the growth evolution. Since we are interested in possible departures from the standard
model at late times, when dark energy is not negligible, we assume the standard evolution of the Universe up
until a redshift zini = 10. At later times, the growth factor D evolves as

Dini(z) ≡ δ(z)
δ(zini)

= δ(zini)−1 exp
(∫ 1

aini

d ln a Ωm(a)γ
)
. (4.2)

Note that this definition implies that the growth factor is independent of wavenumber k. The matter power
spectrum at redshift z < zini can now be expressed as the product of the ΛCDM power spectrum P(k, zini) with
the growth factor at late times:

P(k, z) = P(k, zini) D2
ini(z). (4.3)

GR predicts a growth index γGR ' 0.55. Letting γ vary in a cosmological fit allows one to perform a
consistency test of GR based on structure growth. In a second state, we will also allow for an extension of the
dark energy sector by letting the dark energy equation of state parameter w vary.

4.3 Data and Analysis

4.3.1 Galaxy Cluster Data

We use a cluster sample selected via the SZE in the 2500 deg2 SPT-SZ survey data. Details of the survey and
the cluster detection and confirmation can be found elsewhere (Bleem et al. 2015). Briefly, from 2008 to 2011
the SPT collaboration used the telescope to conduct a contiguous survey in the southern sky down to depths of
approximately 40, 18, and 70 µK-arcmin and with beam sizes of roughly 1.6′, 1.1′, and 1.0′ in the 95, 150, and
220 GHz bands, respectively. Clusters are then extracted from the 95 and 150 GHz maps using a multi-scale
matched filter (Melin et al. 2006). Differences between the observed field depths are accounted for by rescaling
the amplitude of the mass-observable relation in Equation 4.5 (see Table 1 in dH15).

As in previous SPT analyses, the detection significance ξ is used as the SZE mass proxy (Vanderlinde et al.
2010; Benson et al. 2013; Reichardt et al. 2013; Bocquet et al. 2015b). It has a Gaussian measurement error of
unit width and it is related to the unbiased SZE significance ζ by

ζ =

√
〈ξ〉2 − 3. (4.4)

The SZE mass-observable relation is assumed to follow a log-normal distribution with mean

ζ = ASZ

(
M500

3 × 1014 h−1M�

)BSZ
(

E(z)
E(0.6)

)CSZ

(4.5)

and scatter DSZ. The parameters of this scaling relation are simultaneously fitted for while conducting the
cosmological analysis. We follow previous SPT cluster analyses and apply Gaussian priors, although with
updated values from the hydrodynamic cosmo-OWLS simulations ASZ = 5.38 ± 1.61, BSZ = 1.340 ± 0.268,
CSZ = 0.49 ± 0.49, and DSZ = 0.13 ± 0.13 (Le Brun et al. 2014).

The cosmology sample is selected with thresholds ξ > 5 and z > 0.25, and contains 377 cluster candidates.
Of these, 82 confirmed clusters have high-quality X-ray follow-up data from Chandra with typically 2000
source photons. These data were part of a Chandra X-ray Visionary Project project (PI:Benson) and were
initially presented and analyzed in McDonald et al. (2013). For this work, we focus on the low-scatter mass
proxy YX ≡ MgTX which is the product of the gas mass Mg with the X-ray temperature TX. The X-ray mass-
observable relation is

M500

1014M�
= AXh1/2

(
h

0.72

) 5
2 BX− 3

2
(

YX

3 × 1014M� keV

)BX

E(z)CX , (4.6)
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with lognormal scatter DX. As in previous SPT analyses, we apply Gaussian priors on BX = 0.57 ± 0.03,
CX = −0.4 ± 0.2, and DX = 0.12 ± 0.08. Accounting for recent calibration of the YX-mass relation (Hoekstra
et al. 2015), we follow dH15 and update the normalization to AX = 7.27 ± 1.02.

Throughout the following, we will refer to the SPT-SZ clusters with their follow-up data as the SPTCL
dataset.

4.3.2 Cluster Abundance and Likelihood Function
The expected number density of clusters is computed from the matter power spectrum (Equation 4.3) through
the halo mass function (HMF). In practice, we use CAMB1 (Lewis et al. 2000) to compute the matter power
spectrum and apply the HMF presented in Tinker et al. (2008). To account for the impact of non-zero neutrino
masses on the HMF, we only take the matter power spectrum for dark matter + baryons (no neutrinos) into
account when calculating the cluster abundance2 (Costanzi et al. 2013). As in previous SPT analyses, the
likelihood function for the cluster abundance measurement is

lnL = −
∫

dξdz
dN(ξ, z)

dξdz
+

∑
i

dN(ξi,YX,i, zi)
dξdYXdz

(4.7)

up to a constant, and where the sum runs over all clusters i in the sample. The first term is independent of
YX because the sample was selected according to ξ and z only. In practice, we evaluate the likelihood using
the method developed and presented in Bocquet et al. (2015b), except that we additionally allow for correlated
scatter between ζ and YX. The correlation coefficient ρSZ-X is allowed to vary uniformly in the range [−1, 1].

4.3.3 External Cosmological Datasets and Priors and the Likelihood Sampling Algo-
rithm

In addition to our cluster data we also use external cosmological probes. We use a prior on the Hubble constant
H0 = 73.8 ± 2.4 km s−1 Mpc−1 (Riess et al. 2011). We use measurements of the CMB anisotropy using Planck
data from the 2013 release combined with WMAP9 polarization anisotropy data (Hinshaw et al. 2013; Planck
Collaboration et al. 2014a,b).

Cluster data alone are not sensitive to every cosmological parameter. Therefore, when not including CMB
anisotropy data, we fix the reionization optical depth to τ and the scalar spectral index ns to the CMB-preferred
values (Planck Collaboration et al. 2015a). We also apply a Gaussian prior on the baryon density Ωbh2 =

0.022 ± 0.002 from big-bang nucleosynthesis (BBN, Kirkman et al. 2003).
The parameter fits are performed using the affine invariant Markov chain Monte Carlo ensemble sampler

emcee3 (Foreman-Mackey et al. 2013). Apart from possible personal preferences for Python, the main benefit
of emcee is that it can be run in parallel on hundreds of CPU cores. Given that a typical call of the likelihood
function takes or order 10 sec, the parallel execution of this step is highly appreciable. In addition to extensive
self-consistent tests of the analysis pipeline used in this work we also confirmed that we recover results that are
compatible with the ones presented in dH15.

4.4 Results and Discussion

We discuss the results we obtain from the SPTCL+BBN+H0 data combination for the ΛCDM model with
parametrized growth of structure (γ+ΛCDM) and for the same model but additionally allowing for the dark
energy equation of state parameter to vary (γ+wCDM). The marginalized parameter constraints on the relevant

1http://camb.info/
2The variance in the matter field σ8 is calculated in the usual way from the power spectrum for dark matter + baryons + neutrinos.
3http://dan.iel.fm/emcee/current/
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Table 4.1 Marginalized results from SPTCL+H0+BBN. The constraint on the growth index γ only mildly de-
grades when w is allowed as an additional free parameter.

Parameter ΛCDM γ+ΛCDM wCDM γ+wCDM

Ωm 0.291 ± 0.039 0.293 ± 0.036 0.271 ± 0.041 0.257 ± 0.046

σ8 0.779 ± 0.036 0.819 ± 0.043 0.792 ± 0.032 0.808 ± 0.046

w (−1) (−1) −1.19 ± 0.24 −1.30 ± 0.30

γ (0.55) 0.44 ± 0.13 (0.55) 0.53 ± 0.15

parameters are summarized in Table 4.1 where we also show the constraints on the base-line ΛCDM and wCDM
models for reference. For a detailed discussion of these ΛCDM constraints, and of constraints on dark energy
and neutrino masses we refer the reader to dH15.

4.4.1 γ+ΛCDM
We consider a first extension of the standard ΛCDM model by adding the growth index γ as another free
parameter. We measure

γ = 0.44 ± 0.13, (4.8)

in agreement with the GR value γGR = 0.55.
In our initial analysis on structure growth using the first 720 deg2 of SPT-SZ survey data, γ was not con-

strained from cluster data alone (Bocquet et al. 2015b). Together with CMB anisotropy data, we obtained a
constraint that was about twice as broad as the one presented above. Using a sample of 224 X-ray selected
clusters and weak gravitational lensing follow-up of 50 of these, the Weighing the Giants (WtG) team con-
strained γ with an uncertainty of σ(γWtG) = 0.19 (Mantz et al. 2015). Our measurement is significantly tighter,
which is largely due to the increased leverage on γ afforded by the broader redshift range of the SPT sample.
While the WtG sample is restricted to low redshifts 0 < z < 0.5, our SZE-selected sample spans a redshift
range 0.25 < z . 1.5. The measurement of the growth index is really a measurement of cosmic evolution and
therefore a broad redshift range is favorable.

In Figure 4.1, we show the joint constraints on γ and the normalization of the power spectrum σ8 from our
cluster sample SPTCL and from Planck+WP (as shown in Mantz et al. 2015). The contours overlap at σ8 ∼ 0.8
and γ ∼ 0.55, but it is clear that clusters perform much better in this parameter space. The fact that the cluster
degeneracy is only weak indicates that the cluster abundance at different redshifts is measured well enough to
distinguish between evolution and changes in the overall amplitude. The most pronounced degeneracy between
γ and parameters of the scaling relations is with CSZ, the redshift evolution, where systematic uncertainty still
limits the constraints on γ. Note that our constraints on the γ+ΛCDM model are not limited by the systematic
uncertainty on the overall mass normalization ASZ, as it is the case for ΛCDM (dH15).

4.4.2 γ+wCDM
We go one step further and also allow the dark energy equation of state parameter w to vary. This test is
particularly interesting because it allows one to differentiate between potential departures from ΛCDM both
with respect to expansion and growth. Using the SPTCL data we simultaneously constrain

γ = 0.53 ± 0.15 (4.9)
w = −1.30 ± 0.30, (4.10)

in agreement with the fiducial values γGR = 0.55 and wΛCDM = −1. However, we note that the constraint on w is
only consistent with a cosmological constant at the 1σ level. The joint constraint on both parameters is shown



72 Growth of StructureMeasured with SPT-SZ Galaxy Clusters

0.8 1.0 1.2 1.4
σ8

−0.5

0.0

0.5

1.0

γ

GR: γ = 0.55
SPTCL

Planck

Figure 4.1 Likelihood contours (68% and 95%) in the γ-σ8-plane from clusters and CMB measurements. The
dotted line indicates the growth rate predicted by GR, which is fully consistent with the data. Both datasets
provide a consistent measurement of γ, but it is clear that clusters perform much better in this parameter plane.

in Figure 4.2, which provides no evidence for any parameter degeneracy. This means that our cluster data is
allowing us to disentangle the impact of a change in expansion and in growth rate. Note that the constraints
on other cosmological parameters in Table 4.1 do not significantly degrade after allowing for the additional
freedom in the model.

4.5 Summary

We used the latest SPT-SZ cluster dataset to measure the growth rate of structure. To the SPT-SZ cluster sample
of 377 candidates we add 82 X-ray YX measurements which serve as mass calibration data. The normaliza-
tion of the YX-mass relation is calibrated against weak lensing measurements (Hoekstra et al. 2015); the other
parameters of the scaling relation are deduced from numerical simulations. In our analysis method, we si-
multaneously fit for the parameters of the SZE-mass and YX-mass relations, for correlated scatter among both
observables, and for cosmology. We use a highly parallelized likelihood sampler. Our analysis closely follows
previous SPT work.

First, we assume a spatially flat ΛCDM background cosmology with the additional parameter γ describing
structure growth. This additional degree of freedom hardly degrades the constraints on Ωm and σ8, and we
measure γ = 0.44 ± 0.13. This value is lower than, but in agreement with the prediction of γGR = 0.55. We
note that a smaller value for γ corresponds to faster growth. In Figure 4.1 we showed that measuring the cluster
abundance outperforms measurements of CMB anisotropy for this particular cosmological model.

In a next step, we additionally allow the dark energy equation of state parameter w to vary and fit for
a wCDM+γ cosmology. The constraints do not significantly degrade compared to the ΛCDM+γ case, and
we can place constraints on both the growth and expansion histories of the Universe. Our measurements
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Figure 4.2 Likelihood contours (68% and 95%) in the γ-w-plane. There is no evidence for departure from
the standard growth and expansion histories as predicted by the ΛCDM model. For cluster data these two
parameters exhibit no clear degeneracy.

γ = 0.53 ± 0.15 and w = −1.30 ± 0.30 do not show evidence for tension with the ΛCDM model, although the
recovered value of w is low by about 1σ.

Our constraints on structure growth are tighter than those obtained by the Weighing the Giants team (Mantz
et al. 2015). We explain this by the fact that the SPT-SZ sample probes a much broader redshift range out to
redshift z ∼ 1.5. Given that we are effectively probing the evolution of structure growth, it is expected that this
enhanced leverage on redshift is reflected in tighter constraints. An interesting improvement upon the work
presented here would be the inclusion of a low-redshift sample. With this, we could indeed cover the full range
in redshift that is sensitive to possibly modified growth of structure as considered here.

We acknowledge the support of the DFG Cluster of Excellence “Origin and Structure of the Universe”
and the Transregio program TR33 “The Dark Universe”. The calculations have partially been carried out on
the computing facilities of the Computational Center for Particle and Astrophysics (C2PAP) at the Leibniz
Supercomputer Center (LRZ). The South Pole Telescope is supported by the National Science Foundation
through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-
1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and
the Gordon and Betty Moore Foundation grant GBMF 947.





Calibration of the Cluster Mass Function

In the following, an analysis of numerical simulation data is presented. The aim is to calibrate the cluster mass
function taking halo baryons into account and to discuss the cosmological implications of the recovered fit.
The following study is shown as submitted to MNRAS (Bocquet et al. 2015a).





Chapter 5

Baryon impact on the halo mass function:
Fitting formulae and implications for clus-
ter cosmology
S. Bocquet, A. Saro, K. Dolag, and J. J. Mohr 2015
submitted to Monthly Notices of the Royal Astronomical Society, ArXiv:1502.07357

ABSTRACT
We calibrate the halo mass function accounting for halo baryons and present fitting formulae for
spherical overdensity masses M500c, M200c, and M200m. We use the hydrodynamical Magneticum
simulations, which are well suited because of their high resolution and large cosmological volumes
of up to ∼ 2 Gpc3. Baryonic effects globally decrease the masses of galaxy clusters, which, at given
mass, results in a decrease of their number density. This effect vanishes at high redshift z ∼ 2 and for
high masses & 5× 1014M�. We perform cosmological analyses of three idealized approximations to
the cluster surveys by the South Pole Telescope (SPT), Planck, and eROSITA. For the SPT-like and
the Planck-like samples, we find that the impact of baryons on the cosmological results is negligible.
In the eROSITA-like case, we find that neglecting the baryonic impact leads to an underestimate of
Ωm by about 0.01, which is comparable to the expected uncertainty from eROSITA. We compare our
mass function fits with the literature. In particular, in the analysis of our Planck-like sample, results
obtained using our mass function are shifted by ∆(σ8) ' 0.05 with respect to results obtained using
the Tinker et al. (2008) fit. This shift represents a large fraction of the observed difference between
the latest results from Planck clusters and CMB anisotropies, and the tension is essentially removed.
We discuss biases that can be introduced through inadequate mass function parametrizations that
introduce false cosmological sensitivity. Additional work to calibrate the halo mass function is
therefore crucial for progress in cluster cosmology.

Key words: cosmology: theory – cosmological parameters – dark matter – large-scale structure of the Universe
– methods: numerical: statistical – galaxy clusters: general
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5.1 Introduction

Galaxy clusters are the largest collapsed objects in the Universe. Their distribution in mass and redshift is highly
sensitive to key cosmological parameters such as the matter density Ωm, or the amount of matter fluctuations
in the Universe σ8 (e.g. Henry & Arnaud 1991; White et al. 1993). Furthermore, they can be used to constrain
models of dark energy, the cosmic growth rate, and the neutrino sector (Wang & Steinhardt 1998; Haiman
et al. 2001). Catalogues from different cluster surveys have proven to be useful cosmological probes (e.g.
Vikhlinin et al. 2009b; Mantz et al. 2010a; Rozo et al. 2010; Benson et al. 2013; Hasselfield et al. 2013; Planck
Collaboration et al. 2014c; Bocquet et al. 2015b; Mantz et al. 2015).

The predicted abundance of galaxy clusters is linked to the linear matter power spectrum through the halo
mass function, which was first estimated analytically (Press & Schechter 1974). Since then, numerical N-body
simulations have been used to calibrate fitting functions (e.g. Jenkins et al. 2001; Sheth et al. 2001; White et al.
2002; Reed et al. 2003; Warren et al. 2006; Lukić et al. 2007; Reed et al. 2007; Tinker et al. 2008; Crocce et al.
2010; Bhattacharya et al. 2011; Courtin et al. 2011; Angulo et al. 2012; Watson et al. 2013). Most of the above
studies focus on the friends-of-friends (FoF) halo definition (Davis et al. 1985). However, real cluster samples
are typically defined in terms of spherical overdensity masses. Only very few mass functions exist for different
overdensity definitions (e.g. Tinker et al. 2008; Watson et al. 2013), and the parametrization in Tinker et al.
(2008) has developed into the standard reference used in most cluster cosmology analyses.

For a particular mass function parametrization to be useful in cosmological studies, it is crucially important
that it correctly captures the variation in the mass function with redshift, and the sensitivity to cosmological
parameters of interest such as the matter density Ωm, the dark energy density ΩΛ, the dark energy equation
of state parameter w, and σ8. An ideal situation would be for the mass function shape parametrization to be
universal, where the variation with cosmology would be entirely captured by the cosmological sensitivity of
the linear power spectrum of density fluctuations. For a FoF halo definition with linking length b = 0.2, or
spherical overdensity ∆180, mean, the mass function was found to be approximately universal over a wide range
of redshifts and cosmologies (Jenkins et al. 2001). More recently, Bhattacharya et al. (2011) used a set of
ΛCDM and wCDM simulations to investigate the dependence of the FoF mass function with cosmology. Their
fit is accurate to 2% for ΛCDM, and it describes the wCDM mass function to within 10%. Similar results are
also reported in Courtin et al. (2011), although with slightly larger uncertainties.

Any mass function obtained from N-body dark matter only simulations potentially suffers from some bias
introduced by neglecting the baryonic component of the clusters. Recently, various authors have investigated
the baryonic impact on the halo mass function using hydrodynamic simulations (e.g. Cui et al. 2012, 2014;
Cusworth et al. 2014; Martizzi et al. 2014; Schaller et al. 2014; Velliscig et al. 2014; Vogelsberger et al. 2014).
Their conclusions are highly sensitive to the details of the treatment of the baryonic component. For example,
models without feedback from active galactic nuclei (AGN) lead to higher cluster masses (or higher abundance
at fixed mass) than dark matter only simulations. Adding AGN feedback, however, leads to fits that are up to
20% lower than, or about equal to the dark matter only prediction. Also, these baryonic effects are stronger for
low cluster masses, and hardly affect the high-mass population. These shifts in the predicted mass functions
nearly correspond to the level of uncertainty from current cluster abundance measurements. Therefore, studies
of the baryonic impact on the halo mass function are extremely important for progress in cluster cosmology.

In this work, we analyse haloes extracted from the Magneticum simulations (Dolag et al., in prep.; see also
Hirschmann et al. 2014; Saro et al. 2014). These are a set of hydrodynamical simulations covering large cos-
mological volumes at a variety of resolutions. We use these data to calibrate a cluster mass function that takes
into account baryonic effects. This paper is organized as follows: In Section 5.2 we present the Magneticum
simulations and describe how the cluster sample is extracted. We discuss theoretical aspects of the mass func-
tion in Section 5.3, where we also introduce the analysis method used to perform the fits. We present our mass
function fits in Section 5.4, and discuss the cosmological impact in Section 5.5. We summarize and discuss our
results in Section 5.6, where we also present step-by-step instructions on how to use our mass function fitting
formulae.
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We consider the following spherical overdensity mass definitions: (1) “mean overdensity” mass M200m,
which is the mass enclosed within a sphere of radius r200m, in which the mean matter density is equal to 200
times the Universe’s mean matter density ρ̄m(z) at the cluster’s redshift, and (2) “critical overdensity” masses
M500c (M200c), which are analogous to (1) but enclosed within r500c (r200c), and defined with respect to the
critical density ρcrit(z). The corresponding overdensities are ∆200m, ∆500c and ∆200c. The critical density is
ρcrit(z) = 3H2(z)/8πG, where H(z) is the Hubble parameter. The mean matter density is ρ̄m(z) = Ωm(z)ρcrit(z)
with Ωm(z) = Ωm(1 + z)3/E2(z), and where E(z) ≡ H(z)/H0.

5.2 Simulations and Cluster selection
We will refer to our hydrodynamical simulations as “Hydro”, and to our dark matter only simulations as
“DMonly”.

5.2.1 The Magneticum simulations
In this work, we analyse a subset of cosmological boxes from the Magneticum Pathfinder simulation set
(Box1/mr, Box3/hr, Box4/uhr; Dolag et al., in prep.). The simulations are based on the parallel cosmological
TreePM-SPH code P-GADGET3 (Springel 2005). We use an entropy-conserving formulation of SPH (Springel
& Hernquist 2002) and a higher order kernel based on the bias-corrected, sixth-order Wendland kernel (Dehnen
& Aly 2012) with 295 neighbours, which together with a low-viscosity SPH scheme allows us to properly track
turbulence within galaxy clusters (Dolag et al. 2005; Donnert et al. 2013).

We also allow for isotropic thermal conduction with 1/20 of the classical Spitzer value (Dolag et al. 2004).
The simulation code includes a treatment of radiative cooling, heating from a uniform, time-dependent ultra-
violet background and star formation with the associated feedback processes. The latter is based on a sub-
resolution model for the multiphase structure of the interstellar medium (Springel & Hernquist 2003).

We compute radiative cooling rates following the same procedure as presented by Wiersma et al. (2009),
and account for the presence of an evolving ultraviolet background (Haardt & Madau 2001). Contributions
to cooling from each element have been pre-computed using the publicly available CLOUDY photo-ionisation
code (Ferland et al. 1998) for an optically thin gas in (photo-)ionisation equilibrium.

Our simulations also incorporate a detailed treatment of stellar evolution and chemical enrichment follow-
ing Tornatore et al. (2007), a multiphase model for star-formation (Springel & Hernquist 2003), and feedback
processes associated with supernovae driven galactic winds and AGN (Springel & Hernquist 2003; Di Matteo
et al. 2008; Fabian 2010). Additional details about the simulation code are available elsewhere (Hirschmann
et al. 2014).

Initial conditions are created from a spatially flat ΛCDM cosmology with matter density Ωm = 0.272,
baryon density Ωb = 0.0456, variance in the matter field1 σ8 = 0.809, and Hubble constant H0 = 70.4 km s−1 Mpc−1.
The simulations cover a cosmological volume with periodic boundary conditions initially occupied by an equal
number of gas and dark matter particles. Their relative masses reflect the global baryon fraction Ωb/Ωm. To
minimize numerical differences between the Hydro and the DMonly set of simulations, we set up the DMonly
simulations with an equal number of two types of collisionless particles, whose masses are equal to the mass
of the dark matter and of the gas particles, respectively, of the corresponding Hydro runs.

5.2.2 Halo selection
The set of cosmological boxes used in this analysis is highlighted in Table 5.1. Haloes are initially identified
through a parallel FoF algorithm with linking length b = 0.16. The FoF links over dark matter particles only.
We then compute spherical overdensity masses (for overdensities ∆200m, ∆200c and ∆500c) of each halo centered
at the deepest potential point with the parallel SUBFIND algorithm (Springel et al. 2001; Dolag et al. 2009).

1See Equation 5.2 for the definition.



80 Baryons and the halo mass function

Table 5.1 Boxes of the Magneticum simulations used in this work. The number of haloes N(z = 0) refer to the
DMonly runs, and M200m.

Box Size Lbox mDMparticle MHalo, min N(z = 0)
(Mpc) (M�) (M�)

4/uhr 68.1 Mpc 5.3 × 107 6.2 × 1011 835
3/hr 181.8 Mpc 9.8 × 108 1.1 × 1013 1049
1/mr 1274 Mpc 1.9 × 1010 2.2 × 1014 8824

To ensure that haloes extracted from the Hydro simulations are not affected by issues related to resolution
and numerical artefacts, we apply very conservative convergence criteria. For each box, and for each overden-
sity ∆, we only consider haloes that contain more than 104 dark matter particles within r∆. We then construct
catalogues applying the lower mass limits shown in Table 5.1. We further apply an upper mass limit that cor-
responds to the lower limit of the next larger box, or to 1016M� for the largest boxes (see also Figure 5.1). We
extract cluster catalogues at seven redshifts2 that are roughly equally spaced in cosmic time with ∆t ∼ 1.6 Gyr.
This time step is chosen to be larger than the typical dynamic time of a cluster, and we therefore work under
the assumption that there is no correlation between the different snapshots.

5.3 Analysis Method

We provide the theoretical background on the halo mass function and introduce the fitting form we will adopt.
We also present the method used to perform the multi-dimensional fits when analysing the cluster catalogues
extracted from our simulations.

5.3.1 The halo mass function

The comoving number density of haloes of mass M is

dn
dM

= f (σ)
ρ̄m

M
d lnσ−1

dM
, (5.1)

with the mean matter density ρ̄m (at redshift z = 0), and

σ2(M, z) ≡ 1
2π2

∫
P(k, z)Ŵ2(kR)k2dk, (5.2)

which is the variance of the matter density field P(k, z) smoothed with the Fourier transform Ŵ of the real-space
top-hat window function of radius R = (3M/4πρ̄m)1/3. The function f (σ) is commonly parametrized as

f (σ) = A
[(
σ

b

)−a
+ 1

]
exp

(
− c
σ2

)
(5.3)

with four parameters A, a, b, c that need to be calibrated (e.g. Jenkins et al. 2001). Here, A sets the overall
normalization, a and b are the slope and normalization of the low-mass power law, and c sets the scale of a
high-mass exponential cutoff. The function f (σ) has been shown to be approximately universal (Jenkins et al.
2001), meaning that it is only weakly dependent on redshift and cosmology.

In this work we allow departures from universality by parametrizing a possible redshift dependence as a

2For the Hydro runs, we use Box4/uhr for redshifts z ≥ 0.13.
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Figure 5.1 Mass function dN/d log10 M from our Hydro and DMonly simulations. The data points are slightly
offset in mass for better readability. We also show the best-fitting functions for Hydro (solid lines) and DMonly
(dashed lines) which, however, are hardly distinguishable in this figure given its dynamic range.

power law of 1 + z:

A(z) = A0(1 + z)Az

a(z) = a0(1 + z)az

b(z) = b0(1 + z)bz

c(z) = c0(1 + z)cz (5.4)

where the subscript 0 denotes the values at redshift z = 0, and where Az, az, bz, cz are additional fit parameters.
Note that many authors assume the cutoff scale c to be constant under the assumption of self-similarity (e.g.
Tinker et al. 2008; Watson et al. 2013).

5.3.2 Mass function for spherical overdensity masses
Many studies of the halo mass function are performed using the FoF technique. For a linking length b ' 0.2,
the resulting mass function is very close to being universal (Jenkins et al. 2001). However, for observational
reasons, real cluster masses are measured in terms of spherical overdensity masses. When using a suitable
spherical overdensity ∆mean ∼ 180, the above mass function fitting formula is still close to being universal
(Jenkins et al. 2001). Similarly, Tinker et al. (2008) use ∆200m as their universal mass definition, and Watson
et al. (2013) argue for ∆178m. These overdensity definitions are all very similar; we adopt ∆200m in this work.

We also want to calibrate the mass function for M500c, which is a convenient mass definition within X-ray
studies of clusters where the emission cannot easily be traced beyond r500c, and for M200c, which is used for
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Figure 5.2 Number density of clusters from our simulations relative to the fit by Tinker et al. (2008) for over-
density masses M200m (left panels) and M500c (right panels). The coloured regions correspond to the 2σ allowed
regions of our fits, and the data points are slightly offset in mass for better readability. The red line shows the fit
by Watson et al. (2013), which for M200m exhibits a similar high-mass behavior as ours, predicting less clusters
than Tinker et al. (2008).
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measurements of cluster galaxy velocity dispersions and of weak gravitational lensing shear profiles. It is not
a priori clear that one can simply use the same form of the fitting function that is valid for M200m, as one might
miss some redshift and cosmology dependent behavior. Remember, for example, the very different redshift
evolutions of ρ̄m(z) and ρcrit(z).

Tinker et al. (2008) provide the mass function for a range of different ∆mean, and one uses ∆mean(z) =

∆crit/Ωm(z) to convert from critical to mean density as a function of redshift. Their approach relies on the
implicit assumption that the fitting function correctly captures the behavior for every ∆mean. Watson et al.
(2013) provide a correction to their ∆178m mass function that depends on ∆mean(z).

For now, we focus on ∆500c, and we choose the following approach: Assuming that the mass function
dn/dM200m is universal, the mass function in M500c can be expressed as

dn
dM500c

=
dn

dM200m

dM200m

dM500c
= f (σ)

ρ̄m

M500c

d lnσ−1

dM500c
× M500c

M200m
. (5.5)

This mass function should have the same universal properties as the mass function in M200m.
The crucial, evolving part is now captured in the factor M500c/M200m. These masses can be converted from

one to the other assuming a cluster density profile (e.g. Navarro et al. 1997) and a mass-concentration relation
(e.g. Duffy et al. 2008). Therefore, the conversion depends on mass, redshift, and Ωm (which is involved in the
overdensity conversion). The following prescription is a good fit at the few percent level in the range 0 < z < 2,
1013 < M500c/M� < 2 × 1016, and 0.1 < Ωm < 0.5:

M500c

M200m
≡ α + β ln M500c. (5.6)

The parameters α and β are functions of Ωm and redshift:

β(Ωm) = −1.70 × 10−2 + Ωm 3.74 × 10−3

α(Ωm, z) = α0
α1 z + α2

z + α2

α0(Ωm) = 0.880 + 0.329 Ωm

α1(Ωm) = 1.00 + 4.31 × 10−2/Ωm

α2(Ωm) = −0.365 + 0.254/Ωm. (5.7)

Note that the fit relies on cluster density profiles and a mass-concentration relation that were calibrated
against (dark matter only) N-body simulations. Also, one should expect the presence of some scatter in these
relations. For these reasons, we do not expect that simply applying Equation 5.5 to the M200m mass function is
sufficient to fully describe the mass function in M500c. Therefore, in addition to applying the M500c/M200m fit
and Equation 5.5, we also fit for all 8 free parameters of Equations 5.3 and 5.4.

In an analogous way, we establish the mass function for ∆200c. It is presented in the Appendix.

5.3.3 Finite volume correction
Throughout this work, we use cluster samples produced by simulations to understand the mass function ob-
served in the real Universe. However, there is one subtle difference that needs to be accounted for: in contrast
to the Universe, every simulation box is finite in size. Therefore, we can only capture modes in the density field
that are smaller than Lbox. This means that there is an upper mass limit corresponding to the longest modes,
beyond which the simulations will systematically underestimate the number of objects.

We correct for this effect following the approach of previous analyses (Lukić et al. 2007; Bhattacharya et al.
2011; Watson et al. 2013). Briefly, the variance of fluctuations σ(M) is corrected by subtracting the variance at
scales corresponding to the box size σ(Rbox):

σ2
corrected(M) = σ2

theory(M) − σ2(Rbox), (5.8)
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Table 5.2 Best-fitting mass function parameters for DMonly and Hydro simulations. The covariance matrix for
Hydro M500c is shown in Table 5.3. The mass functions for M500c and M200c are calculated from Equations 5.5
and 5.10, respectively.

Parameter χ2/ν (N > 10) A a b c Az az bz cz
M200m
DMonly 0.84 0.216 1.87 2.02 1.31 0.018 −0.0748 −0.215 −0.0689
Hydro 1.09 0.240 2.43 1.65 1.41 0.365 −0.129 −0.453 −0.138
M200c
DMonly 1.06 0.256 2.01 1.97 1.59 0.218 0.290 −0.518 −0.174
Hydro 1.11 0.290 2.69 1.58 1.70 0.216 0.027 −0.352 −0.226
M500c
DMonly 0.87 0.390 3.05 1.72 2.32 −0.924 −0.421 0.190 −0.509
Hydro 0.81 0.322 3.24 1.71 2.29 0.0142 −0.219 −0.275 −0.428

Table 5.3 Covariance matrix for our Hydro mass function in M500c. The corresponding best-fitting values are
shown in Table 5.2.

A a b c Az az bz cz

A 1.77 × 10−3 8.29 × 10−3 −4.77 × 10−3 2.20 × 10−3 −7.42 × 10−3 −2.38 × 10−3 3.45 × 10−3 −9.54 × 10−4

a 7.52 × 10−2 −2.26 × 10−2 2.47 × 10−2 −2.25 × 10−2 −2.25 × 10−2 9.89 × 10−3 −1.27 × 10−2

b 1.45 × 10−2 −4.89 × 10−3 2.15 × 10−2 7.75 × 10−3 −1.14 × 10−2 2.14 × 10−3

c 9.64 × 10−3 −3.37 × 10−3 −6.38 × 10−3 7.88 × 10−5 −5.03 × 10−3

Az 1.17 × 10−1 3.96 × 10−2 −6.64 × 10−2 6.91 × 10−3

az 3.26 × 10−2 −2.34 × 10−2 1.12 × 10−2

bz 4.09 × 10−2 −2.50 × 10−3

cz 5.98 × 10−3

where, for simplicity, we equate the spherical volume 4/3πR3
box to the cubical simulation volume L3

box. How-
ever, as we apply upper mass limits to the cluster samples (see Section 5.2.2), the correction has negligible
impact on our analysis. In fact, for each box size, the correction would become important at masses that are
about 2 orders of magnitude larger than the corresponding upper mass limit we apply. We test these finite vol-
ume effects by reproducing the results presented in Section 5.4 without the correction; in this case, the results
do not significantly change. Nevertheless, we apply the correction to each of our boxes.

5.3.4 Parameter estimation

We use a Bayesian likelihood approach, which allows us to correctly capture the Poisson errors on the measured
number of clusters as a function of their mass and redshift. This choice differs from using (Gaussian) χ2

statistics (e.g. Tinker et al. 2008), or corrections to χ2 statistics to account for the Poisson errors (e.g. Watson
et al. 2013).

The likelihood at each point p in parameter space is calculated in the following way: We calculate the
matter power spectrum using the transfer function of Eisenstein & Hu (1998, 1999), taking baryonic effects
into account. This is the same prescription used to set up the initial conditions of the Magneticum simulations.
We evaluate the likelihood L by applying Poisson statistics in log-spaced mass bins of size ∆ log10 M = 0.1
(Cash 1979):

lnL =
∑

i

ln
dn(Mi|p, zi)

dM
−

∫
dn(M|p, z)

dM
dM, (5.9)

up to an arbitrary constant, and where i runs over all clusters in the sample. The second term equals the total
number of expected clusters. We have checked that decreasing the bin size does not change our results.

In practice, given a set of parameters p, we perform the above calculation for each redshift and for each
of the simulation boxes, and sum the log-likelihoods. When fitting for the mass function in this way, we are
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facing a problem with moderately large dimensionality (8 free parameters); we utilize the emcee3 code for
efficient exploration of parameter space (Foreman-Mackey et al. 2013). We test our fitting procedure against
several mock catalogues that contain a factor 100 times more clusters than our simulation data. In these tests
we recover the input values within the statistical uncertainties and conclude that our fitting method is unbiased
to a level that is much smaller than the uncertainties we report.

5.4 Magneticum mass functions
In Figure 5.1, we show the number density of haloes from our Hydro and DMonly simulations at seven different
redshifts. The error bars show the Poisson uncertainty on the measured numbers. We also show the best-fitting
functions for both data sets. Note that the differences in shape and amplitude of the mass function that we are
going to discuss throughout this work are on the order of ∼ 10% and are therefore hardly visible in this figure
given its large dynamic range.

5.4.1 Impact of baryons
The impact of baryons can be seen in Figure 5.2. We show the number density of clusters from our simulations
relative to the Tinker et al. (2008) fitting function. The colored bands correspond to the allowed 2σ region of
our fits. For reference, the red line shows another dark matter only fitting function (Watson et al. 2013).

The left panels of Figure 5.2 show the mass function for spherical overdensity masses M200m. Overall, our
DMonly results agree well with the literature studies. On the high-mass end, the Tinker et al. (2008) fit shows
some differences with both our simulations and Watson et al. (2013), and seems to overestimate the abundance
of these objects by ∼ 30%. However, this is for large masses greater than ∼ 2 × 1015M�, which is just outside
of the mass range M . 1015h−1M� of the fit by Tinker et al. (2008). Our samples also start to run out of objects
at ∼ 2 − 3 × 1015M� but our fit agrees pretty well with Watson et al. (2013) who trust their fit up to nearly
1016M�.

The comparison of our DMonly and Hydro simulations tells an interesting story: At z = 2, the highest
redshift we consider, there is essentially no difference between our DMonly and Hydro mass functions. As
time goes by and structure formation continues, baryonic effects become important. At redshift z ∼ 1, we
observe that baryon depletion is important for low-mass clusters up to ∼ 1014M�. At fixed mass, this reduces
the number density of clusters by ∼ 10%. Further following the redshift evolution, we observe that the effects
of baryon depletion propagate up to more massive clusters. For low redshifts z . 0.3, our Hydro mass function
is low by about 10% compared to the DMonly case.

The right panels of Figure 5.2 show the mass functions for M500c. The differences between our Hydro
and DMonly data follow the discussion above, with the Hydro abundance being about ∼ 10% low compared to
DMonly. Again, we observe that our simulations predict significantly less high-mass clusters M & 1015M� than
Tinker et al. (2008). This time however, our mass functions also prefer an overall lower abundance by about
∼ 20% than Tinker et al. (2008). The fitting function by Watson et al. (2013) predicts even lower abundances
that are typically 20% to 40% lower than the Tinker et al. (2008) mass function over the full mass range.

The fact that all mass functions considered here agree quite well for M200m, and much less for M500c might
provide a hint for systematic differences in the analysis methods employed. We propose two effects that could
(at least partially) explain these differences. First, M500c probes a more central, and much smaller part of
a cluster than M200m. Therefore, care must be taken to prevent resolution effects from becoming important.
We use a minimum number of 104 dark matter particles enclosed within r∆ for all values of ∆ we consider.
Tinker et al. (2008) use a mass re-scaling for overdensities larger than ∆600m. Watson et al. (2013) fit for
overdensities up to ∆1600m, corresponding only to ∆432c at redshift 0. Second, in all cases the fitting function
for ∆200m is given by Equations 5.1–5.4, which leaves little room for differences in the analysis method. For
∆500c, however, the situation is different. We follow the method described in Section 5.3.2, Tinker et al. (2008)

3http://dan.iel.fm/emcee/current
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Figure 5.3 Selection functions we use to generate idealized representations of the SPT, Planck and eROSITA
cluster catalogues.

present their fit parameters for a range of values for ∆m, and Watson et al. (2013) provide a fitting function for
different overdensities ∆m ≤ 1600. These different approaches could indeed lead to different results, and we
will come back to this later in Section 5.5.

5.4.2 Mass function fits
In Table 5.2, we present the parameters that maximize the likelihood for the data obtained from our DMonly
and Hydro simulations. For reference, we estimate the χ2 per degree of freedom ν at the best-fitting location,
assuming Poisson errors on the number of objects in each bin. We therefore only take bins with more than 10
haloes into account. The values of χ2/ν obtained in this way all lie between 0.8 − 1.1.

The parameters for ∆200m can be directly compared with the literature, and as expected from Figure 5.2,
there is reasonably good agreement. In particular, for DMonly, we find a value of the exponential cut-off

scale c = 1.31 ± 0.04 that is in very good agreement with Watson et al. (2013), but significantly larger than
c = 1.19 in Tinker et al. (2008). Note that a large value of c corresponds to a low cut-off scale in mass (see
Equation 5.3), in agreement with the behavior shown in Figure 5.2. Finally, in the DMonly case, we find mild
evidence for redshift-evolution of the cut-off scale, cz = −0.07 ± 0.05; this evolution is stronger for Hydro,
where cz = −0.14 ± 0.03.

The parameters for ∆200c and ∆500c are relevant for observational studies. For the latter, we also show
the covariance matrix for the Hydro mass function parameters in Table 5.3. It should be used with the best-
fitting parameters from Table 5.2 to capture the uncertainties related to our mass function. For reference, the
uncertainty on the normalization A is about 13%.

5.5 Cosmological impact

There are differences between the mass functions extracted from our Hydro and DMonly simulations, and fits
from the literature. When used to interpret real cluster samples, the different mass functions will ultimately lead
to different cosmological results. In the following, we quantify and discuss this effect. To this end, we create
simulated cluster catalogues using our best-fitting Hydro mass function, and use either the Hydro, the DMonly,
or literature fits to perform cosmological analyses. Because the baryonic impact on the mass function depends
on mass and redshift, we expect qualitatively different shifts when using different mass functions depending on
the specific properties of a cluster survey. Therefore, we create and analyse three sets of simulated catalogues,
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Table 5.4 Mean recovered cosmological parameter values from different mass functions for simulated cluster
samples. We do not show errors because we are interested in absolute shifts only.

Parameter Ωm σ8 σ8(Ωm/0.27)0.3

Input 0.272 0.809 (0.8108)
SPT-like sample
Hydro 0.278 0.805 0.813
DMonly 0.283 0.802 0.814
Tinker08 0.252 0.785 0.769
eROSITA-like sample
Hydro 0.272 0.810 0.811
DMonly 0.261 0.813 0.805
Tinker08 0.252 0.784 0.768
Planck-like sample
Input 0.316 0.83 (0.8701)
Hydro 0.323 0.824 0.870
DMonly 0.321 0.827 0.871
Tinker08 0.335 0.773 0.825

whose properties approximately match real samples from the South Pole Telescope (SPT; Carlstrom et al.
2011), the Planck satellite (Tauber et al. 2010) and eROSITA (Predehl et al. 2014). The selection functions we
assume are shown in Figure 5.3 and will be discussed in more detail. All samples are defined with respect to
M500c.

We use the fit method described in Section 5.3, but we now fit for the cosmological parameters, and keep
the mass function parameters fixed. Since no covariance matrix is available for the literature mass functions
we compare to, we use our best-fitting parameters without uncertainties, too, in order to make a comparison on
equal footing. However, we also show how using the covariance matrix mildly degrades the results. We restrict
this analysis to the parameters Ωm and σ8, which strongly affect the measured cluster abundance. Remember
that these parameters enter the mass function calculation in Equation 5.1 through their impact on the matter
power spectrum P(k, z) and the matter density ρ̄m. The Ωm-σ8 likelihood contours from the cluster number
counts experiment exhibit a characteristic, elongated degeneracy in the Ωm-σ8 plane (see Figures 5.4 & 5.5(b)).
The parameter combination σ8(Ωm/0.27)0.3 is interesting because it reflects the width of this degeneracy, i.e.
the direction in Ωm-σ8 space which is best constrained using clusters. We show the constraints we recover on
this parameter combination, too.

In this test, we directly use the simulated cluster masses. That is, we do not include any systematic uncer-
tainties and measurement errors related to mass estimations as one would have to do for a real cluster sample.
This also means that the uncertainties we present represent the statistical uncertainties related to the sample
size, and cannot be compared directly with actual results from real data. The aim of this analysis is to inves-
tigate and quantify offsets related to the mass function, which justifies this simplified approach. For this same
reason, we choose not to quote the errors on the recovered parameters.

The typical uncertainties on the cosmological parameters from current cluster samples areσ(Ωm) ∼ σ(σ8) ∼
σ(σ8(Ωm/0.27)0.3) ∼ 0.03 (e.g. Planck Collaboration et al. 2014c; Mantz et al. 2015). We will refer to these
characteristic numbers in the following.

5.5.1 Cosmological analysis of an SPT-like cluster sample

While the SPT sample is selected through the cluster Sunyaev–Zel’dovich effect (SZE; Sunyaev & Zel’dovich
1972) signature, we approximate the catalogue as mass-selected with M > 3× 1014M�, and restrict to redshifts
z > 0.25 (see Figure 5.3 and cf. Bleem et al. 2015). For the SPT survey of size 2500 deg2, our simulated
catalogue contains ∼ 700 systems. We consider three different input cosmologies with different values of
Ωm = 0.22, 0.272, 0.4 with the same σ8 = 0.809 in each case. A subset of the results appear in Table 5.4 and
Figure 5.4.
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(a) Results for input Ωm = 0.272.
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(b) Results for input Ωm = 0.22.

Figure 5.4 Cosmological results from simulated SPT-like cluster samples, created using our Hydro mass func-
tion. The two different input cosmologies are marked by the dashed lines, in both cases σ8 = 0.809. We
show likelihood contours (68% and 95% confidence) in Ωm-σ8-σ8(Ωm/0.27)0.3 space. Results obtained from
different mass functions are colour-coded. The baryonic impact of the halo mass function is negligible for this
high-mass and high-redshift sample. In both cases there is a shift toward larger values of Ωm and σ8 compared
to when using Tinker et al. (2008). The constraints obtained from Watson et al. (2013) are tighter, but seem to
be biased towards Ωm ∼ 0.27. See discussion in the text for more details.
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(a) Results for a simulated Planck-like cluster sample. The in-
put cosmology is chosen to match the Planck CMB constraints.
Given the large mass limit of the sample there is little difference
between the results from our Hydro or DMonly mass functions.
Using the Tinker et al. (2008) fit, however, leads to a measure-
ment of σ8 that is low by ∆(σ8) ∼ 0.05.
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(b) Result for a simulated eROSITA-like cluster sample. For this
sample, there is a difference between the results from the Hydro
and the DMonly mass functions, which is due to the impact of
baryons. Neglecting the baryonic impact on the mass function
leads to an underestimate of ∆(Ωm) ∼ −0.01. We also observe an
offset between DMonly and Tinker et al. (2008).

Figure 5.5 Cosmological results from simulated realizations of approximations to the Planck and eROSITA
cluster samples, created using our Hydro mass function. The input cosmologies are marked by the dashed
lines. We show likelihood contours (68% and 95% confidence) in Ωm-σ8-σ8(Ωm/0.27)0.3 space. Results
obtained from different mass functions are colour-coded.

The results from both our Hydro and DMonly mass functions show nearly perfect agreement, indicating that
the effect of baryons on the halo mass function is negligible in this case. This is expected, because, as previously
noted, the impact of baryons is most important for low-mass clusters at low redshifts (see Section 5.4.1). The
SPT-like survey does not probe this mass and redshift regime.

The constraints we obtain using the Tinker et al. (2008) fit are somewhat off, with ∆(Ωm) ' −0.03 and
∆(σ8) ' −0.02 compared to the Hydro. These shifts are roughly consistent throughout the range of input
cosmologies, and can be interpreted as the systematic offset between the mass functions. Note that they are of
the same order as the typical uncertainties from current cluster surveys.

The constraints obtained from the Watson et al. (2013) fit are slightly tighter than the ones just discussed.
However, these results seem to be biased toward Ωm ∼ 0.27. For example, the preferred value recovered for
the sample with input Ωm = 0.22 is Ωm(Watson) = 0.243, and we further obtain Ωm(Watson) = 0.309 for an
input value Ωm = 0.4. Their assumed form of the redshift dependence of the fit parameters (Equation 5.4 in this
work, Equations 13-15 in Watson et al. 2013) involves Ωm(z). We suspect that this parametrization introduces
an implicit and spurious preference for Ωm ∼ 0.27, which is their simulation input value. We will not consider
the Watson et al. (2013) for the rest of this work.

We presented the covariance matrix for the Hydro mass function parameters in Table 5.3. We repeat the
cosmological analysis using the Hydro mass function and its parameter covariances, and infer the additional
systematic uncertainties σMF using quadrature addition. We find σMF(Ωm) = 0.013 and σMF(σ8) = 0.0071, and
conclude that the systematic uncertainties on our mass function are small compared to the total uncertainties
from current, real cluster samples.
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5.5.2 Cosmological analysis of a Planck-like cluster sample

The Planck cluster sample is selected using the SZE, too, and extends down to redshift z = 0. However,
the satellite’s beam is larger than the SPT beam, and the survey mass limit varies significantly with redshift.
We mimic the Planck selection function following the sample mass-redshift distribution shown in Figure 1 in
Planck Collaboration et al. (2015b). We further assume a hydrostatic bias of 1−b ' 0.8, which then leads to the
selection function we show in Figure 5.3. For this exercise, we choose our input cosmology to match the values
preferred by the Planck CMB anisotropy measurement (Ωm = 0.316, σ8 = 0.83, H0 = 67.3 km s−1 Mpc−1;
Planck Collaboration et al. 2015a). Assuming a sky coverage of 65%, the simulated catalogue contains ∼ 600
clusters.

The results are shown in Table 5.4 and Figure 5.5(a). We recover very similar constraints on Ωm using either
mass function, even though the result from Tinker et al. (2008) is slightly high by 0.01. We recover identical
constraints on σ8 using either the Hydro or DMonly mass functions, but the result obtained from Tinker et al.
(2008) is significantly lower by ∆(σ8) ' −0.05. The parameter σ8(Ωm/0.27)0.3 is low by a similar amount.
This offset is qualitatively similar to – but larger than – the offset in our analysis of the SPT-like sample.

In their cluster cosmology analysis, the Planck collaboration has reported an apparent disagreement with
parameters preferred by the CMB anisotropy measurements. This tension can be alleviated to some extent by
adopting a more realistic treatment of the hydrostatic bias (Planck Collaboration et al. 2014c). In their latest
analysis, the Planck collaboration considers measurements of the bias from several different authors; still all
results have in common that the recovered value of σ8 is low by roughly 0.05−0.13 (Planck Collaboration et al.
2015b). Using our mass function instead of Tinker et al. (2008) would lead to a shift in σ8 by about +0.05,
which would remove the difference between the Planck clusters and the CMB constraints.

5.5.3 Cosmological analysis of an eROSITA-like cluster sample
The eROSITA cluster sample will be X-ray flux selected and extend from redshift z = 0. For the present test,
we assume a detection limit of 50 photons in the 0.5 − 2.0 keV band with a typical exposure time of 1.6 ks.
We model this selection as a combination of a redshift-dependent mass threshold M > 2.3 z × 1014M�, with an
additional mass cut M > 7 × 1013M� (see Figure 5.3 and compare with Figure 2 in Pillepich et al. (2012), and
also Merloni et al. (2012); Borm et al. (2014)). The eROSITA full-sky catalogue simulated in this way contains
∼ 1.5 × 105 clusters.

The results of the analysis of this sample appear in Table 5.4 and Figure 5.5(b). The recovered constraints
are very tight due to the large cluster sample and the fact that we do not include mass measurement uncertainties.
Once again, there is an offset between the results from Hydro and Tinker et al. (2008). However, while the
constraints on σ8 from Hydro and DMonly are very similar, we now recover different values of Ωm. This is
an indication that baryonic effects are indeed important for this sample. As previously discussed, baryons have
their strongest impact on the halo mass function at low redshifts and for low masses, which is a regime that
is well probed by eROSITA. Therefore, neglecting the baryonic impact and using the DMonly mass function
would lead to an underestimate of ∆Ωm ' −0.01. This bias is of the same order as the expected constraints
from eROSITA σ(Ωm) ' 0.012 (Pillepich et al. 2012), meaning that the impact of baryons on the mass function
will have to be accounted for in the cosmology analysis.

5.6 Discussion and Conclusions

We investigate the impact of baryons on the halo mass function using the hydrodynamic Magneticum simula-
tions together with dark matter only counterparts. Our simulations and the halo selection are characterized by
(1) a treatment of the baryonic component and of AGN feedback that correctly reproduces several observations
such as AGN luminosity functions (Hirschmann et al. 2014) and cluster pressure profiles (Planck Collabora-
tion et al. 2013; McDonald et al. 2014), (2) large cosmological volumes probed by boxes of up to ∼ 2 Gpc3,
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which allow us to track cluster masses up to a few×1015M� (e.g. Saro et al. 2014), and (3) a conservative halo
selection with > 104 dark matter particles within r∆, minimizing potential biases related to numerical resolu-
tion. To avoid a different sampling of the initial density fluctuations, all DMonly simulations were run using
two species of dark matter with masses corresponding to those of the dark matter and baryonic particles in the
Hydro simulations.

We find that the presence of baryons tends to decrease the cluster masses, which – given the shape of the
halo mass function – leads to a decrease of the expected number of objects for a given mass (see Figures 5.1
and 5.2). The number density of haloes decreases by up to ∼ 15% for low masses . few×1014M� and at low
redshifts z . 0.5. At higher masses and redshifts, the Hydro mass functions agree very well with our DMonly
results. Qualitatively similar results have been recently presented in other publications (Cusworth et al. 2014;
Schaller et al. 2014; Velliscig et al. 2014; Vogelsberger et al. 2014). In contrast to these results, Cui et al. (2014)
report that their hydro mass function is ∼ 20% below their DMonly counterpart with no significant mass or
redshift dependence, and Martizzi et al. (2014) find a mild increase of the mass function due to baryons.

Comparing both our Hydro and DMonly mass functions with the most commonly used DMonly fit (Tinker
et al. 2008), we find that our fits predict significantly fewer objects at high mass (& 1015M�). A similar
observation has been made by Watson et al. (2013), who further argue that these high masses are beyond the
range of validity of the Tinker et al. (2008) analysis.

Real cluster samples selected in the X-ray or SZE are typically defined using M500c and M200c masses.
However, the mass function shape varies only weakly with redshift and cosmology when masses are defined
either by FoF with b ' 0.2, or for spherical overdensity ∆mean ∼ 200. Therefore, we introduce a mapping
between M500c (M200c) and M200m as a function of mass, redshift, and Ωm, and argue that this allows us to use
the universal properties of ∆200m also for masses defined by ∆500c (∆200c). In practice, our mass function fits are
used as follows:

• Calculate σ(M, z) using Equation 5.2.

• Calculate f (σ, z) from Equations 5.3 & 5.4, using the parameters from Table 5.2.

• For ∆200m: The mass function is given by Equation 5.1.

• For ∆500c: Calculate M500c/M200m from Equations 5.6 & 5.7, and obtain the mass function from Equa-
tion 5.5.

• For ∆200c: Calculate M200c/M200m from Equations 5.11 – 5.13, and obtain the mass function using Equa-
tion 5.10.

Note that the same approach could be used to propagate the universal behavior of the ∆200m mass function to
any overdensity ∆.

We investigate how the differences among our Hydro, DMonly and some previously published mass func-
tions affect cosmological results from cluster abundance measurements. To this end, we simulate idealized
representations of the SPT, Planck, and eROSITA surveys, assuming simplified selection schemes as shown in
Figure 5.3. We assume perfect knowledge of cluster masses M500c, and do not account for any uncertainties
or systematics related to mass-observable relations. Therefore, the cosmological parameter uncertainties we
recover here are tighter than the actual constraints that would be obtained in a comprehensive analysis of real
data. Moreover, neglecting the conversion from observable to mass would likely remove some cosmologi-
cal dependencies. However, this test can be used as guidance in understanding the impact of mass function
differences.

The results of these analyses can be summarized as follows (see also Figures 5.4 & 5.5 and Table 5.4):

• For the SPT-like sample, the impact of baryons is negligible, and we obtain identical cosmological results
using either our Hydro or DMonly mass functions. The fit by Tinker et al. (2008) leads to slightly lower
values of Ωm and σ8.
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• The mass function by Watson et al. (2013) seems to bias results toward Ωm ∼ 0.27. This may be due to
their parametrization of the redshift evolution of the mass function shape parameters using Ωm(z), which
results in a heightened and likely artificial cosmological sensitivity.

• The baryonic impact is negligible for the Planck-like sample, too. However, using our mass function
instead of Tinker et al. (2008) shifts the results by ∆(σ8) ' 0.05. This shift is comparable to the observed
difference between the latest Planck clusters and CMB constraints; using our mass function should there-
fore lead to good agreement between the two probes.

• The eROSITA sample extends to lower masses than the SPT and Planck catalogues. We observe an offset
in the results from Hydro and DMonly, which we identify as the impact of baryons. Neglecting this effect
leads to an underestimate of the matter density parameter ∆Ωm ' −0.01.

Part of the differences between the cosmological results recovered using our mass functions and using the
Tinker et al. (2008) mass function could be due to different parametrizations of the mass function for ∆500c.
In Tinker et al. (2008), the mass function is fit for 9 different values in a range of overdensities ∆mean from
200 − 3200. When working with critical overdensities, one must interpolate to the corresponding ∆mean(z) =

∆crit/Ωm(z). Therefore, when calculating the mass function for ∆500c, one interpolates to mean overdensities
from ∼ 500 to ∼ 1700, depending on redshift and matter density. As stated previously, there are indications that
the mass function is approximately universal only for ∆mean ∼ 200. Therefore, it is not clear that the approach
chosen for the Tinker et al. (2008) mass function fit would also provide universal mass functions. To avoid this
issue, we pursue a different approach in which we propagate the universal properties of the ∆200m mass function
to the overdensity definition of interest.

More work, both on the theoretical and on the numerical aspects of calibrating the mass function is needed
to be able to fully extract the cosmological information from near-future cluster samples. It is important to better
understand the cosmological dependencies of the fitting function, and to construct an analytic formula whose
universality – or indeed departure from universality – is well understood. Finally, a careful comparison of
cluster catalogues generated from different sets of numerical simulations would be helpful to better understand
the systematic uncertainties on the mass function.

We acknowledge the support of the DFG Cluster of Excellence “Origin and Structure of the Universe” and
the Transregio program TR33 “The Dark Universe”. The calculations have partially been carried out on the
computing facilities of the Computational Center for Particle and Astrophysics (C2PAP) and of the Leibniz
Supercomputer Center (LRZ) under the project IDs pr83li and pr86re.

Appendix: Spherical overdensity ∆200c

Applying the method described in Section 5.3.2, we also present the mass function for M200c

dn
dM200c

= f (σ)
ρ̄m

M200c

d lnσ−1

dM200c
× M200c

M200m
. (5.10)

We establish a mass-dependent fit for M200c/M200m

M200c

M200m
≡ γ + δ ln M200c, (5.11)

where γ and δ depend on Ωm and redshift as

γ(Ωm, z) = γ0 + γ1 exp

− (
γ2 − z
γ3

)2
δ(Ωm, z) = δ0 + δ1z (5.12)
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and

γ0(Ωm) = 3.54 × 10−2 + Ω0.09
m

γ1(Ωm) = 4.56 × 10−2 + 2.68 × 10−2/Ωm

γ2(Ωm) = 0.721 + 3.50 × 10−2/Ωm

γ3(Ωm) = 0.628 + 0.164/Ωm

δ0(Ωm) = −1.67 × 10−2 + 2.18 × 10−2 Ωm

δ1(Ωm) = 6.52 × 10−3 − 6.86 × 10−3 Ωm. (5.13)

This fit is accurate at the few percent level in the range 0 < z < 2, 1013 < M200c/M� < 2 × 1016, and
0.15 < Ωm < 0.5
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Chapter 6

Final remarks

After having presented the essence of my work conducted over the last few years, I would like to use this
last chapter to summarize what we have learned. Within the next years and decades a tremendous amount
of multi-wavelength cluster data will be gathered. Exploiting these data in an optimal way will only be pos-
sible if we know how these different datasets interact, and how they compare, each with their strengths and
weaknesses. This will be a challenging task that comprises both the astrophysical and cosmological aspects of
cluster physics. Hopefully, this thesis contributes a set of analysis methods and results to this endeavor.

We will start by summarizing the scientific results presented in this thesis. Then, we summarize the key
methodological features we developed and discussed. This summary naturally leads to a set of interesting
questions that still remain open, and to interesting analyses that are worth considering in the future.

6.1 Summary

We discussed a series of four studies in the area of cluster cosmology. The main scientific results of each
analysis are summarized in the following.

• In Chapter 2, we present a cosmological analysis using an SZE-selected galaxy cluster sample from the
first 720 deg2 of SPT-SZ survey data. The sample is combined with follow-up data from X-ray YX and
optical spectroscopy σv observations to carry out a calibration of the SPT mass-observable relation. The
cosmological fit is performed while simultaneously fitting for the parameters of the mass-observable
scaling relations, accounting for cluster selection effects.
We compare the constraints on the normalization of the SZE ζ-mass relation we obtain from the X-ray
and σv calibrations. Both agree at the 0.6σ level, which we argue is an important systematic cross-check
given the different calibration schemes. Using both calibration datasets jointly leads to modest improve-
ments on the normalization ASZ and the combination of cosmological parameters σ8(Ωm/0.27)0.3. We
compare our cluster-based results with constraints from CMB anisotropy measurements in the Ωm-σ8-
plane. Assuming massless neutrinos, the cluster+H0+BBN data differ from constraints from WMAP9
(Planck) at the 1.3σ (1.9σ) levels. Changing our baseline assumption to account for one massive neu-
trino (mν = 0.06 eV) reduces these differences to 1.0σ (1.5σ).
Each data combination prefers a different value of the normalization of the SZE mass-observable relation
ASZ, which implies different overall cluster mass scales. The calibration from YX leads to masses that
are about 44% of the value estimated from the combination with CMB anisotropy data. The calibration
from σv corresponds to ∼ 23%. These shifts correspond to 1.9σ and 0.8σ differences, respectively. We
perform a series of cosmological tests and analyze different models. In particular, we allow for a varying
dark energy equation of state parameter w and for a modified growth of cosmic structure parametrized
by γ. Our simultaneous constraints on both parameters (γ = 0.73 ± 0.28 and w = −1.007 ± 0.065 us-
ing clusters, CMB anisotropy measurements, BAO, and SNIa) are consistent with the predictions of the
standard ΛCDM model.
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• In Chapter 3, we cross-match SZE-selected cluster candidates from the full 2500 deg2 SPT-SZ survey
(Bleem et al. 2015) with an optically selected catalog extracted with the redMaPPer algorithm from the
DES science verification data DES-SVA1. The overlap between both surveys is 129.1 deg2, in which we
confirm 25 matches with SPT detection significances ξ > 4.5.
We present a calibration of the optical richness λ-mass scaling relation using mass estimates derived
from the SZE. The SZE mass-observable relation is determined by abundance matching the SPT catalog
within a fixed reference cosmology, and the richness-mass calibration is performed simultaneously. We
marginalize over the parameters of the SZE-mass relation. The redMaPPer λ-mass relation for SPT-SZ
selected clusters has small asymptotic intrinsic scatter D = 0.15+0.10

−0.07 and a slope B = 1.14+0.21
−0.18, consistent

with unity. Our constraints are in agreement with those of Rykoff et al. (2012).
Interestingly, a consistency test in which we take the large optical sample and evaluate the number of
expected SZE matches reveals a mild 2σ tension between the optical and SZE data. Future work benefit-
ing from the large region of overlap between the DES and SPT surveys will improve our constraints and
allow us to better characterize the optical and SZE properties of both cluster samples.

• In Chapter 4, we use a cluster sample extracted from the full 2500 deg2 SPT-SZ survey data to constrain
the growth of cosmic structure. The SZE-selected catalog contains 377 candidates, of which 82 have
additional X-ray YX measurements that are used for mass calibration. The mass calibration and cosmo-
logical analysis method closely follows the detailed descriptions in Chapter 2.
First, we consider a flat ΛCDM background cosmology, but describe the growth of structure with a phe-
nomenological parametrization involving the growth index γ. The prediction by GR is γGR = 0.55. Our
cluster sample, in combination with H0 and BBN priors, leads to a measurement of γ = 0.44 ± 0.13
which is lower than, but in agreement with, the theoretical expectation. A comparison with constraints
from CMB anisotropy data shows good agreement, too. It is worth noting that galaxy clusters provide
less degenerate constraints on this model than the CMB. In a final test, we also allow for the dark energy
equation of state parameter w to vary. Using our cluster and BBN+H0 data combination, we simulta-
neously constrain γ = 0.53 ± 0.15 and w = −1.30 ± 0.30. These measurements show no evidence for
tension with the ΛCDM model, although our recovered value for w is about 1σ low.
Our results are tighter than the ones obtained from other cluster samples (e.g., Mantz et al. 2015, who
used X-ray selected samples), and this is due to the greater redshift range covered by the SPT sample.
Wo argue that future studies, in which the SPT sample is combined with a low-redshift sample similar to
that in the Mantz et al. (2015) analysis will provide tighter and thus even more interesting results.

• In Chapter 5, we use the largest hydrodynamic simulations available to date to calibrate the halo mass
function (HMF) accounting for the effects of halo baryons. The simulations and our halo selection are
characterized by 1) treatment of the baryonic component and of AGN feedback that correctly reproduces
several observations such as cluster pressure profiles (Planck Collaboration et al. 2013; McDonald et al.
2014) and AGN luminosity functions (Hirschmann et al. 2014), 2) simulation boxes of up to ∼ 2 Gpc3

covering large cosmological volumes, and 3) a conservative halo selection with at least 104 dark matter
particles within the considered halo volume, minimizing potential biases related to numerical resolution.
Compared to our dark matter-only control simulations, we find that the presence of baryons decreases
the cluster masses. Conversely, at fixed mass, the number density of haloes decreases by up to ∼ 15%
for low-mass clusters . few×1014M� and at low redshift z . 0.5. At higher masses and redshift, the
difference vanishes. We establish fitting formulae for different cluster mass definitions. We argue that
each mass definition implies a slightly different shape of the fitting function to preserve universality of
the fit with respect to redshift and cosmology.
Finally, we use idealized simulated representations of the SPT, Planck, and eROSITA cluster surveys
to discuss the impact of our HMF fits. We confirm that baryons have a negligible impact for current
surveys such as SPT and Planck, which essentially probe the high mass end of the cluster population.
However, baryonic effects will for sure be important for future surveys such as eROSITA, which will
detect clusters down to 5 × 1013M�/h. In such a survey, neglecting the baryonic effects could lead to
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biases on cosmological parameters that are of the same order as the expected overall error budget. More
work on both the numerical and theoretical aspects of the HMF is therefore needed to be able to extract
all cosmological information from such near-future cluster catalogs.

6.2 Discussion and Outlook

In this thesis, besides producing interesting and new cosmological constraints, we develop and implement a
range of different analysis methods. They mark a path toward conducting new studies that are less subject to
systematic biases with existing or new data.

Firstly, we develop a framework for conducting cosmological analyses. While this essentially builds upon
existing work, there are still individual contributions that are worth mentioning. The wall clock run time of
any cosmological fit is a key measure of the productivity during the time of a project. To start with, it has
proven useful to test any code against sets of simulated data that are at least an order of magnitude larger
than the real sample to be studied to eliminate statistical noise. Then, in order to get a good sense of the
reliability of any result, and to test different modifications of the analysis method, or to consider different data
combinations, one ideally wants to run any analysis several times before producing the final, publication-ready
results. Therefore, since the beginning of my PhD project, we have used state-of-the-art, efficient likelihood
sampling algorithms. The obvious downside of this approach is that we cannot not take advantage of existing
common samplers. However, we believe that the gain in computational efficiency is worth the additional time
invested in implementing faster, parallel algorithms. Finally, there is also some benefit in better understanding
the employed techniques and getting familiar with some of their technical aspects.

Secondly, we gain a lot of experience with multi-wavelength mass calibration of galaxy clusters. In a
first stage, we design a framework that allows us to jointly use two or more follow-up mass measurement
techniques, while properly accounting for selection effects. Then, while implementing this method, we keep
an eye on the numerical execution speed. For the latest project, we expand our mass calibration method to
allow for correlated scatter among different observables. By now, we have successfully worked on SZE data
from SPT, X-ray YX, galaxy velocity dispersions, and optical richnesses. In ongoing projects, we expand these
methods to also implement mass calibration from weak gravitational lensing (e.g., Dietrich, Bocquet, et al. in
prep.; Gangkofner, Bocquet, et al. in prep.).

Thirdly, we use the cluster data in a cosmological context. Besides constraining common extensions
beyond ΛCDM such as wCDM or allowing for varying neutrino masses, we also investigate possible departures
from the growth rate of structure as predicted by General Relativity. While our results show no evidence of a
departure from the fiducial model, this kind of test will be crucial as cosmological cluster datasets improve in
quality.

Fourthly, we work on the modeling of the HMF using large cosmological hydrodynamic simulations. This
project stands out as being a little different because it focuses on a more theoretical aspect of cluster cosmology.
We argue that the functional form of the fitting function depends on the choice of cluster mass definition and
provide fitting functions for some common definitions. Applying our fitting function to simulated cluster survey
data, we show that current cluster samples are basically not affected by baryonic effects on the HMF, simply
because the mass threshold is typically quite large. However, samples that will be available in the near future
could very well be significantly affected, and neglecting halo baryons could then lead to significantly biased
cosmological constraints.

By the end of this thesis, we have come up with a very powerful and flexible set of cosmological analysis
methods and tools. These can be applied to existing data to conduct other very interesting multi-wavelength
mass calibration and cross-calibration studies. In particular, our experience on SPT data allows for a lot of
science cases given the overlap with the optical Dark Energy Survey (DES). For example, we are actively
working on constraining cluster masses through weak gravitational lensing of SPT clusters using DES. These
mass measurements can then be used to constrain the SPT mass-observable relation (Gangkofner, Bocquet, et
al., in prep.). This will ultimately allow for tight and robust cosmological constraints. While the DES survey
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data increases, a more detailed joint analysis of the SPT ξ-mass and the DES richness-mass relations can be
performed (Saro et al., in prep.). Besides producing scientific results on existing data, our framework can also
be used to help design upcoming or future cluster surveys as eROSITA or Euclid. Because mass calibration is
the most important systematic limit, it is crucial to quantify the specific needs for follow-up campaigns well in
advance.

Given the effort to obtain high-quality survey and mass calibration data, it is also important to continue
developing phenomenological tests of the cosmological model that can be challenged by the data. In this
thesis, we have considered various extensions of the standard flat ΛCDM model and argued that clusters are
uniquely sensitive to some of these extensions. It is of primary importance to continue pushing in this direction
to fully exploit the huge potential of current and future cluster data.

The future of cluster cosmology is bright, with several high-quality surveys being conducted or coming up.
It is our task to continue improving analysis methods, understand the data, and design the framework to exploit
the full power of these data sets. I am looking forward to seeing the field evolve and working on solving the
challenges that we will have to face!



Bibliography
Abell, G. O. 1958, ApJS, 3, 211

Aihara, H., et al. 2011, ApJS, 193, 29

Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARA&A, 49, 409

Anderson, L., et al. 2012, MNRAS, 427, 3435

Andersson, K., et al. 2011, ApJ, 738, 48

——. 2010, submitted to apj, arXiv:1006.3068

Andreon, S., & Congdon, P. 2014, A&A, 568, A23

Angulo, R. E., Springel, V., White, S. D. M., Jenkins, A., Baugh, C. M., & Frenk, C. S. 2012, MNRAS, 426,
2046

Annis, J., et al. 2014, ApJ, 794, 120

Appenzeller, I., et al. 1998, The Messenger, 94, 1

Applegate, D. E., et al. 2014, MNRAS, 439, 48

Ascaso, B., Wittman, D., & Dawson, W. 2014, MNRAS, 439, 1980

Banerji, M., et al. 2015, MNRAS, 446, 2523

Barbosa, D., Bartlett, J., Blanchard, A., & Oukbir, J. 1996, A&A, 314, 13

Barrena, R., Biviano, A., Ramella, M., Falco, E. E., & Seitz, S. 2002, A&A, 386, 816

Bartlett, J. G., & Silk, J. 1994, ApJ, 423, 12

Battye, R. A., & Weller, J. 2003, Phys. Rev. D, 68, 083506

Becker, M. R., & Kravtsov, A. V. 2011, ApJ, 740, 25

Benson, B. A., et al. 2013, ApJ, 763, 147

Beutler, F., et al. 2011, MNRAS, 416, 3017
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