4 research outputs found

    Catalytic decomposition of formic acid using supported metal nanoparticles

    Get PDF
    Upgrade of hydrogen to valuable fuel is a central topic in modern research due to its high availability and low price. For the difficulties in hydrogen storage, different pathways are still under investigation. A promising way is in the liquid-phase chemical hydrogen storage materials, because they can lead to greener transformation processes with the on line development of hydrogen for fuel cells. The aim of my work was the optimization of catalysts for the decomposition of formic acid made by sol immobilisation method (a typical colloidal method). Formic acid was selected because of the following features: it is a versatile renewable reagent for green synthesis studies. The first aim of my research was the synthesis and optimisation of Pd nanoparticles by sol-immobilisation to achieve better catalytic performances and investigate the effect of particle size, oxidation state, role of stabiliser and nature of the support. Palladium was chosen because it is a well-known active metal for the catalytic decomposition of formic acid. Noble metal nanoparticles of palladium were immobilized on carbon charcoal and on titania. In the second part the catalytic performance of the “homemade” catalyst Pd/C to a commercial Pd/C and the effect of different monometallic and bimetallic systems (AuxPdy) in the catalytic formic acid decomposition was investigated. The training period for the production of this work was carried out at the University of Cardiff (Group of Dr. N. Dimitratos)

    Investigation of the catalytic performance of Pd/CNFs for hydrogen evolution from additive-free formic acid decomposition

    Get PDF
    In recent years, research efforts have focused on the development of safe and efficient H2 generation/storage materials toward a fuel-cell-based H2 economy as a long-term solution in the near future. Herein, we report the development of Pd nanoparticles supported on carbon nanofibers (CNFs) via sol-immobilisation and impregnation techniques. Thorough characterisation has been carried out by means of XRD, XPS, SEM-EDX, TEM, and BET. The catalysts have been evaluated for the catalytic decomposition of formic acid (HCOOH), which has been identified as a safe and convenient H2 carrier under mild conditions. The influence of preparation method was investigated and catalysts prepared by the sol-immobilisation method showed higher catalytic performance (PdSI/CNF) than their analogues prepared by the impregnation method (PdIMP/CNF). A high turnover frequency (TOF) of 979 h−1 for PdSI/CNF and high selectivity (>99.99%) was obtained at 30 °C for the additive-free formic acid decomposition. Comparison with a Pd/AC (activated charcoal) catalyst synthesised with sol-immobilisation method using as a support activated charcoal (AC) showed an increase of catalytic activity by a factor of four, demonstrating the improved performance by choosing CNFs as the preferred choice of support for the deposition of preformed colloidal Pd nanoparticles

    Preformed Pd-Based Nanoparticles for the Liquid Phase Decomposition of Formic Acid: Effect of Stabiliser, Support and Au–Pd Ratio

    No full text
    Hydrogen is one of the most promising energy carriers for the production of electricity based on fuel cell hydrogen technology. Recently, hydrogen storage chemicals, such as formic acid, have been proposed to be part of the long-term solution towards hydrogen economy for the future of our planet. Herein we report the synthesis of preformed Pd nanoparticles using colloidal methodology varying a range of specific experimental parameters, such as the amount of the stabiliser and reducing agent, nature of support and Pd loading of the support. The aforementioned parameters have shown to affect mean Pd particle size, Pd oxidation, atomic content of Pd on the surface as well as on the catalytic performance towards formic acid decomposition. Reusability studies were carried out using the most active monometallic Pd material with a small loss of activity after five uses. The catalytic performance based on the Au–Pd atomic ratio was evaluated and the optimum catalytic performance was found to be with the Au/Pd atomic ratio of 1/3, indicating that the presence of a small amount of Pd is essential to promote significantly Au activity for the liquid phase decomposition of formic acid. Thorough characterisation has been carried out by means of XPS, SEM-EDX, TEM and BET. The observed catalytic performance is discussed in terms of the structure/morphology and composition of the supported Pd and Au–Pd nanoparticles

    Investigation of the Catalytic Performance of Pd/CNFs for Hydrogen Evolution from Additive-Free Formic Acid Decomposition

    No full text
    In recent years, research efforts have focused on the development of safe and efficient H2 generation/storage materials toward a fuel-cell-based H2 economy as a long-term solution in the near future. Herein, we report the development of Pd nanoparticles supported on carbon nanofibers (CNFs) via sol-immobilisation and impregnation techniques. Thorough characterisation has been carried out by means of XRD, XPS, SEM-EDX, TEM, and BET. The catalysts have been evaluated for the catalytic decomposition of formic acid (HCOOH), which has been identified as a safe and convenient H2 carrier under mild conditions. The influence of preparation method was investigated and catalysts prepared by the sol-immobilisation method showed higher catalytic performance (PdSI/CNF) than their analogues prepared by the impregnation method (PdIMP/CNF). A high turnover frequency (TOF) of 979 h 121 for PdSI/CNF and high selectivity (>99.99%) was obtained at 30 \ub0C for the additive-free formic acid decomposition. Comparison with a Pd/AC (activated charcoal) catalyst synthesised with sol-immobilisation method using as a support activated charcoal (AC) showed an increase of catalytic activity by a factor of four, demonstrating the improved performance by choosing CNFs as the preferred choice of support for the deposition of preformed colloidal Pd nanoparticle
    corecore