3 research outputs found

    Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

    Get PDF
    Photomineralization of methane in air (10.0–1000 ppm (mass/volume) of C) at100%relative humidity (dioxygen as oxygen donor) was systematically studied at318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC) disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 W⋅cm-1), the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3⋅h−1). Moreover, at a standard flow rate of 300 m3⋅h−1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters,k1andK1,k2andK2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance onk1andk2, as well as of flow rate onK1andK2, is rationalized. The influence of reactor geometry onkvalues is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or intermediates leading to mineralization, were considered, and it is paralleled by a second competition kinetics involving superoxide radical anion

    Nonlinear Modelling of Kinetic Data Obtained from Photocatalytic Mineralisation of 2,4-Dichlorophenol on a Titanium Dioxide Membrane

    Get PDF
    Photomineralisation of 2,4-dichlorophenol (DCP) in aqueous solutions (10.0–100.0 mg/L of C) was systematically studied at 318±3 K, in an annular laboratory-scale reactor, by photocatalytic membranes immobilizing titanium dioxide, as a function of substrate concentration, and absorbed power per unit length of membrane. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC) disappearance, to yield carbon dioxide, were followed (first series of experiments). At a fixed value of irradiance (1.50 W⋅cm−1), other series of mineralization experiments were repeated (second series of experiments) by carrying out only analyses of chemical oxygen demand (COD), in order to compare modelling results of the two sets of experiments. In both sets of experiments, stoichiometric hydrogen peroxide was used as oxygen donor. For the first series of experiments, a kinetic model was employed, already validated in previous work, from which, by a set of differential equations, four final optimised parameters, k1 and K1, k2 and K2, were calculated. By these parameters, the whole kinetic profile could be fitted adequately. The influence of irradiance on k1 and k2 could be rationalised very well by this four-parameter kinetic model. Modelling of quantum yields, as a function of irradiance, could also be carried out satisfactorily. As has been found previously for other kinds of substrates, modelling of quantum yields for DCP mineralization is consistent with kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or intermediates leading finally to carbon dioxide, paralleled by a second competition kinetics involving superoxide radical anion. For the second series of experiments, on the contrary, the Langmuir-Hinshelwood model was employed. Uncertainties of COD analyses, coupled with discrepancies of this model and with its inability to reproduce kinetics up to complete mineralization, are underlined

    Valorization of Agri-Food Wastes as Sustainable Eco-Materials for Wastewater Treatment: Current State and New Perspectives

    No full text
    The paper addresses environmental protection by valorizing an important agri-food waste category, namely fruit and vegetables with focusing on the main characteristics regarding consumption, waste quantities, and ways for valorizing these materials. Thus, vast research was undertaken in order to emphasize the main commodities and their potential application as adsorbents for organic and inorganic pollutants. The main methods or treatment techniques applied for the valorization of eco-materials as adsorbents were presented and the principal efficiency results were indicated. The advantages and disadvantages of using these eco-materials as adsorbents in wastewater treatment were revealed and future recommendations were established. According to the international statistics, the most purchased and consumed five commodities were studied regarding waste generations as potential conversion into eco-materials with an adsorbent role for water pollutants. Thus, the performances for adsorbents based on fruit wastes (such as citrus, banana, apples, grapes, mango) and vegetable wastes (such as potatoes, tomatoes, cabbage, carrots, cauliflower, and/or broccoli) were studied and highlighted in this research
    corecore