219 research outputs found

    The SIMPLEXYS experiment : real time expert systems in patient monitoring

    Get PDF

    The SIMPLEXYS experiment : real time expert systems in patient monitoring

    Get PDF

    Medical Electrical Engineering

    Get PDF

    Medical Electrical Engineering

    Get PDF

    Correction for respiration artifact in pulmonary blood pressure signals of ventilated patients

    Get PDF
    Objective. To develop an algorithm that corrects pulmonary artery pressure signals of ventilated patients for the respiration artifact. The algorithm should test the validity of the pulmonary pressure signal and differentiate between the cyclic respiration artifact and true measurement artifacts. Methods. The shape of each pulmonary pressure beat is described by eight characteristic features, including mean pressure value and the systolic and diastolic timing and pressure values. The features are corrected for the respiration artifact by fitting them in a least-squares sense on the first and second harmonica of the ventilator frequency. The corrected features are used by a signal validation algorithm, which adds a validity flag to each pressure beat. The validation algorithm rejects pressure beats with sudden changes in their shape but adapts itself when the changes persist. Results. The performance of the correction and validation technique was evaluated using pulmonary artery pressure signals of 30 patients who were scheduled for open heart surgery. The algorithm correctly recognized as invalid data those pressure signals disturbed by coagulation, surgical manipulations, or flushes of the pressure line. The algorithm marked on average 77 ± 11 % of the pulmonary pressure beats as valid. Conclusions. The validation algorithm marked sufficient pressure beats as valid to update a trend display every 5 sec. The correction algorithm enabled the validation algorithm to differentiate between true measurement artifacts and the respiration artifact

    Medische elektrotechniek

    Get PDF

    Donor states in modulation-doped Si/SiGe heterostructures

    Full text link
    We present a unified approach for calculating the properties of shallow donors inside or outside heterostructure quantum wells. The method allows us to obtain not only the binding energies of all localized states of any symmetry, but also the energy width of the resonant states which may appear when a localized state becomes degenerate with the continuous quantum well subbands. The approach is non-variational, and we are therefore also able to evaluate the wave functions. This is used to calculate the optical absorption spectrum, which is strongly non-isotropic due to the selection rules. The results obtained from calculations for Si/Si1−x_{1-x}Gex_x quantum wells allow us to present the general behavior of the impurity states, as the donor position is varied from the center of the well to deep inside the barrier. The influence on the donor ground state from both the central-cell effect and the strain arising from the lattice mismatch is carefully considered.Comment: 17 pages, 10 figure
    • …
    corecore