

The SIMPLEXYS experiment : real time expert systems in
patient monitoring
Citation for published version (APA):
Blom, J. A. (1990). The SIMPLEXYS experiment : real time expert systems in patient monitoring. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR330398

DOI:
10.6100/IR330398

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. Jul. 2024

https://doi.org/10.6100/IR330398
https://doi.org/10.6100/IR330398
https://research.tue.nl/en/publications/cd649224-c60c-40b4-bc98-0d54e4b24e8c

trt ~ 1 q u

The SIMPLEXYS Experiment

Real Time Expert Systems In Patient Monitoring

J. A. Blom

The SIMPLEXYS Experiment

Real Time Expert Systems In Patient Monitoring

J. A. Blom

The SIMPLEXYS Experiment

Real Time Expert Systems In Patient Monitoring

PROEFSCl-lRIFf

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van

de Rector Magnificus prof.ir. M. Tels, voor een

commissie aangewezen door het College van Dekanen

in het openbaar te verdedigen op

vrijdag 11 mei 1990 om 14.00 uur

door

Johannes Abraham Blom

geboren te Haarlem

Dit proefschrift is goedgekeurd door de promotoren

prof.dr.ir. J.E.W. Beneken

en

prof.dr. A. Hasman

CJP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Blom, Johannes Abraham

The SIMPLEXYS experiment: real time expert systems in patient monitoring I Johannes

Abraham Blom. - [S.l. : s.n.]. - Fig., tab; Proefschrift Eindhoven. - Met lit.opg., reg.
ISBN 90-9003296-7

SISO 608.1 UDC 616-089.5(043.3) NUGI 742

Trefw: anesthesie; patiëntbewaking I expertsystemen.

Learning is finding out
what you already know.

Doing is demonstraling
that you know it.

Teaching is reminding others
that they know just as well as you.

Richard Bach: Illusions

Voorwoord

Het in dit proefschrift beschreven onderzoek zou niet mogelijk gewee~t zijn zonder de

steun van velen die op de een of andere wijze hebben gefungeerd als bron van inspiratie of,
hoe dan ook, als mede-werker.

In de eerste plaats geldt dit prof.dr.ir. J.E.W. Beneken, die mij vele jaren lang heeft

voorgehouden eindelijk eens een deel van mijn werk als proefschrift te bundelen. Het is er

eindelijk van gekomen, Jan!

Evenzeer prof. dr. A. Hasman, wiens commentaren en kanttekeningen mij er toe

brachten allerlei nodige puntjes op de i te zetten.

Daarnaast alle medewerkers van de vakgroep Medische Elektrotechniek, die het mij,

door bij tijd en wijle ander werk over te nemen, mogelijk hebben gemaakt een deel van mijn

tijd te besteden aan een studie van het vakgebied van de Kun;;tmatige Intelligentie, en in het

bijzonder de Expert Systemen. Ik dank hun voor hun prettige collegialiteit.

Vervolgens al.le studenten, stageairs en afstudeerders, die aan delen van dit onderzoek

hebben meegewerkt, vaak met groot enthousiasme en een plezierig kritische blik. Vooral in
de laatste fase is veel werk is verricht door ir. Johan Lammers. Uiteraard wordt in dit

proefschrift naar het werk van al deze medewerkers gerefereerd.

Ir. Jan Hajek heeft mij op het spoor gezet van wat uiteindelijk SIMPLEXYS is geworden.

Zijn zucht naar efficientie bleek besmettelijk, en zijn 'cJestructive mind set' meestal een

stimulans om het toch te doen.

De medewerkers van de afdelingen Anesthesie en Cardiochirurgie van het Catharina

Ziekenhuis, en in het bijzonder dr. Erik Korsten, hebben ons met groot enthousiasme en

veel inzet begeleid in de klinische experimenten.

Ik denk dat ik iedereen niet beter kan danken dan door te zeggen dat ik dit onderzoek

met heel veel plezier heb gedaan, dat ik veel heb geleerd, dat ik heel tevreden ben met het

resultaat, en dat ik denk dat de voltooiing van dit onderzoek zal leiden tot de realisatie van

een aantal buitengewoon zinvolle toepassingen.

Table of contents

1. I ntroduction I

1.1. SIMPLEXYS: a tooi to construct tooh; 1

1.2. General characteristics of patient monitoring tasks 2

1.3. General characteristics of real world information 3

1.4. Goals of the SIMPLEXYS experiment 3

1.5. The relevanee of tbe SIMPLEXYS experiment 4

1.6. Difficulties in presenting the SIMPLEXYS experiment 5

1.7. The SIMPLEXYS tooibox 5

2. An introduetion to expert systems 7
2.1. Introduetion 7

2.1.1. Ristory 7

2.1.2. Organizing knowledge 8
2.1.3. Representing knowledge 10

2.1.4. A critique of expert systems 14

2.2. Real time expert systems 16

2.2.1. Definitions of real time 16

2.2.2. Real time expert systems are different 17

2.2.3. Problems in real time expert systems research 19

2.2.4. A critique of real time expert systems 20

2.3. VM: a real time expert system 21

2.3. I. An introduetion to VM 21

2.3.2. Knowledge acquisition 23

2.3.3. Data and the data base 24

2.3.4. Rules and the rule base 25

2.3.5. Inferencing 27

2.3.6. A review of VM 28

2.4. The relation between expert systems and format logic 28

2.5. The relation between expert systems and computer science 30

3. The machine monitor 32

3.1. Problem solving in medicine 32

3.1.1. Diagnostic approaches 34

3.1.2. Protoeals 35

3.1.3. Monitoring 37

3.2. Machine reasoning 40

3.3. The SIMPLEXYS problem solving methodology 41

3.4. Language design 44

4. The origin and evolution of SIMPLEXYS 47
4.1. Requirements for expert system applications 47
4.2. Toward more efficiency 49
4.3. Start of the Inference Engine 51
4.4. Start of the SIMPLEXYS syntax 53

4.5. Actding THELSEs 56

4.6. Limitation to ternary logic 57

4.7. Adding an interface with the outside world 58

4.8. Adding forward chaining . 59

4.9. MEMO rules, STATE rul es· and rule histories 60

4.10. FACf rules 65

4.1 I. The relation between SIMPLEXYS and production systems 66

4.12. A first evaluation 67

5. SIMPLEXYS: a real time expert systems tooibox 68

5.1. An example of a SIMPLEXYS program 68

5.2. Elements of the SIMPLEXYS syntax 70

5.2.1. Rule's conclusions 70

5.2.2. Rule types 71

5.2.3. The logic of SIMPLEXYS 72

5.2.4. ON ..§_tatements 81

5.3. SIMPLEXYS as a programming language 81

5.3.1. A typical operation of a SIMPLEXYS expert system 81

5.3.2. SIMPLEXYS programs 82

5.4. Programming in SIMPLEXYS 87

5.5. Inferencing in SIMPLEXYS 89

5.5.1. Single run inferencing 92

5.5.2. Global inferencing 92

5.5.3. The validation mode 93

5.6. The SIMPLEXYS Tooibox 94

5.6.1. The SIMPLEXYS Rule Compiler 95

5.6.2. The SIMPLEXYS Options Builder 98

5.6.3. The SIMPLEXYS loferenee Engine 99

5.6.4. The SIMPLE XYS Debugger/Tracer 99

5.7. Worst case performance of SIMPLEXYS expert systems 105

5.8. Summary of efficiency issues 108

6. Checking the semantics 109
6.1. The need for knowledge acquisition support 109

6.2. Semantic nets: nodes and links 111
6.3. Speed aspects 113

6.4. Safety aspects 113

6.4.1. Rule evaluation 113

6.4.2. Condusion assignment 114

6.5. Systematic checking of a knowledge base 114

6.5.1. Checking for completeness 114

6.5.2. Checking for consistency 115
6.6. Limitations 128

6.7. Conclusions 128

7. Checking the protocol 129

7.1. From ON statements to protocol 129

7.2. Petri net basics 132

7.3. Systematic checking of the protocol 134

7.3.1. Detection of syntax errors by the Rule Compiler 134

7.3.2. Detection of other syntax errors 135

7.3.3. Detection of topological errors 136

7.3.4. Detection of dynamics errors 138
7.4. Correctness checks at run time 141
7.5. Conclusions 142

8. Data and data processing 143

8.1. Data acquisition 145

8.1.1. Demographic data 145

8.1.2. Volunteered data 145

8.1.3. Discontinuous measurements 146
8.1.4. Continuous measurements 148

8.2. Feature extraction and data validation 150

8.2.1. Classification of invalid periods 159

8.2.2. Limitations of the validation algorithm 159

8.3. Analysis of features 160

8.4. The signa! data base161

8.4.1. Representation of data in the data base 162

8.4.2. Necessary future research 163

9. An intelligent blood pressure controller 164

9.1. Knowledge acquisition 165

9.1.1. Controlled hypolension and sodium nitroprusside 165

9.1.2. Sodium Nitroprusside control systems 170

9.1.3. Proportional Integra1 Derivative controllers 172

9.2. Knowledge implementation 173

9.2.1. The arterial pressure signa! 174

9.2.2. The controller 175

9.2.3. The SNP characteristics 177

9.2.4. The PID controller 177

9.2.5. Safety aspects 182

9.3.
9.3.1.
9.3.2.

9.3.3.
9.3.4.

9.3.5.

9.4.
9.4.1.
9.4.2.
9.4.3.

9.4.4.

9.4.5.

9.5.

10.

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.

- 10.7.

Design of an expert system based SNP controller

Data acquisition and validation

The adaptive PID-eontrolier
The supervisor module

The user interface

Knowledge engineering properties of the system

Clinical tests

Data acquisition and validation performance

The control performance
The performance of the complete system

Some rule base statistics

SIMPLEXYS as a knowledge engineering tooi

Conclusions

Discussion

SIMPLEXYS as a real time expert systern
SIMPLEX YS as a programming Ianguage

The SIMPLEXYS tooibox

The blood pressure controller

SIMPLEXYS simplified

SIMPLEXYS in hardware
General conclusions

Appendix 1.

Appendix 2.

Appendix 3.
Appendix 4.
Appendix 5.

The SIMPLEXYS syntax

Additional operators

SIMPLEXYS utilities

Tbe lnference Engine's main data structures
The Inference Engine's main procedures and functions

References

Summary

Samenvatting

Curriculum Vitae

183
183
184
185
187
188
189
190
190
192

193

194
196

198
198
199
200

201
201
202
202

203
206
207
208
212

216

231

234

237

1. Introduetion

, Problem solving is the core of human activity. All of our actions are preceded by some

form of problem solving process. Most problems of daily life, as well as most problems that

occur during our professional activities, are solved routinely, without effort. Other problems

are more difficult a nd require effort, both in the form of ma nual labor and consciou~

judgment.

Tools play an important role when we solve a problem, from the lowly shovel that can

move more dirt than a human hand to the computer that can process numbers faster than

the human mind. Tools become ever more complex. The latest assortment of tooi~ originates

in a branch of science called Artificial lntelligence, which aims to let machines do what

earlier required human intelligence.

AJthough Artificial lntelligence programs are often thought of as 'brain assi~tant~·. more

and more they also control physical tasks. Machine Intelligence is then not only able to

conclude, but also to act. Such an 'intelligent machine' is called by a variety of names;

somelimes it is called a robot, somelimes a control system. It can perceive physical facts. For

example, it may have a sensor to measure a patient's blood pressure. It may also recognize

that in a certain context a too high blood pressure is dangerous and should be averted. And

it may also know how to start the infusion of a drug.

Artificial Intelligence depends on computers. Al researcher Donald Miebie uses the term

'The Human Window', and his view of Al is that computerscan be used to move an

otherwise too complex or voluminous task into ' the human window' so that humans can

finish the job. Thus, if we have a good understanding of what the task entails, we can

attempt to build 'smart tools'.

l.I. SIMPLEXYS: a tooi to construct tools

Tbe main body of this dissertation is, however, not concerned witb the analysis of a single

task, altbougb one task wiJl be analyzed in some detail in cbapter 9. lt is concerned with a

tooi (or rather a toolbox, a coJlection of tools), wbich is meant to assist the design of a whole

class of further tools to be used in various tasks in the domains of process supervision and

process control, and especially in patient monitoring. Tasks in these domains are

characterized by the great volume of information that must be processed, often in a short

time.

With the need to handle increasing amounts of informatio n comes an increased need for

performance, in termsof availability (expert level knowledge must he accessible in situations

where the continuous presence of a human expert is impossible or cannot be afforded),

speed (requirements for the speed at which information must be processed have steadily

increased and wil! continue to do so) and correctness (correct decisions must be made at

accuracies that cannot be maintained by human experts).

Decisions can only be correct if the knowledge is implemented correctly. Computer

programs are, more than just concatenations of instructions to a machine, compositions of

programming plans. Conventional programming languages make the instructions to the

machine explicit, but they often obscure the plans, causing difficulties in program design,

update or maintenance, which operate mostly at the level of changing the plans in the code.

In a new programming language, plans (or protocols) merit ample attention.

1.2. General characteristics of patient monitoring tasks

The tooi to be described in this dissertation, SIMPLEXYS, is thus based on a 'meta level'

analysis of the features that are commonly encountered in patient monitoring tasks. Due to

our experience in solving a number of patient monitoring problems [e.g. Meijler, 1986;

Meijler and Beneken, 1987], such knowledge was available 'in house'. Much of this

knowledge was generated by or with assistance of Electrical Engineering students as part of

their M.Sc. work, and references to their theses are included where relevant.

The SJMPLEXYS tooibox is based on the discovery of the following major abstractions:

- There is always a conJext that describes which tasks need to be performed, and there is - ..
älways an even/ sequence that leads to a context; such an event. sequence is normally not

deterministic, since it may depend on whether or when eertaio conditions occur.

In each context it is possible to specify the goals, i.e. it is possible to state which tasks

must be performed in that context.

Many goals are analyses (usually of externally supplied data or internally prevailing

conditions) that can be described as a combination of simpter analyses or Jower level

goals; such a combination can frequently be described in the form of a logica] expression

containing operators like and and or.

All analyses finally rest on elementary analyses or decisions.

The result, outcome or value of any analysis ordecision can be constrained to be either

true, fa/se or unknown.

- The result of an analysis may resolve the outcome of one or more other analyses,

eliminaring the necessity to actually perform the Jatter.

One or more actions (usually to display a result or to perform a certain procedure) may

be attached to any elementary or higher level analysis; whether such actions actually need

to be performed almost always depends on the outcome of the analysis.

2

1.3. General characterisitcs of real world information

The type of information that has to be handled in Al applications which deal with the
r~al world, among them medica! and monitoring applications, is of a different nature than in
tbe exact sciences. Some of these differences are:

No substantial part of the real world is simple enough to be comprehended and
controlled without abstraction. Abstraction entails substitution of a part of the real world
by a model with a manageable structure. Models thus necessarily imply a simplification.
In medicine, models are pervasive. 'A diagnosis is a parsimonious description of (usually

abnormal) systems performance, since in a few words it integrates a number of historica!

and actual observations into a relatively unified framework. It thus represents an

abstraction of a disorder .. .' [Attinger, 1985]. In such a description it is important to know

which aspects must be considered, and which can be disregarded.

- Whereas probierus in rnathematics can be rigorously described, many real world processes
and systems are only partially understood. Therefore only limited models of those
processes are available, which cannot provide predictions under all conditions.

- The concepts used in common sense reasoning have a qualitatively approximate
character; they cannot be crisply defined.

Only partial information is available, both qualitatively and quantitatively. Not all the

relevant phenomena are known, and thus not all aspects of the problem can be taken

into consideration. The exactness and/or reliability of the information are also frequently

unknown.

Some problems occur so infrequently that they may not be taken into considera tion, even
if some signs or symptoms clearly indicate their presence.

The goals are frequently not well-defined. A critica! problem is the question what is

optima!. Value judgments often replace an explicit optimality criterium.

Yet, despite the Jack of 'hard' information, humans solve problems, and there is no

reason to suspect that the processes are so badly understood tha t computers cannot be

programmed to solve them, as well.

1.4. Goals of the SIMPLEXYS experiment

Just like E MYCIN [Buchanan and Shortliffe, 1984] was a tooi to solve a particular class
of (MYCIN-Iike) problems, SIMPLE XYS is a tooi to solve a particular class of (monitoring­
like) problems. A difference is that E MYCIN became ava ilable after MYCIN had stabilized,

whereas SIMPLEXYS stabilized befare its applications did. A common featu re is, that

3

neither EMYCIN nor SIMPLEXYS are general purpose systems. Both are heuristic in the
sense that they implement only those features necessary to solve a class of problems. For
SIMPLEXYS, this has some of the same repercussions as for EMYCIN [Newell, 1984]:

'AI is both an empirica] discipline and an engineering discipline. This has many

consequences for its course as a science. It progresses by building systems and
demonstraLing their performance. From a scientific point of view, these systems are the

data points out of which a cumuiaLive body of knowledge is to develop. However, an AI

system is a complex join of many mechanisms, some new, most familiar. Of necessity, on

the edge of the art, systems are messy and inelegant joins - that's the nature of frontiers.

It is difficult to extract from these data points the scientific increments that should be

added to the cumulation. Thus, AI is case-study science with a vengeance. But if that

were not enough of a problem, the payoff structure of AI permits the extraction to be put
off, even to be avoided permanently. If a system performs well and breaks new ground -
which can often be verified by global output measures and direct qualilalive assessment -
then it has justified its construction. Global conclusions, packaged as the discursive view
of its designers, are often the only increments to be added to the cumuialed scientific
base'.

We also think that SIMPLEXYS has a similar significanee [Newell, 1984]:

'The step to EMYCIN does have general significance It is of a piece with the strategy
of building special-purpose problem-oriented programming languages to capture a body
of experience about how to solve a class of problems, a strategy common throughout

computer science'.

l.S. The relevanee of the SIMPLEXYS experiment

The relevanee of the SIMPLEXYS experiment for problems in patient monitoring is best

described by Gravenstein [1979]:

'Most preventabie deaths and permanent disabilities [in anesthesia] result from the
fact that the anesthesiologist did not have the information available quickly enough [our
italics] that would have permitted timely intervention, correction of an error, treatment of

a complication, adjustment of a dose or perhaps cancellation of an operation.'

But the anesthesiologist 1 is usually not to be blamed. In emergencies, he is flooded by an

explosion of information and actions: a great many things need to be taken care of at the

1 Bendixen and Duberman [1982]: 'The tasks of the anesthesiologist are to produce comfort,
freedom from pain, and general medica! management for the patient undergoing surgery and
to provide good operating conditions for the surgeon to perfarm his tasks effectively; the
anesthesiologist must provide the desired benefits for both patient and surgeon. To perform
them he must efficiently minimize mortality, morbidity, and cost'.

4

same time and a great quantity of rapidly changing data needs to be assimilated and

processed. The latter is possible only if the anesthesiologist is assisted by more and more

complex data processing equipment (Blom and Beneken, 1982; Beneken and Blom, 1983],
the task of which is to eliminale redundancies from the overwhelming flow of data and to

present only the relevant facts. Integration of data from more than one souree is important

[Hengst and Krämer, 1980; van Kessel, 1981; Meijler, 1986], as wellas a good man-machine

interface [Coolen, 1985]. And this is where more 'intelligent' instruments become necessary.

Such 'intelligent instruments' can pay the necessary continuous attention to tasks which are

critica! and demanding but mostly routine, both in supervision and controL They wiJl show
fast reactions. And they can also offer specialized machine 'expertise' which would not

otherwise be available to the (average) clinician.

1.6. Difficulties in presenting the SIMPLEXYS experiment

No paper can fully do justice to an expert system. The SIMPLEXYS tools themselves are

complex, and the subject matter of any application even more so. This makes it difficult to

fully describe SIMPLEXYS even in a document of more than reasonable length, and this is

even more true for any expert system designed with it. The enormous relational complexity

of the system, the great number of linkages between elementary operations of the

. inferencing process and hetween pieces of knowledge, the rich structure of semantic

relationships, and the complex housekeeping problems make hands-on experience while

designing and/or using an expert system the best way to understand it.
Actual expert systems are, like the knowledge they implement, often 'messy', to use

Newell's terminology. Because the design cycle of an expert system is often difficult and

lengthy, most knowledge engineers take the attitude that 'the best is the enemy of the good'

and that in the real world 'optima]' is, if nol impossible, then at least irrelevant. Yet, the

complexity ought to be invisible to the user, who should be offered a well-behaved and 'user­

friendly' system to work with. The 'flavor' of SIMPLEXYS is thus best appreciated when

actually working with either of the applications thus far built with it, the blood pressure

controller described in chapter 9 or the 'intelligent alarms' system described hy van der Aa

[1990].

1.7. The SIMPLEXYS tooibox

The SIMPLEXYS tooibox consists of a collection of tools that assist in the design of

expert systems that are compact enough to be able to run on small and inexpensive PC-like

computers, and yet fast enough to handle applications like patient monitoring tasks. Chapter

2 starts with a general introduetion to expert systems, then reviews an earlier system with

similar characteristics, and finally focusses on the particular class of which SIMPLEXYS is a

member: real time expert systems.

Patient monitoring tasks have certain general characteristics; these are reviewed in

chapter 3. Central concepts are the hypothesize and test character of medica! decision making

and the context dependency of interpretations, decisions and actions.

5

The most important tooi, the new SIMPLEXYS programming language, has two
functions, just like any programming language. First, it allows certain types of human

knowledge to be formally yet naturally described; this description of a body of knowledge is
called the knowledge base. And second, it allows the computer to translate the knowledge

base into an internal representation that can be easily manipulated by the computer; thi~
translation (compilation) is performed by another tooi, the SIMPLEXYS Rule Compiler.

Combining the output of the Rule Compiler, which is the internal representation of the
knowledge, with the Inference Engine, the expert system's reasoning mechanism, produces a

complete expert system. Chapter 4 describes how the SIMPLEXYS language resulted from a
combination of efficiency (the expert system must be fast), checkability (the expert system
must be as safe as possible), and readability (knowledge base maintenance requires
understandable code).

Chapter 5 subsequently gives a complete description of all the SIMPLEXYS tools: the
features of the SIMPLEXYS language and how they can be used by knowledge base

builders; how the lnference Engine manipulates the knowledge; and how, if errors still occur

when the expert system executes, the Tracer/Debugger tooi can be used to discovertheir
cause and history.

An important task of the Rule Compiler is to detect errors in the knowledge base.
Syntac~ic errors are easy to dett~ct, since. the SIMPLEXYS language fully .specifies which

constructs are allowed, and therefore also which are not. Semantic errors are errors in
meaning and much harder to detect; yet, extensions of the Rule Compiler have the task to

discover as many of these errors as possihle. The Semantics Checker is described in chapter
6 and the Protocol Checker in chapter 7.

SIMPLEXYS expert systems will frequently have to analyze rapidly changing signals.

These signals as such are not suited to the type of Jymbolic reasoning that the Inference

Engine can perform. Chapter 8 therefore reviews methods to eliminale redundancies from

signals and extract those features that are clinically meaningful, while simultaneously

validating the signa] so that no decisions will he based on erroneous data.

Chapter 9 then describes an expert system built with the SIMPLEXYS toolbox: a system
which controls the infusion of the drugsodium nitroprusside in such a way that a patient's

mean arterial blood pressure is stabilized at a specified lower than normal level.

Chapter 10, finally, will conclude that the SIMPLEXYS tools offer excellent support of

all phases of an expert system's design. The SIMPLEXYS language formalizes the

knowledge in a way that is well suited to step-by-step development of a knowledge base. The

Rule Compiler delects and reports errors that may occur. The Inference Engine compieles

the expert system. And the Tracer/Debugger can find, analyze and report any errors that

may still occur during the expert system's operation.

6

2. An introduetion to expert systems

The body of literature about expert systems is tremendous, and it is impossible to
summarize it here without doing the subject injustice. Globally, the literature can be divided
into two categories: scientific books and articles on basic issues, methodologies and
approaches; and more or less popular introductions and reviews of achievements, near­
achievements and promises in this field. Expert systems are a fashion, and everybody seems
to want to know about them.

The scientific literature clearly demonstrates, that there is no expert systems (or AI)
science yet to speak of. lf there is going to be such a science, we are currently in its very

early stages, where 'the approach seems promising', but nobody is clear about what tlze

approach should be. A great many different approaches are proposed, many are investigated
on some small scale, only a small number on a larger scale, and only a very few have shown
some success in practical applications. The problems seem more immense than expected.

This chapter starts with some expert systems basics: a brief historica! review, some details
on how different approaches represent and organize knowledge and on how that knowledge
can be manipulated in expert systems. Section 2 then concentrales on the use of expert
systems in real time tasks. In section 3 we consider one real time expert system, Fagan's
VM, a major souree of inspiration, in more detail. We conclude this chapter with
demonstraling some important relations between expert systems, forma! logic, and computer
science.

2.1- Introduetion

2.1.1. History

Artificial Intelligence (Al), also called Machine Intelligence (MI), emerged in the 1950's as
one of the branches of what was to become known as computer science [Waterman, 1986].
The objective of AI rësearch was to develop computer programs that in some sense could

think. According to Minsky, 'Artificial Intelligence is the science of making machines do
things that require intelligence if done by men'; and according to Feigenbaum 'Al research is
that part of computer science that investigates symbolic, non-algorithmic reasoning processes
and the representation of symbolic knowledge for use in machine intelligence'.

In the 1960's, investigations focussed on finding general methods for solving large classes
of problems through attempts to simulate the process of thinking. A few 'Genera! Problem
Solver' programs appeared. This approach produced no breakthroughs; the more classes of
problems a single program could solve, the more poorly it seemed to do on individual
problems. So the emphasis shifted from general purpose programs to general purpose
m etlzods and teclmiques.

During the 1970's, AI research therefore concentrated on techniques like knowledge
representation (encoding the problem so that a computer could easily solve it) and search

7

(controlling the search for solutions in such a way that it would nottake too long or use too

much of the computer's memory capacity). This strategy produced no breakthroughs either.

In the late 1970's, an important condusion evolved: the problem solving power of a
program comes from the knowledge it contains, nol from the formalisms and inference

mechanisms it employs. This conceptual breakthrough led to the development of special

purpose computer programs, systems that were expert in some narrow problem area: expert

systems. This new field of research, probably the most successful branch of Al research, has

become very popular recently, partly, undoubtedly, through the efforts of the many AI
experts who made their knowledge and experience accessible in hooks like 'Artificial
Intelligence' [Winston, 1977], 'The Handhook of Artificial Intelligence' [Barr and
Feigenbaum, 1981], both of which compile the major developments of the field's first 25

years, and the more specific 'Building Expert Systems' [Hayes-Roth et al, 1983]. A more

recent overview of the field, as well as a collection of excellent papers, can be found in

Gupta and Prasad (1988].
Currently, in the late 1980's, expert systems have become familiar tools to solve complex

problems, but through their use a new problem surfaced: how to acquire the knowledge that

is needed to solve such a complex problem. Thus new directions for research became on the
one hand the development of machine learning techniques, through which (part of the)

knowledge acquisition can be automated by having the machine discover general patterns

underlying the data, and on the other hand the development of systems that do not depend

on explicit kn~wledge but_~earn through experience or training (neural nets).

2.1.2. Organizing knowledge

When the term knowledge is used, it refers to the information a computer program must

have before it can behave intelligently. This information can take the form of facts and rules,

e.g. [Waterman, 1986]:

FACT: The spill material is sulfurie acid.
RULE: If the sulfate ion test is positive then the spill material is sulfurie acid.

A rule is often called a production rule. 1t produces a conclusion or some real-world

action, such as an alarm, a suggestion or a comment. Facts1 and conclusions of rules2 need

not be either true or false; it is possible to include a degree of uncertainty about the validity
of a fact or the accuracy or applicability of a rule (see Bonissone and Tong [1985] for an

overview of methods to do this).

The fact and the rule above belong together; the rule is a test procedure to establish

whether the fact is true or not. In most expert systems, the truth of a fact can be established

by more than one rule. In SIMPLEXYS, facts and rules are coupled; each fact is conneeled

I In SIMPLEXYS, !acts (FACT .rules) hay_~ a strietef intç,rpretatlon-. ...
2 In SIMPLEXYS, .r.u~es:wHI be\)t{)Wii to ~'~.'~_iffe:t~Jom(: \ '·.~:

' ·: -~ .• ~'. . ..';_ .. : "::7:•':-. .. : ·.,.. .-~:)' ' . v·~. < .
'• c .~·~· '& .

to one and only one rule that is dedicated to establish its truth, whether by some direct test

procedure' or by evaluation of an expression which references other rules.

Many of the rules in expert systems are heuristics [Lenat, 1982]: rules of thumb or
simplifications that more or less effectively limit the search for solutions. Heuristics are often
needed if the task is difficult or poorly understood and defies rigarous mathematica! analysis
or algorithmic solutions. An algorithmic method guarantees to produce a correct or even the
best salution to a problem, a beuristic method produces an acceptahle salution most of the

time, even if 'best' cannot be defined.
The term 'heuristics' is used in different ways. If a problem is mathematically traetabie

but very time-consuming (e.g. graph coloring), beuristics are considered additional, domain­

specific pieces of knowledge that effectively confine the search space without in any way
limiting the validity of the final conclusions. Most expert system problems cannot be not well

defined in a mathematica! sense, however. In these cases (e.g. chess), beuristics are usually
considered to be clever short-cuts, that hopefully limit the search in such a way, that
obviously unsuccessful searches are avoided. The cleverness and obviousness, however, are

not full-proof and may even exclude the best solutions, although generally they lead to
acceptable and occasionally even good solutions.

The knowledge in an expert system is organized in a way that separates the knowledge

about the problem domaio from the system's other knowledge, such as general knowledge
about how to solve problems, how to acquire data or how to interact with a user. The
collection of domain knowledge is called the knowledge hase while the general problem
solving knowledge is called the inference engine. A program with its knowledge organized this
way is called a knowledge based system. Th is separation of knowledge makes it easier to

design general procedures for manipulating the knowledge without being concerned with the
specific features of the domain knowledge, and also, to design the knowledge base without
being concerned with the specifics of how the knowledge is manipulated. How the system

uses its knowledge is of the utmost importance, because an expert system must have bath the

appropriate knowledge and the means to effectively utilize this knowledge to be considered

skilied at some task.

The inference engine handles the koowledge, the rules and the facts, as data. There is no
simpte, general way to characterize an inference engine. How it should be structured
depends both on the nature of the problem domain and the way the knowledge is

represented and organized in the expert system. Many high level expert system huilding
languages, e.g. EMYCIN [van Melle et al, 1981] and SIMPLEXYS, have the inference
engine built in as part of the language. Prolog contains a simple inference engine, but is also

a convenient tooi to build more specific ones. Lower level languages like LISP require the

expert system builder to design and implement the inference engine.

1 In what are called 'primitive' rules'.

9

All these approaches have advantages and disadvantages. A high level language with .the

inference engine built in means less work for the expert system builder, but it may also

severely limit his design options.

2.1.3. Representing knowledge

There is a more ar less standard set of knowledge representation techniques, any of

which can be used alone or in conjunction with others to build expert systems. Each
technique provides the program with some benefits, such as making it more efficient, more

easily understood, or more easily modified. An excellent summary of the most important

techniques can be found in Winston [1977] and in Barrand Feigenbaum [1981].

The four techniques most widely used are rules. (by far the most popular), semantic nets,

frames and blackboards [Hayes-Roth, 1985]; for an overview see Rich [1983], Niwa et al

[1984], MiJne [1988]. For the moment we wil! consicter knowledge representation inthefarm
of rules only.

Rule based knowledge representation centers on the use of statements with the following
format:

IF condition THEN cönclusionjaction

When the cürrent probfem situation satisfies ar matches the IF part of a rule, the THEN

part of the rule is executed ('fired'). This execution may cause a match of another rule's IF

part and sa on; this matching action can produce inference chains, leading to additional

knowledge or real world actions. Using rules this way is called j01ward chaining or data

driven inferencing: each rule can activate one ar more successors, which may cause an

avalanche of actions (some of which may be conflicting).
Suppose, however, that inslead we want to know whethe r a eertaio action needs to be

performed ar a eertaio conclusion can be reached. Forward chaining will certainly cause the

action, but it can also cause numerous other actions; generally it will pervade the whole

knowledge base. Backward chaining ar goal d1iven inferencing avoids this. We start with the

THEN part and check whether the IF part is satisfied. If not, we try to satisfy it by looking

up those rules that have a THEN part èorresponding with the IF part to be satisfied,

continuing the search until we have our answer.

Rules can follow the rigarous rnathematics of first order predicate logic, in the farm of

propositions written as well-fonned fonnulas, which makes it possible to use the well

understood mechanisms of propositional logic to process the rules and derive new facts. The

programminglanguage Prolog uses this approach1•

1 With()Dl even mentioning the name Prolog, its 'spirit' is excellently described in Meltzer
H?g1k ... :· .· ,. . , .

·• •. ~1 • .' • •• ·_r_;:.:· _: ·'. ·~. . ·. :· - . •
.{: .. ': ~ , : ", :· ·. 10

Alternately, rules may describe conclusions to be derived and/or actions to be performed

under certain conditions. These production rules will be part of a production system, which

consist of:

- One or more databases that contain the information necessary for the task. Some parts of

the data base may be permanent, other parts may contain temporaries necessary to solve

the current problem.

- A set of rules, each consisting of a left side (a pattern) that delermines the applicability

of the rule, and a right side that describes the action to be performed if the rule is
applied.

- A control strategy that specifies the order in which the rules will be evaluated and a way

to resolve possible conflicts if more than one rule applies.

Production systems were first proposed by Post [1943) as a general computational

mechanism. A production system has three basic components: a data base, a set of rules, and

a rule interpreter; the invocation of rules is a sequence of actions chained by modus ponens

(deduction). The reason fortheir popularity in Al is well stated by Newell and Sirnon [1972):

'We confess to a strong premonition that the actual organization of human programs
[i.e. in the human mind) closely resembles the production system organization.'

and

'In summary, we do not think a conclusive case can be made yet for production

systems as the appropriate form of [human) program organization. Many of the arguments

... raise difficulties. Nevertheless, our judgment stands that we should choose production

systems as the preferred language for expressing programs and program organization.'

Some rule based systems view rules in an even broader sense; they do not only reusvn but

may also view the test condition as a test procedure, that can perfarm some unrevokable real­

world action to reach a conclusion, such as to perfarm an extra measurement. In the
example:

RULE: If the sulfate ion test is positive then the spill material is sulfurie acid

the condition 'the sulfate ion test is positive' might look in the data base to see if this fact is

available; if not, it might order an automatic measurement; if this is not possible either, it

could pose a question to the operator. An advantage of this strategy is, that the number of

rules could be significantly lower than in a normal rule based system. However, testing for a

condition in such a system creates side effects, and the order of rule evaluations may

beoome very important.

11

Frame based and semantic net knowledge representations use a network of nodes
connected by relations and organized into a hierarchy [Rich, 1983]. In a frame based
representation, each node represems a concept that may be described by attributes and
values associated witb the node, such as default values, normal ranges and procedures that

teil how an item that is needed but not present, can be found, acquired or evaluated. Thus
side effects are carefully contained. Nodes low in the hierarchy automatically inherit

properties of higher level nodes. This method provides a natura!, efficient way to categorize
and structure a taxonomy.

There is no agreement on the 'best' method for knowledge representation; for a
discussion of the problems in and current thoughts about knowledge representation see

Brachman and l..evesque [1985]. In some applications rules may be superior, in others frames
appear better. Much seems to depend on the earlier experience or the taste of the designer.
It is not uncommon for comparable, almost equivalent, commercial systems to use very
different ways for knowledge representation, although a convergence can be observed
[Richer, 1986]. Indeed, for one and the same application, the representation may be changed
drastically in order to achieve better performance [Kary and Juell, 1986; Neapolitan, 1988].

Nevertheless, several notions, however implemented, have become very important.
Chunking [Newell and Rosenbloom, 1981] is the decomposition of knowledge into smaller
elements, chunks, that are easy to comprehend and manipulate. Goal-oriented or goal­
structured prÖblem solving [Ernst and Newell, J 969; Newell and Siinón, 1972] and its
introduetion of goal hierarchies [Rosenbloom, 1983] uses a type of chunking to decompose
the task into a hierarchy of tasks that are successively easier to solve. For example, in an

AND-hierarchy, a goal is successful only if alt of its subgoals are successful [Rosenbloom and
Newell, 1986]; in such a hierarchy, a tenninal goal is a goal which can be fulfilled directly,
without the need for forther decomposition. All these notions are directly implemenled in
SIMPLEXYS.

2.1.3.1. Certainty factors

There is even more controversy in the Artificial lntelligence community about how to
deal with uncertainty. The wide range of current views on th is subject is compiled by Kanal
and Lemmer [1986]. The best numerical model for uncertainty is probably an interval based
calculus. There remaio strong opinions, however, nol only about how to interpret certainty

and probability but also about its implementation into a numeric method.
Frequently, especially if the problem domain is large, probability factors are used to cut

off those branches of the search tree that are not promising because they have a probability
below a eertaio threshold. This is fine for (off-line) diagnosis, but in e.g. a context of patient
monitoring it is very difficult to state how to treat an acute heart faiture alarm that has a

probability of 10%. Suppress the alarm? l..eave the decision to the doctor? lf the farmer,
10% of the acute heart failures are missed. If the Jatter, what is the use of certainty factors?

12

A more fundamental problem arises if we view (un-)certainty in terms of probability
distributions. The propagation of probabilities is very much dependent on the correlations
between the quantities used in the calculations (Bayes' law). These correlations are very
difficult to estimate in a practical situation. Disregarding correlations may lead to

meaningless results [Russek et al, 1983].

Feinstein [1973a, 1973b, 1974] exposes some of the reasons why probabilistic and
statistica) approaches have proven to he disappointing in the development of computer
assisted clinical decision making procedures. Practical difficulties are:

there is no foreseeable way to systematically evaluate the values to be assigned to
alternative outcomes;

the variables of concern are rarely independent;
the alternatives are rarely comprehensively exposed;
for meaningful application in most medica! problems of interest, the total population

must be fractionated into such numerous subgroups with which to match the individual
patient that the resulting small numbers in each subgroup provide no valid basis for

statistica! decisions [Ward Edwards: ' the planet may not support a population large

enough for the development of valid Bayesian inference schemes for most problems of
interest in the real world'];

- problems of computability: the 'combinatorial explosion';
- probability distributions are unknown, and physicians do not use them in their practice;

hypotheses are neither exhaustive nor mutually exclusive [Szolovits and Pauker, 1978];
- even skilied physicians disagree on findings;

humans are poor in handling (small differences in) probability distributions;

decisions are strongly affected by individual training and experience;

diseases are multi-causal;
- diseases change over time, spontaneously or through treatme nt;
- there is a Jack of universa! definitions;

definitions of 'disease' and diseases change over time;

- diseases are badly defined, have variabie symptoms, are qualitative only, have a badly
understood aetiology, and there are large individual and inter-group differences.

As Feinstein [1977] has pointed out, it is ironie tha t those who advocate allegedly
objective probabilistic approaches to avoid the subjectivity of human mental function do not
hesitate to provide subjective 'estimates' of a priori figures in their use of Bayesian inference

or in the subjective estimation of decision thresholds. Furthermore, there is a growing

acknowledgement that most classical probability approaches in medicine would more

properly be classified as 'subjective probability' . These considera tions have, although others

do not agree with them, led us to shy away from certainty factors and the like.

13

2.1.3.2. Reasoning strategies

However the knowledge is represented, the expert system must 'reason' with it. Humans
seem to employ different reasoning strategies and usually seem to be able to know when to
use which. If we have a rule of the format

if P then Q

deduction tells, that Q is true if we know that P is true;
induction tells, that if P is true in a great many cases in which Q is true as well, that we can

expect Q to be true when sometime in the future we obseiVe P to be true;
abduction tells, that if Q is true there is some support to assume that P may be true as wel I.

Thus a rule may be used in different ways and have different meanings.

Deduction1 is the standard mechanism in expert systems, because it is infallible. Some
expert systems 'learn' (use induction) by keeping track of the correlation between obseiVed
occurrences of conditions and consequents. Poor results are obtained if the range of

examples, that the system uses in learning, is not wide enough; if the system has obseiVed

twenty birds, all of which can fly, it may henceforth be quite certain that all birds can fly. A
learning system may be able to use abduction too. Because induction and abduction are not
infÏillîble, they are usually combined with some type ofcertainty meäsure.

Many of tbe probieros in the Al domain are too difficult to solve by direct means. Some
type of 'reasoning' is necessary. This reasoning is usually nothing but searching: finding those

rules that apply under the given condition, applying those rules, and again finding the rules
that apply under the new conditions, and so on, until a solution (or all solutions) is obtained.
Searching is a time-consuming operation, and for large applications it is essential to have
'smart' searching algorithms. For a good compilation of these methods see e.g. Nilsson
[1971] or Rich [1983].

2.1.4. A critique of expert systems

The current approach to expert system technology has its cri tics, some of them quite
vociferous. The name of the research area, 'expert systems', could by itself generale
unrealistic expectations [Bobrow et al, 1986]; another name, 'knowledge-based systems' or
'knowledge systems' would better focus attention to the knowledge the systems carry, rather
than imply expert behavior.

Warning against 'fully autonomous war machines that wil! respond to a crisis without
human inteiVention', Dreyfus and Dreyfus [1986) state that 'after 25 years of research, Al

1 Deduction takes a probabilistic form if the data have a statistica! nature (see section
2.1.3.1).

14

has failed to live up to its promise, and there is no evidence that it ever wiJl'. Some types of
knowledge, e.g. bicycle riding, are commonplace, but this type of know-how is not accessible
in the form of facts and rules. Intuition and onderstanding have been called 'holistic' or
'holographic'; detection of similarities with earlier experiences may be a better model than

application of stereotype rules. 'In every area of expertise the story is the same: the
computer can do better than the beginner and can even exhibit useful competence, but it

cannot rival the very experts whose facts and supposed rules it is processing with incredible
speed and accuracy'. Technically, there is no real distinction between expert systems

programming and the normal activity of a programmer-analyst or a software engineer [Hart,
1986]; they just use different computer languages, and some of the implementations are

based on outdated techniques.

We tend to agree with most of these criticisms. Much of the 'new' approach is not new at

all, and frequently badly implemented. The almost ubiquitous use of the inherently
interactive LISP as the implementation language makes, for large applications, searching the

'list' and skipping unwanted items a very time-consuming operation, as in computer language
interpreters. Just as compilers were designed to combine ease of programming with efficient
execution, rule compilers will be necessary to make expert systems more efficient1• Most

current expert systems are, in the spirit of LISP (well described in Hofstadter [1986]),

designed to be interactive, allowing easy replacement, editing and addition of rules and facts,

but with a disastrous effect on efficiency. Real time applicability is now virtually non-existent

and a convenient and efficient interaction with the real-world is frequently forgotten in
current implementations.

Though all this may be true, even the critics admit that some of the best current expert
systems 'produce performance often evaluated as being about 75 to 85 percent as good as

experts' [Dreyfus and Dreyfus, 1986]. In fact, the various evaluations of the performance of

MYCIN [Shortliffe, 1976] all suggested that it is as good as orbetter than most skilied
human experts.

This possible superiority of expert systems is based on at least four factors. Harmon and
King [1985] explain MYCIN's performance:

1. MYCIN's knowledge base, derived from some of the best human practitioners, is

extremely detailed and is as comprehensive as that of most physicians in the domaio of

meningitis.
2. MYCIN does not overlook anything or forget any details. It considers every possibility.

There is a popular saying amongst doctors that 'one has to think of the disease in order

to recognize its symptoms'. MYCIN considers every disease it knows about.
3. The program never jumps to conclusions or fails to ask for key pieces of information. No

matter how obvious the disease is, MYCIN methodically checks for all of the details and
considers all alternatives.

1 'ft is possible to use techniques such as decision trees and discrimination networks to
"compile" the rule base and speed the search Most developers of expert systems have no
idea what these techniques can do for them' [MiJne, 1988].

15

4. MYCIN is maintained at a major medica(center and is, consequently, completely current.

Several of its therapy recommendations are based on recent data publisbed in specialized
journals. Such information is not in textbooks, and would be known only by specialists
who monitor the joumals and who remember to incorporate new information into their
diagnostic procedure.

These factors indicate some human frailties, that are absent in well-designed, well­
maintained expert systems.

2.2. Real time expert systems

When the rate of information flow is too great, humans have a tendency to overlook
relevant information, to respond inconsistently, to respond too slowly, and to panic. 'The

principal reason for using real time expert systems is to reduce the cognitive load on users or
to enable them to increase their productivity without the cognitive load on them increasing'
[Turner, 1986]. Much of this cognitive laad has to do with the pressure of time.

An excellent overview of the current state of the art in real time expert systems can be

found in Laffey et al [1988], where the problem is introducedas follows:

'A__!!lowledge-based sxstem operating in_a real time situatiQ'l (for example, crisjs_
intervention or threat recognition) wil! typically need to respond to a changing task
environment invalving an asynchronous flow of events and dynamically changing
requirements with limitations on time, hardware, and other resources. A flexible software

architecture is required to provide the necessary reasoning on rapidly changing data

within strict time requirements while it accommodates temporal reasoning,

nonmonotonicity, interrupt handling, and methods for handling noisy input data.'

'The complexity of these systems is increasing rapidly along three dimensions: (1) the

number of functions controlled, (2) the rate at which the functions must be controlled,

and (3) the number of factors that must be considered befare a decision can be made.'

The quantity of literature on real time expert systems is not overwhelming. A recent set
of papers dedicated to AI in real time control can be found in Rodd and Suski [1989].

2.2.1. Definitions of real time

O'Reilly and Cromarty [1985] mention several interpretations of what is meant by real

time. The most common usage is 'fast': a real time system is a system that processes data
quickly. Also: 'perceptually fast', or 'faster than a human can do it'. A bette r definition is:
'fast enough', or ' the system responds to incoming data at a ra te as fast or faster than it is
arriving'.

16

Two more forma! definitions are:

A system exhibits real time behavior if it is 'predictably fast enough for use by the
process being serviced' (Marsh and Greenwood, 1986].

A system exhibits real time behavior if 'there is a strict time limit by which the system
must have produced a response, regardless of the algorithm employed' (O'Reilly and
Cromarty, 1985].

Simmonds (1989] views a real time system as an intermediale between a human and a
machine, an interface, a means of control of an otherwise uncontrollable plant:

For on-line computer based systems 'real time' means working at the tempo of people
on one side and working at the tempo of the plant on the other side.

Laffey et al (1988] stress the importance of a guaranteed response time:

'Response time is the time the computer takes to recognize and respond to an
external event. This measure is the most important in real time applications; if events are
not handled in a timely fashion, the process can literally go out of controL Thus the
feature that defines a real time control system is the system's ability to guarantee a
response after a fixed time has elapsed, where the fixed time is provided as part of the
problem statement. If, given an arbitrary input (or event) and an arbitrary state of the
system, the system always produces a response by the time it is needed, then the system is
said to be real time'.

2.2.2. Real time expert systems are different

In a real time system, the data to be analyzed are not statie. Incoming sensor data are
not durable or have a decay in validity with time or cease to be valid because events have
changed the state of the system.

Two approaches to the processing of real time data are possible. In the first approach, a
complete new set of data is acquired and processed whenever an 'event' occurs; an 'event' is

a (significant) change of one or more of the input data. This is the familiar expert systems
approach: each data set resembles a filled out form that has to be analyzed, and an event is
just a message that a new form has arrived for analysis. This new form probably has most of
its data in common with the previous one, and consequently most of the data processing
time may be 'wasted'. lf the analysis is fast enough, that wiJl not constitute a problem,
however. SIMPLEXYS uses this approach.

The second approach does not 'waste' time; it does not reevaluate conclusions based on
unchanged data. In this second approach, an 'event' or change of data just retracts those

17

conclusions that were based on the now outdated data and reevaluates only the rules that

provided those conclusions, but now employing the new data. However, the nonmonotonicity

of the incoming data (and thus of the conclusions deduced) calls for trulh mainlenance, a
process that at all times keeps the conclusions consistent with the data. Truth maintenance is

a complex and time consuming process, and therefore this approach may not be more
efficient than the former. Moreover, truth maintenance and retraction of earlier conclusions

is possible only, if the system is purely logical, nol if conclusions can have 'side effects' such

as firing a missite or applying a drug. In some systems, the 'garbage collection' that is
necessary, once in a while, to discard old, irrelevant data might also interfere with timeliness.

With either approach, partial or complete failure of parts of the system, especially

temporary failure of one or more of the sensors, should not necessarily imply that the system

stops functioning; the system should be designed for 'graceful degradation'. Missing data wiJl

be common, and the validity of some of the data can decay with time, e.g. due to a
degradation in sensor performance.

Events may be either synchronous or asynchronous. If the events occur synchronously
with some doek, the time available for analysis is constant. However, the time necessary for

an analysis of the data may depend on the data. If the time necessary is on average Jonger

than the time available, the load is of course too heavy for the system. If the time necessary

is only somelimes Jonger than the time available, buffering of the data may be a solution, if
this does not degrade response times too much. In case of a system overload, a nother option ·
may be to decrease the rate of the analysis.

Asynchronous events are events that fail to conform to any a pliori known schedule; the

time available for analysis now depends on the time between events, which may be

completely unpredictable. In some processes there may now be a large probability that some
events wiJl succeed each other so fast that the processing time of some events wiJl be too

short Temporarily buffering new data may again be a solution, response times allowing (the
response time wiJl now be random as well). Since events can vary in importance, it is also an

option oot to process an event as long as more important ones demand processing time.

Many extra options exist, besides buffering data, if a (temporary) system overload forces a

'focussing of the attention', such as adjusting the set of sensors employed (process less
information) or selecting different knowledge sourees (choose 'specialists' that process the
data more globally). The manner in which the attention is focussed may be chosen to

depend on the circumstances, as wel!.

Another popular approach to guaranteed response times (e.g. in chess computers) is to
store, at all times, the best1 response so far, and to provide this 'best' response when the

deadline expires. Such a simple approach is not adequate if many different types of event
can occur.

1 [t is, however, often very difficult to find a criterium for what must be considered 'best'.

18

An important feature of real time systems is an inlegration with procedural components
(conventional real time software) for data acquisition and compression, signa! processing,

feature extraction, application-specific input/output, etc.

Real time systems cannot do without some form of temporal reasoning. Time is an

important variable, and reasoning about past, present and future may all be equally
important. Reasoning about sequences of events may be necessary as wel!.

2.2.3. Problems in real time expert systems research

Laffey et al [1988] review several real time expert systems; they mention applications in

aerospace, communications, medicine, process control, and robotics. They also give an

overview of real time expert system tooi~. They consider some of the most important current
theoretica! issues to be:

the slow execution speed of rule-based systems (90% of the time is spent in searching);
a production system that uses forward or backward chaining takes exponential time
[O'Reilly and Cromarty, 1985]; worst case analysis probably results in unacceptable
response times;

frame languages using only simple inheritance (each class has at most one super-class;

only 'is-a' links and instance) are suitable (searching is then limited to linear lists); most
frame languages are more complex, however, resulting in exponential searching times; 'no

one seems to be considering the ramifications of using exponential-time algorithms in a
real time application';

- the use of more processors in parallel does oot help much (a factor 10 at most),

depending on prograrnming style;
- guaranteed response times are difficult to achieve; O'Reilly and Cromarty [1985] discuss

the deficiencies of the hand-tuning of response times:
there are no general methods; ad hoc methods need to be reinvenled for each new
problem;

performance becomes brittie on changes in problem specification and type or quantity

of data;

tuning is very time-consuming (it is a difficult unconstrained search problem);

there is no forma! basis, there are no guarantees.

They state as the currently most pressing problems to be solved:

the shells are not fast enough;
the shells have little or no capacity for temporal reasoning;

it is difficult to integrale efficiently with conventional software;
there are little or no facilities to focus attention; ·

there is no integration with a real time doek;

there are no facilities for handling asynchronous inputs;

19

there is no way of handling software-hardware interrupts;

systems cannot efficiently obtain input from external non-human stimuli;

there are no methods to verify and validate the shell or the knowledge base;
the shells cannot guarantee response times;

shells run on hardware nat built for harsh environments.

And the most pressing requirements are stated as:

an efficient inlegration of numeric with symbolic computing;
continuous operation (garbage collection is now a problem);
a focus-of-attention mechanism;

an interrupt-handling facility;

optima! environment utilization; i.e. compiled instead of interpreled code;

predictability (garbage collection periodically comes into action, but at unpredictable

times and for unpredictable periods of time);
temporal reasoning facilities; maintaining, accessing, and evaluating historica! data must
be possible;

a truth maintenance facility; data quality decays in time.

2.2.4. A critique of real time expert systems

Despite Laffey et al rl988];s observation that 'considerable effort is being put into
developing real time systems, a much more difficult area than traditionally has been

approached using expert systems', they also reach the following conclusions:

Expert system developers have aften tried to apply traditional tools to applications for
which they are nat well suited. Tools specifically built for real time monitoring and
control applications need to be built. An immediate goal should be the development of

high-performance inference engines that can guarantee response times.
Trying to apply current shells to real time domains is Jike trying to use Prolog for a

number-crunching application or Fortran for a symbolic processing application.

'Real time expert systems are real hard to develop' (Robert C. McArthur of the Arthur

D. Little Company, quoted in Marsh [1986]).

Our own reviews of available products1 at the time SIMPLEXYS was started confirmed

the above. The SIMPLEXYS experiment was started to specifically address the issues

mentioned above.

1 Such a review does nat easily lead to well-defined conclusions. Product documen.tations
usua lly did nat mention aspects that were important to us, such as worst case performance.
Because of product complexity, it takes too much time to exhaustive test more than a few
shells. Product pricing aften even prevents the latter.

20

2.3. VM: a real time expert system

VM (Ventilator Manager) provides diagnostic and therapeutic suggestions about the
ventilation (artificial respiration) of postsurgical patients in an intensive care unit (!CU). The
system identifies possible alarm conditions, recognizes spurious data, characterizes the

patient's state, and suggests useful therapies. The system interprets quantitative

measurements from an ICU monitoring system, such as heart rate, blood pressure and data

regarding a mechanica! ventilator that provides the patient with breathing assistance, by
applying knowledge about patient history and expectations about the range of monitored
measurements. VM is a rule based system implemenled in INTERLISP. lt was developed at
Stanford University and tested at the Pacific Medica] Center in San Francisco and at the

Stanford University Medical Center.

The discussion in this section is based on the literature about VM [Fagan, 1978; Fagan et

al, 1979; Fagan, 1980], from which we select those aspects which are relevant in
SlMPLEXYS.

2.3.1. An introduetion to VM

In many aspects VM resembles the type of system that we specifically address in this

study. Moreover, it is a real time system, and few of those have been exhaustively described
in the open literature. The real time behavior of the system is indicated by the fact, that
processing 24 hours of patient data takes about 15 minutes of central processor computation

time, allowing one processor to monitor all patients in the lCU. This speed was attained

despite the fact, that VM was written in LISP: it is a smal! system with about 50 rules 1•

VM assists the clinician by providing diagnostic and therapeutic suggestions for the

control of the equipment that provides mechanica! breathing assistance. lts setting is an

intensive care unit where patients in the period immediately following cardiac surgery are

cared for and weaned off the ventilator. lts suggestions are based on the interpretation of

some 30 variables of the patient's status. Most measurements (heart rate2; pulse rate 1;

systolic, dia.~tolic and mean arterial blood pressures; inspired, expired and minute respiratory
volumes; respiratory rate; mean and maximum airway pressures; end-expired pC02, inspired

p02; oxygen uptake and C02 production; thoracic plus lung compliance; patient-respirator

fighting; in- and expiration times) are collected every two minutes (fast mode) or every ten
minutes (normal mode); some measurements (temperature, blood gases) have to be entered

manually. Otherwise there is no user interaction; the system is fully autonomous.

1 We assume that most data were analyzed at 10 minute intervals (see below). A quick
calculation shows that at 5 second intervals the processor would not be able to keep up with
the data.
2 Derived from the electrocardiogram.
3 Derived from the invasively measured arterial pressure.

21

The Al research goal was to extend existing knowledge representation and manipulation
techniques for a dynamically changing medica! environment, in which the interpretation

process is repetitive, in order to capture the on-going process. The medica! goal was to assist
the ICU dinician by adding a measurement interpretation and evaluation capability to the
existing monitoring system. VM addresses these patient monitoring problems:

the current inability to form a concise presentation of all the important measurements;
the need for interpretation of measurement values with respect to historica! information
about changes in patient status and therapy;
the lack of ability to directly relate measurement values with therapeutic
recommendations.

It was designed to perfarm these tasks:

detect possible measurement errors;
recognize untoward events in the patient/machine system and suggest corrective action;
summarize the patient's physiological status;
suggest adjustments to therapy based on the patient's status over time and long-term
therapeutic goals;
maintain a set of patient-specific expectations and goals for future evaluation by the
program.

Figure 2.1. The VM monitoring context.

VM operates approximately as follows: every 2 or 10 minutes a set of patient
measurements is collected from the monitoring equipment and analyzed. The analysis can

lead to alarms and/or suggestions about the therapy. But the system had no way to directly
measure whether the patient is being artificially respirated or not; that bas to be conduded
from the signals as well. Worse: such a condusion often can only be derived from several
sequentia! sets of signals, e.g. because establishment of the 'stability' of the respiratory rate
takes some time 1• But such 'context' information (i .e. is the patient being artificially
respirated or not) is essential for the way in which the measurements should be interpreted.
It is therefore crucial to store such information.

1 If a patient is respirated, his respiratory rate is dictated by the equipment and hence very
regular, unlike in spontaneous breathing.

22

Figure 2.1 shows VM's monitoring 'context'. The patient can be either:

not monitored (NMN); no measurements are available;
on volume ventilation (VOL); the patient is being ventilated, but it takes some time
befare the system can establish from the regularity of the respiration whether ventilation
is controlled (CMV) or assisted (ASS); thus VOL is actually hierarchically at a higher
level than CMV and ASS;
on controlled mandatory ventilation (CMV); the ventilation is fully controlled by the

respirator;

- on assisted ventilation (ASS); the patient is allowed to breathe spontaneously, but the
respirator supports the breathing;

- on T-piece (TPC); the respirator has been disconnected butsome measurements are still
available.

When eertaio conditions arise, a context switch is necessary. So-called transition rules
delermine whether such a context switch is necessary. The transition from NMN to VOL, for
instance, depends on the presence and physiological validity and stability of some respiratory
signals during some time (this transition takes some time because the patient must be

connected to the respirator; during this time the signals may be quite erratic).

The patient (ar rather: the monitoring process) can be in one of five states, NMN
through TPC. The links between these states describe what in SIMPLEXYS terminology is

called the protocol. Normally, the protocol is for the patient to go from NMN to VOL to

CMV to ASS to TPC to NMN, but if e.g. extubation is toa early, the patient may go back to
VOL and restart from there. Other, less normal, transitions may occur as wel!.

2.3.2. Knowledge acquisition

Discussions with the medica] expert, dr. John Osborn, about patient records (24-hour

plots of patient data) showed that the clinician:

compares the values of the measurements against typical values, noting abnormally high
ar low readings;

- looks for significant events: places where measurements are particularly unstable or
changing rapidly;

- seeks corroborative evidence for an interpretation by closely aligning several of the traces
and verifying that an appropriate pattem also shows up in related readings;

- notes the slopes of various computed indices that demonstrate the status of the patient.

There were several things to note about the expert's reasoning activities. Much of this

activity assumes that there exist standard ranges, trends and stereotypical events that can be
used as a guideline for recognizing problems. Individual data points that are far remuved

from the expected trends are for the most part ignored. Potential events suggested by a

23

trend in one measurement are compared with other measurements that are either typically
correlated with the original finding or would be correlated if the hypothesized event had
taken place. The farmer case is to determine if a change could be due to a malfunction of a
sensor. An example of the latter case is verifying that a sudden rise or drop in the blood
pressure happens concurrently with loss of the airway pressure measurement, implying that

the patient has been taken off the ventilator. Here the choice of additional measurements is
dependent on the hypothetical cause of the problem. In genera!, the activity is to peruse
individual measurements looking for unusual situations and then to verify their existence by
comparison with changes in other measurements.

In the ICU the interpretation of measurements has a different character than such a
retrospective analysis by an expert. The clinician nor the expert system can 'look ahead' and
must therefore be conservative and treat an abnormal reading as valid, at least temporarily.

The knowledge incorporated into VM is a symbolic model of the various therapeutic

maneuvers for ventilator assisted patients. This model takes the form of a list of possible
therapies linked together by a set of production rules that recognize and propose transitions
between the various therapies. This model represents knowledge about ICU activities that
could affect the patient's status as reflected in physiological measurements taken at the
bedside. This model is used to 'customize' the data interpretation as the patient's situation
changes over time. This context-sensitive interpretation is accomplished by the recognition of
the therapeutic state and adjusting e_~!)~Ctations or limits on each of the measured variables.

2.3.3. Data and the data base

The knowledge in VM is based on relationships between the various data such as
respiration rate, sex of the patient and hyperventilation. Each of these data is associated with
a value: the respiration rate is high, the sex of the patient is male and hyperventilation is
present. The values associated with each datum may vary with time: hyperventilation was

present for 30 minutes starting 2 hours ago. The data have been classified as:

constant
continuous
volunteered
deduced

examples: surgery type, sex;
examples: heart rate, blood pressure;
examples: temperature, blood gases;
examples: hyperventilation, hemadynamie status.

The following is a list of possible 'properties' of data:

DEFINITION:
USED-IN:
CONCLUDED-IN:
EXPECTED-IN:

GOOD-FOR:

UPDATED-AT:

text descrihing the datum;
list of rules that use this datum;
list of rules where this datum is concluded;
list of rules where expectations about this datum
are made;
length of time that a measurement can be assumed to
be valid; if missing, then it must be recomputed,
acquired if possible, else assumed unknown;
last time the datum was acquired or concluded.

24

The properties USED-IN, CONCLUDED-IN and EXPECTED-IN are used to specify

how the data are formed into a network of rules; they can be used to guide various search
strategies. The properties UPDATED-AT and GOOD-FOR are used todetermine the
validity of the datum over time. The GOOD-FOR property can also be a pointer to a,

possibly context-dependent, rule.

A large quantity of data is presenled to the system compared with typical knowledge

based systems. No attempt is made to retain all these data permanently in memory; only the

most recent information (approximately one hour's worth) is utilized to form conclusions.
However, the conclusions based on the original data, which are stared much more

compactly, are maintained throughout the ICU stay. Thus the measurement values are

replaced by symbolic abstractions over time.

2.3.4. Rules and the rule base

Knowledge is represented in the form of production rules. Rules have as uniform a

structure as possible. The motivation behind this rule structuring was an easier rule

acquisition; this structure makes the rules look like frames.

An example of a rule:

STATUS-RULE: STABLE-HEMODYNAMICS
DEFINITION: defines stable hemodynamics based on blood pressures

and heart rate
APPLIES-TO: patients on VOLUME, CMV, ASSIST, T-PIECE
COMMENT: look at mean arterial pressure for changes in blood

pressure; look at systolic pressure for maximum
pressure

IF
HEART RATE i s ACCEPTABLE
PULSE RATE does NOT CHANGE by 20 beats/minute in 15 minutes
MEAN ARTERIAL PRESSURE is ACCEPTABLE
MEAN ARTERIAL PRESSURE does NOT CHANGE by 15 torr in 15 minutes
SYSTOLIC BLOOD PRESSURE is ACCEPTABLE

THEN
HEMODYNAMICS are STABLE

The first line gives the rule type and its symbolic name. The definition and camment
parts are for documentation purposes only. The applies-to part defines the therapeutic

context in which the data are collected, which can influence their interpretation; it also limits

searches. The if part holds relations, all of which must be true to lead to a conclusion; no

certainty factors are used in the rule evaluation, though the mechanism is available.

Some of the relational components, e.g. ACCEPTABLE, may depend on the context. In
that case, they are defined on entering this context. The THEN part may lead to a

conclusion, to a suggestion to the clinician or to new expectations about the future va lues of

25

data, e.g. that some variabie should be in some range at some point in the future. An

abbreviated example of such an initialization rule:

INITIALIZING-RULE:
nEFINITION:

APPLIES-TO:
IF ONE OF:

INITIALIZE-CMV
initialize expectations for patients on
controlled mandatory ventilation (CMV) therapy
all patients on CMV

PATIENT TRANSITIONEn FROM VOLUME TO CMV
PATIENT TRANSITIONEn FROM ASSIST TO CMV

THEN EXPECT THE FOLLOWING:

acceptable

i deal
very very
low low min ma x high high

MEAN PRESSURE 60 75 80 95 110 120
HEART RATE 60 110
EXPIRED pC02 22 28 30 35 42 50

The mean pressure will thus henceforth be considered 'ideal' if it has a value between 80

and 95 mmHg, 'acceptable' if it has a value between 75 and 110 mmHg, 'unacceptable' if its

value is below 75 or above 110 mmHg, and 'very unacceptable' if its value i~ below ~0 or
above 120 mmHg. Note that for the heart ra te not all expectation bounds are defined.

For the physiological data, the following types of expectation bounds were established:

ideal
accept able
unacceptable
very unacceptable

impossible

the desired level or range of a measurement;
beyond these values corrective action is needed;
correct ive action i s necessar y;
the data are extreme ly out of range, a s e ver e
condition exists;
the data have no physiological origin.

These bounds are not static but adapt with the patient's situation or context, e.g.

ventilator support type, through the execution of the appropriate initialization rules. There

was no need to ge nerale higher level expectations, such as 'hyperventilation expected in 30

minutes', although such an extension would be possible.

In addition to 11 status rules and 6 initialization rules, the system has three other types of

rules: 13 instrumentation rules, 11 transition rules and 13 therapy rules, a total of 54 rules.

An instrumentation rule examines the measurements to determine if they are consistent and

within physiologically meaningful limits. A transition rule detects when a patient's state has

changed, e.g. whe n the pa tient starts to breathe on the T-piece. This is necessary because

there is no manua l input of such changes and they cannot be measured direcdy. The rapy

rul es exist in two classes: long-term therapy assessment (e.g. when to put the patient on the

26

T-piece) and the determination of a response to a clinical problem, such a~ hyperventilation

or hypertension.

2.3.5. lnferencing

The knowledge base includes rules to support five reasoning steps that are evaluated at

the beginning of each new time segment:

1. characterize measured data as reasonable or spurious;

2. delermine the therapeutic state of the patient (ventilation mode);

3. adjust expectations of future values of measured variables if the patient's state changes;

4. check physiological status;

5. check compliance with long-term therapeutic goals.

Each of the rule groups corresponding to the steps above is considered in order. Each
rule is examined to determine if it applies to the current context. The premise of the rule is

examined to delermine validity and the appropriate conclusions are recorded, as well as

expectations on the future ranges of measurement values. Suggestions to clinicians are also

printed out.

The rule interpreter is based on the MYCIN interpreter with the following major

changes: forward chaining instead of backward chaining; validity checking for previously

acquired data (in MYCIN the data are manually entered and assumed error-free); cycling

through the rules each time new information is available (MYCIN analyzes its data only

once).

The first change was motivated by the application. lt was deemed necessary because
more than one condusion cao be reached at a time, and the small number of rules made it
entirely feasible.

The second change reflects the clinical reality of loss of validity of old measurements.

The reliability of the stored value is determined by evaluating either a time constant (for

variables that change predictably over time) or a rule (for cases in which the assessment pf a

value's reliability is dependent on context specific information). lf a measurement is

concluded to be spurious or outdated it is treated as if it were unknown, requiring alternate

methods for determining the status of the patient. The third change follows from the fact,

that the application is real time.

Conclusions have an associated time or time range. ldentical conclusions made at several

adjoioing rule set evaluations are considered continuations of the first condusion and

represented by a pair of times corresponding to the first and last such conclusion. A list of

these intervals summarizes the history of a particular conclusion. The evaluation of a rule
clause such as 'patient hyperventilating for greater than 20 minutes' is made by direct

examioation of the time intervals associa ted with each conclusion, rather than looking at the

original measurements. Expectations are associated with the appropriate measurement and

27

are classified by duration and type, such as the upper limit of the acceptable range.

Expectations can persist for a fixed interval such as 'for twenty minutes starting in ten

minutes' or for the duration of one or more clinical situations, e.g. while the patient is on
ASSIST.

The actual processing of a rule is carried out by a series of LISP functions that test

conditions. Each function has a well defined semantic interpretation and provides the
primitives for encoding the knowledge base. The translation between an external format
'RESPIRATION RATE > 30' and the internal format '(MCOMP RR > 30)' is made by a
parser. The MCOMP function is given a parameter name (RR), a relational operator (less
than, equal, greater than) and a number with which to compare. The execution of the

MCOMP function returns a num.erical representation of true, false or unknown, based on

the current value of the respiration rate. SIMPLEXYS is based on the same three-valued

logic.

2.3.6. A review of VM

It would oot be fair to judge VM by the requirements of today, as set forth in section 2.2.

In fact, VM was, as far as we could determine, the first expert system described in the open

literature that systematically paid attention to the demands of a real time environment.

In the development of VM, no attention whatsoever was devoted to efficiency

considerations [Fagan, personal communication, 1988]. There was never a demand for it;

VM is a small system, and despite the fact that it was written in LISP, its cycle time was so

slow (10 minutes, occasionally 2 minutes), that timing problems never occurred.

VM did pay attention to another important requirement, however; its goal was to
investigate methods for reasoning with time. It introduced the notion of time-varying

contexts, each of which could define different conclusions to be derived. It also introduced
time information connected to conclusions, so that it would be possible to check how long a

certain condition had been true. In these respects, SIMPLEXYS builds upon VM.

2.4. The relation between expert systems and format logic

Brachman and Levesque [1985]:

The role of forma! logic in Knowledge Representation (KR) has been hotly contested

from the beginning Part of the problem has to do with the history and goals of

Knowledge Representation and their differences from those of symbolic logic. After
Leibniz, the next big push in forma! logic was the work of Frege at the turn of the
century who, along with Russell, Peano, and others, gave logic much of the flavor it has
today. The goal of this early work was to put rnathematics and mathematica! reasoning on

a sound theoretica! footing. Indeed, until recently, the major application of symbolic logic

28

and one of the great successes of twentieth century mathematics, has been the analysis of

forma! theories of sets and numbers.
The goals of Knowledge Representation, however, even at the very beginning, were quite
different, and perhaps much more in line with Leibniz' original dream. Knowledge

Representation schemes were used to represent the semantic content of natura! language

concepts, as well as to represent psychologically plausible memory models. In neither case
was there a clear relationship to forma! languages of any kind. Gradually, however,

Knowledge Representation schemes began to be used as a very flexible and modular way
to represent the facts that a system needed to know to behave intelligently in a complex
environment'.

Horvitz [1986] discriminales between two approaches to expert systems:

The descriptive approach. Descriptive models summarize complex behavior by describing

phenomenology without resorting to fundamental axioms, which may not be available. They
employ empirica!, informal models and are mostoften rule-based. Rules of logica! inference

(e.g. modus ponens and unification) are used in automated deduction. An example is
MYCIN [Shortliffe and Fagan, 1982]; originally MYCIN used an ad hoc calculus for

evidence combination, that was internally inconsistent. With this approach, inconsistencies
are often hard to avoid; if they exist, they lead to unpredictable behavior.

The axiomatic approach. This approach leads to expert systems that are necessarily
consistent with desired properties, strive for a nonnative theory for reasoning, have a

consistent revision of belief and control of infonnation acquisition. Examples of axiomatic

theories for belief revision are: probabil ity [Pearl, 1985]; fuzzy logic [Gaines, 1978];

Dempster-Shafer theory [Shafer, 1976]; certainty factors [Shortliffe and Buchanan, 1975];

multi-va1ued logies [Gaines, 1978]. Examples of theories for cantrolling information
acquisition are: information theory [Shore, 1986]; decision theory [Pratt et al, 1965; Raiffa,
1968]. These forma! models are very helpful when a system is modified, since they allow a

crisp prediction of changes in system behavior in response to system modifications. This

approach also has its problems, however: the low level reasoning leads to an enormous thirst
for computing power; explanations are also very difficult due to the low semantic content of

the logica! elements.

Some of the currently most important issues in the representation of knowledge are

discussed in [Brachman and Levesque, 1985]. These include expressive adequacy and

reasoning efficiency.

Expressive Adequacy. What are the standards for measuring the expressive adequacy of a

represeotation language? Should every language be a notational variant of the language of
full first order logic? At the very least, a knowledge representation language should be very
clear about precisely what knowledge it is representing, something that has not always heen

true in the past.

29

Reasoning Efficiency. It is one thing to come up with a representation of knowledge that is

sufficient to logically imply any fact of interest, but quite another matter to actually calculate
these implications, especially when the representation language is expressive enough. How
can we balance the need to provide correct, rational inferences with the need to produce
them in a timely fashion?

First order logic is not necessarily best because 'the reasoning process in first order

predieale logic is undecidable, and yet ... in most cases [our italics] a process of reasoning
terminales after a reasanabie length' [Mamdani and Efstathiou, 1988]. Bath expressive
adequacy and efficiency arguments may be the reason to invent more complex logies as a

basis for inferencing [Mamdani and Efstathiou, 1988], even though they relinquish some

mathematica! exactness. The rule-based expert systems methodology is very flexible in the

type of logic that it allows. Although the care is always an adaptation of the autornaled

logica! inference methodology called production systems [Simon, 1972; Davis et al, 1977],
these adaptations range from very informal to extremely forma! in a mathematica! sense.

Many authors have suggested that some exotic logic, especially 'fuzzy logic', is necessary
in order to capture the essentially imprecise nature of human deduction, but the usual

arguments advanced for the use of fuzzy logic are hardly convincing: no logic, however fuzzy,

can adequately capture 'human' logic. Some kind of forma! logic is required to prescribe to

the computer in full de!ail how its 'automated r:easoning' should be performed; exactly which

logic is most convenient may be dependent on the type of application. Brachman and
Levesque [1985]: 'The emerging view is more that representation languages are perhaps non­

standard logica! languages, non-standard in their syntax, semantics, and use'. But logica!

nonetheless.

SIMPLEXYS combines the advantages of the descriptive approach (a high
expressiveness, resulting in compact knowledge bases and efficient reasoning) with the

advantages of the axiomatic approach (a forma! logic, resulting in correct knowledge bases

and correct inferencing).

2.5. The relation between expert systems and computer science

The notion of a well-structured knowledge base apart from the program that manipulates

that knowledge is a good idea, that gears wel! with common computer engineering notions

like top-down programming, program modularity and information hiding.

Top-down programming refers to the practice in which the program that is heing
designed is meaningful (performs useful work) at all intermediale design stages, even though

details have not yet been implemented. This implies that the program can also be tested at
every design stage. Unimplemented subprograms are replaced by a 'stub', that, during
testing, just announces that the subprogram is 'working', even though it does not do anything

yet. This programming practice allows one to concentrate on the main issues, disregarding

30

details for the moment; a detail then becomes a main i~sue at a later time. Programs are
thus constructed through i! eralive refinement.

In knowledge base terms, top-down programming refers to the practice of starting with a
small, comprehensible knowledge base that just has a few high-level concepts, without as yet
worrying how those concepts will be implemented. This knowledge base can be tested

immediately, bath syntactically, semantically and in simulations. Each refinement step is then

the introduetion of new concepts, that 'explain' or 'define' higher level concepts. This design

strategy helps in assuring and maintaining the correctness of the knowledge base right from

the start of its design.

Program modularity refers to the practice of keeping each section of the program so

small, that it can be comprehended without much effort. If a program section becomes too

large, a sub-section is split off and becomes a section by itself. Each section will tend to
incorporate just one or a few well-defined concepts and/or operations.

In knowledge base terms, the knowledge is split up in 'chunks', each of which implements
one concept and possibly additional information about or operations on this concept.

lnforrnation hiding refers to the fact, that low level details become unimportant, and in

fact oughtto be hidden, at a higher level. A procedure sort might ex i st, that sorts an array;

when it is used, we are not concerned with the details of how the sorting is done.
In knowledge base terms, high level concept~ can be used as such, without concern about

the details of how they are implemented and how they wil I be evaluated. That concern
belongs to another level.

The knowledge based approach is particularly exciting in research applications where the

knowledge to be incorporated into the system is still only part\y known. One of the major

probieros in programming complex applications has always been the maintenance of the
program as it evolves. By separating the knowledge, e.g. in the form of rules, from the
program body, the update and maintenance of the program may be limited to the rule base

or part of it only, allowing a much faster and easier generation of a sequence of prototype

systems.

This does not mean, that in the final code the rule base as such needs to exist. Any
program transformation operation that makes the program more efficient without allering its
behavior could be used. It has frequently been observed that the order of the rules in the

rule base has a great influence on the efficiency of the resulting system. It might be possible
to order the rules in such a way, that the search efficiency is optimized, or, preferably, that

searching is eliminaled altogelher (see also section 4.11). This is an example of a program

transformation operation that could possibly be carried out mechanically and result in a

more efficient, or even the most efficient program.

31

3. The machine monitor

This chapter discusses the machine problem solving methodology on which SIMPLEXYS

is based. Computers must be prescribed, in full detail, which problem or problems must be

solved, in which order, and how. This is the issue we explore in this chapter. We do not

examine the most central problem of AI, the frame problem, which can be stated as: which
are the relevant aspects of a problem situation or context, and how are the important
features selected while ignoring the 'infinite' rest (Kelly, 1987].

Section 3.1 discusses problem solving in medicine and introduces the hypotlzesize and test

strategy and the medica! protocol; both are fundamental SIMPLEXYS notions. Section 3.2

describes some problems in machine reasoning. The machine must not only solve problems,

it must solve them in an expert fashion (for some of the properties that make an expert an

expert see TuBemans [1987]); some 'expert' problem solving features should exist in a
machine expert. Section 3.3 describes the problem solving methodology on which the

SIMPLEXYS programming language is based, as well as its knowledge taxonomy and how it
is implemented. FinaUy, section 3.4 outlines some of the issues that played a role in the

design of the SIMPLEXYS computer language.

3.1. Problem solving in medici!le

Medica! practice is an extraordinarily complex human activity. The required knowledge is

extensive; ideally, a comprehensive pathophysiological model of human function and

disfunction at the macro, intermediale and micro level should be available. But the human

organism is extremely complex; only very partial knowledge is available. And any individual

practitioner commands only a small part of that knowledge.
These gaps in the medica! knowledge structure must be bridged by art; decisions must be

made based on uncertainty and incomplete knowledge. The uncertainty is compounded by
the numerous homeostalie mechanisms, which, even in extreme disorders, may act to mask

failure of a 'component' of the system through some type of compensation, and by the

extreme variations in individual response. Also, often it is unclear which data would be

helpful, and the quality of the obtained data may be unknown as wel!. Many of the data that
are required for decision making must be obtained from others, especially from the patient

himself. The elicitation of the necessary data is an art in itself.

Medica] reasoning [Feinstein, 1973a, 1973b, 1974, 1977] consistsof several steps (Fink

and Galen, 1982], although this dissection can be quite difficult because the partsof this

process are not independent:

1. Statement of the problem. The most important problem-specific data is the dient's

description of the problem. This initia! statement is supplemented by a variety of

32

questions that give the physician a more complete picture of the patient's problems. This
account forms the medica! history.

2. Data collection. The medica! history is foliowed by a physical examination and laboratory
tests to complete the clinical data base. The results of these three modes of investigation
(the medica! history, the physical examination, and laboratory testing) then form the
patient's medica! record. Jt is estimated that the medica! history contributes about 60% of
the information necessary to reach a diagnosis, whereas the physical examination and
laboratory tests each contribute about 20% [Rosenfeld, 1978].

3. Data analysis (diagnosis). Diagnosis is the assignment of an individual casetoa class,
excluding other assignments. The traditional practice has been to indicate the primary
diagnosis suspected, along with alternative hypotheses listed under 'rule-outs'.
Weed [1971] emphasizes a 'bottom up' approach: to simply list the findings available at
the highest level of abstraction tenable at that point and nol be concerned whether or not
this reaches the level of abstraction and certainty implied in the notion of diagnosis. With
time and further investigation, convergence on a diagnosis will occur. This 'ladder of
abstraction' approach emphasizes that diagnosis is the final abstraction; it not only

implies pattems of findings, but a lso mechanisms that presumably have predielive power
for the future course of the disease and for therapy.

4. Establish a management plan. Select a decision based on the goals of the problem.
Management has several aspects:

planning for further study;

extension or completion of the data base;
planning for patient education;
planning for general or specific therapy;
planning for monitoring the progress.

The management goal is to optimize the prognosis via the choice between alternative
courses of action, or to maximize the certainty of the diagnosis given the data and the
possible verifiable conclusions. A critica! problem is the question what is optima!, due to

value judgments. Choosing the 'best' decision takes into account:
the risks of complications of tests and treatments;
the dollar cost of tests and treatments;
the diagnostic value of tests;

patient characteristics such as sex, age, general health;
possible spontaneous changes of the patient's state (risk of death);
the patient's feelings about the desirabilities of p~ssible outcomes; symptomatic vs.
definitive therapy.

5. Monitor the progress of the management through iterative data and/or knowledge
acquisition: alter the management plan and/or change the monitoring. Data are needed
not only for diagnosis but also for management. Once a diagnosis of appropriate certainty

33

has been established, data are required for determining the stage of the disease as
reflected in the diagnosis, for development of baseline data that will permit later
monitoring, and for the monitoring phase that reflects the progress of the disease and its
response to treatment.

3.1.1. Diagnostic approaches

Murphy [1976] has characterized the physician's approaches to diagnosis as being of four
types:

1. The exhaustive approach (Burke: 'mindless completeness'). This approach is often
presented as the ideal to medica) students. Sometimes indeed it may be necessary to
avoid errors. It is nol recommended as standard procedure, because it is too time­
consuming and costly.

2. The Geslalt approach, 'the total is more than the sum of its parts'. 'Intuition' and
'hunches' are important, nol conscious reasoning. Solutions are reached instantaneously.
This approach is related to pattem recognition: humans are superb pattem matchers. But
pattem matching is difficult to codify, since it is difficult to identify the importance of

pattem features critica! for recognition; some elements are difficult to articulate and
often elude the non-expert observer.

3. The algorithmic or multiple branching approach. Devise mies as unambiguous guides to
decision and action (flowcharts). Completeness is difficult except in simple cases.

4. The hypothetico-deductive approach: first form initia! hypotheses, then acquire the
critica! observations to confirm or reject each of the alternative hypotheses. This
approach is structured; it pervades the data collection process and is very individual­

oriented (both patient and physician). lt relies to a significant degree on the physician's
understanding of mechanism1, that is, on his mental model of the pathophysiologic
events through which various combinations and patterns of associated findings are
produced. According to Murphy, this approach is mostly used in non-routine cases.

The hypothetico-deductive approach seems most suitable for an expert system. The
exhaustive approach is unsuited, because in most cases it will be impossible to collect all
necessary knowledge. The Gestalt approach is unsuited, because hunches are too vague to
describe in an explicit manner. The algorithmic approach is not sufficiently genera!, because
it demands a completely deterministic sequencing through the knowledge. This leaves the
hypothetico-deductive approach. For an expert system every case is non-routine, but if the
problem domaio is sufficiently restricted, it should be possible to enumerate all possible
hypotheses.

1 Sometimes such understanding is missing, and associations produced by clinical experience
have to be used.

34

According to Medawar's hypothetico-deductive scheme [Medawar, 1969], diagnosis

proceeds in two steps:

1. The hypothesis or idea originates in the 'prepared mind'; this is basically a nonlogical

process.

2. The deductive part is usually an experiment to test the hypothesis, a rigorously logica!

process.

According to Burke [1978], the physician seeks virtual certainty, at least until, on
deliberate reflection, he concludes that further pursuil of certainty is unwarranted. Certainty

can only be approached, however, in the second step. In the first step, there are two

problems. First, it is impossible to know for sure that no hypothesis has been missed.

Second, the formulation of a hypothesis presents problems. In SIMPLEXYS, each hypothesis

is translated into the pattem 'is X true?' where X is some elementary or higher level

concept. All concepts must finally rest on perceived sensor data or facts. But how to

formulate beliefs (hypotheses) about those facts and how to establish their truth is an

unclear, imprecise, intuitive process which cal Is for much human ingenuity. The high level

concept 'the heart rate is stable' is an example. Acquiring the heart rate wiJl usually be no

problem; standard monitors can provide the heart rate as a sequence of numbers with

sufficient resolution at a sufficiently high rate. Intuitively it is clear what is meant by the

concept: the heart rate is regular, its variability is small. But how small? Compared to what?
Tbe problem .is how to imptement such a concept based on observables only. Many

alternatives seem possible. This synthesis of new, higher level concepts is an intuitive process.

There is no single 'correct' implementation of a concept. The final test of an

implementation is its utility. The chosen implementation of the concept is an instrument. Jf it

yields the expected results, it must be considered correct. It then becomes unimportant what
the actual implementation of the concept is. As a result, the data underlying the concept

have become unimportant; we have moved up in the 'ladder of abstraction' [Weed, 1971]

and can reason in terms of the higher level concept only; its analysis is fully defined and can

therefore praeeed automatically.

3.1.2. Protocols

The quality of care becomes an ever increasing concern [Shuman, 1982]. In order to

quantify quality, it must be measured. Protocols1, clinical algorithms2, are the measurement

devices. The yardstick is their specification of what high quality care is. Here, we approach

1 The SIMPLEXYS protocol is a generalization of the protocol described here.
2 'Clinical algorithms specify the order of activity, the extent of activity, !i mits of variations
that may occur, acceptable inputs and outputs in any given system. To design an algorithm,
one must anticipate all possible conditions and define exactly what wiJl be done in each case'
{Skolnick, 1982].

35

the protocol not so much because we want to measure the quality of care, but because a
protocol can specify what good care is.

According to Donabedian [1978], the first step in exploring quality is the description of
diagnostic and therapeutic management as a sequence of activities and strategies. The
resulting models, wbich take the form of algorithms or decision trees, are not only precise

and realistic representations of what is considered to be good care but are also a means of
testing alternative strategies of care and of confirming or modifying norms. Donabedian cites
three reasons for adopting the protocol approach:

1. It provides a basis for formulating criteria for assessing the quality of care.
2. It provides an educational tooi for specifying and communicating the operations that

constitute clinical judgment.
3. It reveals the deficiencies in current information, identifies those which are most critica!,

and suggests research needed to obtain the required information.

A protocol begins with a defined medica! problem. For that problem, the protocol does
six things [Pass et al, 1982]:

1. It.delimits the problem by defining which patients with that particular problem can he
managed appropriately using the protocol.

2. It indicates the specific data (history questions, elemerits of the physical examination and
laboratory tests) which need to be collected in order to manage the problem.

3. It sequences the acquisition of data by including logic rules that individualize the clinical
data according to the particular characteristics of the patient, such as age, sex, medica!

history, current medications, and characteristics of the patient's complaints.
4. It specifically indicates the clinical findings which are serious enough to require referral

to, or consultalion with, a specialist.
5. It includes precise rules for aniving at a diagnostic impression and for rnaking

management decisions such as prescrihing therapy.
6. It can be filed in the record and serve as a progress note.

The protocol logic is often displayed as flow charts, a set of decision rules or a decision
table, or in some special format, e.g. combined with a data collection checklist, but
increasingly as a set of computer frames, where the computer guides the progress through

the protocol (protocols as computerized consultants).

The prolocol's scope must be appropriate. It can never be complete; it is necessary to

define the boundaries where referral becomes necessary. A too narrow scope wastes the
user's abilities, but a too wide scope can be dangerous.

In writing a protocol, these steps can be distinguished [Pass et al, 1982]:

36

- ldentify the patients for whom the protocol is intended.
- ldentify the cluster of related complaints to be handled by the protocol.

ldentify the diseases or conditions which may cause those complaints.
Characterize each disease or condition in terms of 1) its likelibood of occurrence, 2)
whether it is treatable if found, 3) the seriousness of its consequences, 4) the clinical
skilis and resources required to identify it.
Based on the above considerations, decide which of the possible causes of the patient's
problem the protocol 1) cannot afford to miss, 2) should refer, 3) can leave to the
protocol user, 4) can ignore.

- ldentify the signs, symptoms and Iabaratory tests most likely to be useful in diagnosing
the conditions which must be identified if present.
Write the rules specifying the circumstances under which each of these data is to he
collected, each possible diagnosis is to be made, each possible therapy given, and when
referrals are to be made.

- Translate these rules into a sequentia! series of steps to be taken by the user, including
all appropriate branching logic.

- Test, correct and validate the protocol through 1) initia! peer review, 2) preliminary trials,
3) prospective randomized controlled trials.

- Document the protocol, explaining the medica] rationale for each step of the algorithm,

and descrihing the clinical skilis required to use it.
- Disseminare the protocol and supporting documentation to the users.

The use of protoeals shows striking improvements in the performance of physicians. Even
when their use is discontinued, they are better than before, though not as much as when they
used the protocol.

3.1.3. Monitoring

'Although the word monitoring is often thought to refer to the act of obtaining a
measurement, the proper use of the term in anesthesia is to observe and control. That is,

monitoring is both the obtaining and the use of information' [Ream, 1982].

MonittJring is patient management, with an added critica] factor: time. Monitoring is
necessary if the patient's physiology is or can become unstable. In intensive care units, the
accent is on observation, diagnosis. In the operating room, therapy is the prime concern,
surgery, and with it anesthesia. But this therapy is hazardous. Monitoring is the most

complex in the operating room during the practice of anesthesia. That is why we focus on it
here. Gravenstein [1979]:

'Nowhere in medicine - indeed, nowhere at all - is man expected to live through more
drastic and dangerous invasion of body and chemistry than in the operating room.
Anesthetic drugs not only dissolve in the patient's brain cells to produce amnesia and
analgesia [which is intended], but they are also absorbed in the body [which is not

37

intended] where they affect many functions of the central and autonomie nervous systems,

the ganglia, heart, liver, kidneys, muscle and marrow. Literally every organ is touched and

often weakened, inhibited, unbalanced and disturbed.
To these anesthetic effects we must add the action of muscle relaxants, the sequelae of

unnatural positions, the imposition of artificial ventilation generating unphysiologic

intrathoracic pressures and frequently gas tensions in lungs and blood, the surgeon's knife
and his assistant's elbow resting heavily on the patient's chest, the Ioss of blood, the
infusion of artificial fluids and old blood with unfriendly preservatives, the imposition of
disfavored temperatures and the fasting state. Putting all these together, we gain a faint
image of what actually happens, thousands of times daily, in hospitals throughout the
world. Most patients survive it all. We are a hardy lot!

Some patients do not survive. Some suffer permanent damage. Some survive, but with

impaired brain function. You will claim I exaggerate. Really, only a small percentage die

under anesthesia or survive with permanent damage. No one knows the correct figures.

Most estimates suggest that less than 0.1 percent come to harm from anesthesia, but most
estimates also say that, for the United States alone, the number of anesthetic deaths may

be as high as 20,000 a year, maybe more. Even if only a quarter of these were

preventable, as many as 5,000 Jives could be saved.'

The probieros are complex, and time is short. Although one would expect this to

complicate patient management, in practice this is not the case. Decisions need to be airoost
instantaneous. There'fore, choosing a plan for action is Ieft to historica! perspeelive or

current consensus. 'The collective choices have been slored in the anesthesiologist's mind­

computer during his indoctrination, training and subsequent education' [Bendixen and

Duberman, 1982]. Especially in anesthesia, the time available is not sufficient for library

reference or rigorously reasoned decisions. Guidelines are developed when there is time
available for Iibrary work, thinking, and consultation. 'The colleelive experience and
judgment expressed in the consensus seem more valuable for reaching optima! decisions
rapidly than the individual experience and judgment of any single anesthesiologist'.

High quality monitoring is impossible without a wide assortment of devices. These must
be simple and reliable. They take valuable time to apply and maintain, time taken away

from patient care. They are costly, and the in formation that they provide mus(be sufficiently

useful often enough to justify them. New monitors are usually introduced to solve an
immediate clinical problem; even if they are successful, they are usually reluctantly accepted

for general use.

More than any other medica! specialist, the anesthesiologist follows a protocol-like well­

defined procedure [Schneider, 1979]:

'In genera!, every anesthetist organizes his intraoperalive monitoring around a

separate graphic chart for each anesthetic he administers. This record has areas in which
he enters the patient's name, age, sex, diagnosis and other pertinent preoperalive

38

information; it also has a cross-ruled area for the frequent entry of symhols which
reptesent values for systolic and diastolic blood pressure, respiratory rate and heart rate.
A list of the time of administration and the dosages of various drugs is also included. A
copy of this record usually finds its way into the anesthetist's files for statistica! and
billing purposes, while the original hecomes the official record of the anesthetic
administration and is filed in the patient's hospita! record.'

The record guides the acquisition of data, is a receptacle for those data, has a format that
eases their interpretation, and serves as documentation of the case.

The life-threatening problems in anesthesia are well known, e.g. Goldstein and Keats
(1970], Bendixen and Duberman [1982), Cooper et al [1982], Manteleers [1985], Me ijler
(1986). Humans fail far more often than the equipment. Detection of important events hy
humans is fragmentary at best [Vetter and Julian, 1975], and support in this area is generally
considered urgent. But the detection of important events by the current generation of
monitoring equipment is poor as well; usually there is a high proportion of false alarms.
Therefore such alarms are often turned off, but with serious consequences: 'the ease of
disabJing ventilator aJarms either deJiberately OT inadvertently is overall the most important
contributory factor in injuries' (Cooper and Couvillon, 1983].

In general agreement with Bendixen and Duberman [1982] we conclude:

1. Much of the decision making in anesthesia deals with a relatively small number of
regularly recurring events. A methodology for making many of these decisions is clearly
discernible and definable, even implementable in a machine.

2. The decision making process consists of:
defining the problem; in anesthesia, (parts of) the problem will be very similar in
many cases;

- gatbering the information necessary to detect the problem; which information is to be
acquired is very much standard in many cases;

- proposing a choice or course of action to solve the problem; in many cases, the
appropriate course of action for a machine would be to issue an alarm, as specific as
possible [van der Aa, 1990]; in some cases, the action to be taken will be both unique
and mechanizable;
checking the proposal to judge its appropriateness; if the machine's proposal proves to

be always appropriate, this may lead to further mechanization of part of the therapy
(for an example, see chapter 9);

- effecting an action; some of these actions may be executed by a computer, which can
also monitor their progress.

3. Realization of the role of the collective in decision making should lead to greater use of
guidelines, policies, and protocols, increasingly in computerized form as 'management
assistants'.

39

4. We can refine our understanding of what the individual anesthesiologist does best and

use his decision making skilis to the best advantage by incorporating them into the
protocol.

5. Bendixen and Duberman (1982]: 'With increasing understanding of the decision-making

process, good collective planning, optimum use of technology, and optimum use of human

beings, there is little reason why we should not reach or at least come close to our goal
of zero anesthetic morbidity and mortality, at least for healthy patients undergoing
routine procedures.'

3.2. Machine reasoning

The computer must solve the problems, and it must solve them correctly. Machine logic,

however, is one of bits and bytes, of statements or propositions, of some kind of more or less

forma] mathematica! logic. lt is not human logic; computers do not urnierstand their

problems, have no insight into their problem domain. Given a problem and a knowledge
base, they can only solve the problem if the knowledge to solve it is there and if that

knowledge can be accessed. But that knowledge is limited. The computer has an extremely

narrow world view, and its evaluation of the situation is in terros of its smal! world. If the

knowledge is not there or not accessible, it may give, by human standards, extremely

irrational responses. Incorrect solutions arise when

the problem i~inot recognized and. Îherefore either nëit solved at all or miscategorized

into a class for which a salution is available;

- decornposition of the problem into the available salvabie sub-problem classes is

impossible or insufficient; some of the necessary knowledge is missing;

the inferencing process cannot reach a solution, although the knowledge is there; the

proper links to the knowledge are missing;
no appropriate action can be executed although a salution is reached;
multiple conclusions and/or actions contradiet each other; this may cause chaotic
behavior.

These wil! remaio fundamental problems as long as computers cannot be given the same
knowledge as an intelligent, experienced, sensitive human. Yet, the computer must not only

solve the problems, it must solve them in an expert manner. Whatever the computer's

internal problem solving strategy, we want to obtain the solution, and we want it almast

instantly. This calls for the computer to have some 'expert' properties:

lt must have the knowledge to solve the problems that must be solved, in particular the

appropriate and necessary high level concepts.
It must know its specialization, and properly recognize problems as either salvabie or

unsolvable given the existing knowledge. This calls for an exhaustive enumeration of all
problems that may be encountered. The computer must act like a medica] specialist who

40

solves a problem that he cannot solve by referral 1• In other words, there must be an

explicit c/ass of problems that need to be referred.
- It must pay attention to the incoming data in two ways. First, it must check whether

(some of) the data look suspicious. Second, it must methodically check whether any of
the solvable problems occur. Finding suspicious data without an applicable solution may

be an indication for a referral.

It must have the appropriate senses (sensors, input capabilities) to acquire the necessary

basic facts that are needed to solve the problems.
- It must recognize the probiem's type as one of a class that can be solved, and then use

the sensor data to solve it. Th ere must be an internat model for the problem type.

Matching model and data can essentially be done in one of three ways.
The first method is to pose all possible hypotheses, i.e. try to solve all imaginable

problems. This exhaustive approach, even if possible, is extremely wasteful of processing

time if many of the hypotheses are irrelevant in the actual problem situation.
The second method is direct pattem recognition: the data form an n-dimensional point
within the confines of the stereotype. The data define the type. This 'Gestalt' approach

can possibly be applied in simple cases2•

The third method is to be prepared: expect the problem to be one of a limited context­

dependent set. Establish the proper context, pose a limited number of hypotheses and
confirm and/or reject each hypothesis. The context depends on existing or previously
acquired knowledge.

- Experts make more inferences in problems they know well. The computer must use the

knowledge to generale more knowledge in a 'working forward' strategy. This is akin to
'direct recognition'.

- It must conneet appropriate, immediate actions (procedural knowledge) to the

conclusions. Conclusions are no good if they do not lead to responses. lf no appropriate

actions are available, no conclusions about them are needed.
- It must provide consistent responses. Experts are consistent, and their consistency

generales trust.

3.3. The SIMPLEXYS problem solving methodology

In accordance with the above, SIMPLEXYS will have to provide an implementation of a
combination of the hypothetico-deductive scheme and the protocol approach, which will
allow the knowledge base designer to:

define a forma! description of the possible problem solving contexts and the ways in which

they are related; this forma! description is implemented in STATE rul es (see section 4.9),

which identify the context, and a protocol (see section 5.3.2.4 and chapter 7), which

identifies the relations between problem solving contexts;

1 If he does not refer, he does not solve the problem but misses it.
2 Neural networks take this approach.

41

define a forma! methad to traverse the protocol and establish the prevailing problem solving

context; this methad is formally described in ON statements (see section 5.2.4);

define the possible hypotheses; the forma(description of a hypothesis is a rule;
define a metbod to link hypotheses to a context; this is achieved hy specifying a rule to be
a conlext's goal or goal rule;

define a methad to test a hypothesis, including how to acquire any data which the

hypothesis needs and how to present the outcome of the test; in SIMPLEXYS this

methad is implicit: the lnference Engine (see section 5.5) automatically evaluates all goal
rul es.

To solve a problem, several types of knowledge must be available in the computer.

Declarative knowledge consists of elementary facts (primitives) and higher level concepts; in

SIMPLEXYS, bath are implementèd by tules 1• Episodic knowledge concerns the time at
which events occurred. lt seems natura(to link a fact with the time at which it occurred, and

this is what SIMPLEXYS does: for each concept it remembers the time when it last
occurred, so that questions like 'how long has the heart rate been stable?' can be asked.
Procedural knowledge is knowledge about how to do something. SIMPLEXYS impiemenis
actions as Pascal or C procedures. Scripts [Winston, 1977; Feltovich and Barrows, 1984;

Cantor and Kihlstrom, 1985] are the most interesting knowledge structures. Dreyfus [1981]:

'We define a script as a predetermined causa! chain of conceptualizations that describe the

normal sequence of things in a familiar situation. Thus there is a restaurant script, a
classroom script, and so on. Each script has in it a minimum number Öf p-layers and objects
that assume certain roles within the script ... each primitive action given stands for the most

important element in a standard set of actions The results of human reasoning are context

dependent, the structure of memory includes not only the long-term starage organization

(what do I know?) but also a current context (what is in focus at the moment?). We believe

that this is an important feature of human thought, not an inconvenient limitation.' Just like
protoeals (section 3.1.2), scripts describe when to do what and integrate all other knowledge
categories. SIMPLEXYS implements the time sequencing of the script as a protocol (chapter

7). Plans are an inherent part of the script. Given a situation, the knowledge is there to

describe what must be accomplished (in SIMPLEXYS: the 'goals'), what has happened and

what can be expected next.

We now present a complete overview of how these knowledge structures are
implemenled in SIMPLEXYS, using an application oriented taxonomy. Expert systems

frequently make a distinction between 'long term knowledge', which is stared in e.g. rules,

and 'short term knowledge', which consists of measurements, results of computations,

answers to questions etc., stared in 'working memory'. Due to its real time nature,
SIMPLEXYS refines this distinction. Four categories of knowledge can be distinguished. The

1 The reader will have to keep in mind that a 'rule' irt SIMPLEXYS is quite different from a
rule in a production system.

42

first category implements fixed knowledge (LTM, long term memory), the other three
categories implcment more or less volatile knowledge (types of STM, short term memory).

1. Case-independent faed knowledge about the application. This knowledge is implemented
as
a. the protocol; this is a description of when to use wlzich knowledge;
b. the rule base; this is a description of the static semantic and episodic declarative

knowledge, and the relations between the individual knowledge chunks, which are
called ru/es; among the rules are the goal ru/es (the conclusions to be derived);

c. a set of procedures; procedures implcment procedural knowledge, actions to be
performed, e.g. to acquire data or to display results; each procedure is attached to a

rule which denotes the conditions under which the action is to be performed;
d. a data memory; storage locations for data that must be collected, remembered,

computed, displayed.

SIMPLEXYS rules embody both a concept (i.e. an LTM chunk of fixed knowledge), e.g.
'the heart rate is stable', and a (possibly temporary) assenion about this concept (an STM
structure, e.g. 'it is currently true (or false, or unknown) that the heart rate is stable'. Such a

combination is well known from Pascal: ajunetion embodies both an algorithm (the LTM
part) and a value (the STM part).

There are six types of SIMPLEXYS rules: fact rules, state rules, memo rules, ask rules,
test rules and evaluation rules (see section 5.3.2.3); each type stores a different category of
knowledge.

2. Case-dependent faed knowledge, i.e. knowledge about the case which does not change
during the case. This knowledge is implemenled as

a. fact ru/es, which store fixed facts about the current case, such as the patient's age
category.

3. Medium term knowledge, which is available once acquired, but may be updated. This
knowledge is implemenled as

a. state ru/es, which remember the context;
b. memo ru/es, which remember earlier results, such as complications that have arisen.

4. Short term knowledge, which is to be re-acquired whenever new data are to be analyzed.
This knowledge is implemented as

a. ask ru/es, which store the replies to questions from the user;

b. test ru/es, which store the results of tests on data;
c. evaluation ru/es, which store higher level intermediale or final conclusions;

d. externally supplied data values, e.g. patient measurements.

43

In many small and some larger applications in whicb SIMPLEXYS was tested, these
knowledge representation techniques were demonstraled to be well geared to the type of
application envisioned. They were shown to be sufficient and quite versatile.

3.4. Language design

The design of a new programming language can be approached from two directions, a
theoretica! and a practical. From the theoretica! point of view, a language is a tooi to build a

logica!, verifiable 'abstract machine', given some appropriate basic building blocks; this
section largely follows Wirth [1976a], the designer of Pascal, who presents some of the

requirements for a language and its compiler. Chapter 4 describes the practical approach:
explore wbich basic building blocks are necessary to accomplish tasks in a eertaio class; the
language then seems to design itself.

'The software inflation (the construction of very complex and large programs] has led 10 a
software crisis which has stimulated a search for better methods and tools. This includes the
design of adequate system development languages ... The important role of programming

languages in the design of large systems is now being recognized. In fact, they are
indispensable' [Wirth, 1976a).

The problem is that 'complexity has proven to be a sure winner in attracting customers

that are easily impressed by sophisticated gadgets. They haven't sufficiently realized that the
.addiüörtal performance of a complex design is usually much more than ()ffset by its

intransparency or even unreliability, difficulty of documentation, likelihood of misapplication,
and cost in maintenance. But we shall probably bave 10 wait for a long time, until simplicity

will work as a sales argument. To be sure, "simple" must not be equated with "simple­

minded" or "unsophisticated", but rather with "systematic" and "uncompromising". A simple

design requires much more thought, experience, and sound judgment, the Jack of which is so
easily disguised in complexity.'

The primary goal of a programming language is to allow the programmer to formulate his

thoughts in terms of abstractions suitable to his problem, to build an 'abstract machine'. lf
the goal of SIMPLEXYS is to eneode knowledge, it must have the correct abstractions to do
so. The type of problems to solve dictales the choice of the abstractions in SIMPLEXYS
(section 3.3).

The second goal is, of course, that the 'abstract machine' must actually run and solve the

problems it was designed to solve. The issue is now efficiency, both in terms of code size and

speed of execution. But we must avoid forcing the programmer to invent tricks that are

based on his knowledge of the way the abstract machine is encoded into the underlying

hardware, in order to make his programs have the required efficiency. The abstractions
themselves must be efficient.

44

A third goal is that the 'abstract machine' must be so logically built, that a compiler can
'double-check the legality of the program statements within a well-defined framework of
abstraction' [Wirth, 1976a]. In SIMPLEXYS, statement level checking is complete. Not only
single program statements must be checked, but preferably also the program as a whole.
This is a much more difficult task, because not only syntactic, but semantic knowledge is
necessary to accomplish it. In SIMPLEXYS, this latter type of checking is much more
thorough than usual, because of the simplicity and forma! nature of the constructs.

In particular, interrupts have no place in an abstract machine. Unsophisticated
programroers frequently consider interrupts to be 'unexpected events', but such a view is
highly inappropriate: noprogram willever be able to handle the unexpected. 'An interrupt is
a highly machine-oriented concept that aJiows a single processor to participate in the

execution of several concurrent processes. A language should either be devoted to the
formulation of strictly sequentia! algorithms, in which ca~e the interrupt has no place as a
concept, or it is designed to express the concurrency of several sequentia! processes. In this
case a suitable form of synchronization operations must be found, but again the interrupt a~
a concept is inappropriate, because it refers to a processor (machine) instead of a process
(conceptual unit of the abstract algorithm)' (Wirth, 1976a]. SIMPLEXYS protoeals (chapter
7) express concurrency; interrupts, although not SIMPLEXYS concepts, are easily interfaced
with (section 9.3.1).

Wirth [1976a] formulates some criteria for judging a Janguage and its documentation. The
first is 'a complete definition without reference to compiler or computer. Such a definition wil!
inherently be of a rather mathematica! nature.'

Yet, it is unavoidable that the language interfaces with the hardware; input/output
devices and the filing system must be accessible. According to Wirth, 'Janguage designers are
well-advised to provide a facility to delineate modules within which certain device dependent
language features are admitted and protected from access from elsewhere in a program'. A
Pascal implementation is supported by a small 'run time 1/0 package'. SIMPLEXYS is
similarly supported by an interface to Pascal or C.

'Future languages must provide a modularization facility whiclz introduces and encapsulates

an abstract concept'. Such a facility 'is instrumental in keeping the size of a language -
measured in terms of the number of data types, operators, control structures, etc. - within
reasanabie bounds'. The SIMPLEXYS ruleis such a construct.

Another criterion to judge a language is its size in terms of the number of manual pages
that is necessary to document it (according to Wirth, a language definition, comprising its
syntax specifying the set of well-formed sentences, and its semantics defining the meaning of
these sentences, should not extend over 50 pages). 'In programming, we are dealing with
complicated issues, and the more complicated an issue, the simpler must be the language to

describe it'. Criteria are thus conciseness and clarity of description .

45

Wirth also formulates some requirements for the language's compiler:

First and foremost, it must be totally reliable: it must perform a syntax check against every
single rule of the language, translate the program correctly and take care that no
incorrect program can crash the compiler. In this sense, the SIMPLEXYS compiler is
totally reliable. Semantic checks (e.g. whether the program will come toa: halt) are much
more difficult. In Pascal, no such checking is done; SIMPLEXYS perfarms a number of
such checks.

- The compiler must also compile at a reasanabie speed. This is difficult in SIMPLEXYS,
with its extensive overall checking, if the program is large. Therefore the compilation
process is split up into several parts. The Rule Compiler perfarms the compilation and
does most syntax checking; it is fast (for an example, see section 9.4.4). Only if the Rule
Compiler finds no errors, the Semantic Net Checker starts its checking, which takes a
Jonger time. And only if the Semantics Checker finds no errors, the Petri Net Checker
does its checking, which takes a longer time as well.

- The compiler must generate efficient code. This is the most important feature of
SIMPLEXYS expert systems: they are extremely efficient compared to other expert
systems.

The execution cost of the code must be reasonably predictable. This is true for
SIMPLEXYS expert systems (section 5.7), not for many other real time expert systems
(section 2.2.3).

- The compiler should be reasonably compact. The SIMPLEXYS Rule Compiler is small
(less than 60 Kbyte), as are its extensions.
It must provide a simple and effective interface to the environment. The SIMPLEXYS
environment is Pascal, and the interface is simple and effective.

Compiler maintenance is very important. For a general purpose programming la nguage,
Wirth demands that the compiler be written in its own language. Also, 'the development cost
of a compiler should stand in a proper relationship to the advantages gained by the use of
the language. This holds also for iruiividuallanguage features'. The latter is exactly the reason
why SIMPLEXYS is so compact.

In Pascal, language rules that cannot be checked at compile time are verified at run time.
In SIMPLEXYS the same is true, but in addition the Rule Compiler generales a number of

warnings for questionable or incorrect higher level constructions.

Wirth's overall condusion is 'that Pascal is a language which already approaches the

systerns complexity beyond which lies the land of diminishing returns'. The experience with
SIMPLEXYS is as yet insufficient for such an evaluation, but preliminary work supports the
apinion that the SIMPLEXYS constructs are both suitable and sufficient for the type of
problems it means to attack.

46

4. The origin and evolution of SIMPLEXYS

SIMPLEXYS was not designed, it grew, out of a need. The need arose when our research
was directed to the design of 'intelligent alarms' in anesthesia. Currently, clinical alarm

systems are clumsy at best, sometimes even useless. They generale a lot of false alarms, due
both to the bad quality of the measured signals in genera!, and to the fact that those signals

are frequently disturbed by willful actions of the medica! staff in particular. Thus the need

arose to 'filter out' alarms due to artifacts and also to eliminale those alarms that are
clinically useless or superfluous.

This proved to require a lot of knowledge about how those signals can be disturbed, what

clinically useful information they provide and how they are used. This type of knowledge was

difficult to incorporate into the data processing algorithms, especially because it was often
unclear exactly which knowledge to incorporate: many complex, difficult to program tests
were needed. And due to the experimental nature of many of the algorithms, program
maintenance became a difficult issue: the representation and implementation of the

knowledge into a fixed algorithmic format was often almost impossibly complex, because it
was spread out all through the program. Thus we became interested in better techniques to

solve these types of problems. Our attention became focussed on expert systems, because

they offer a convenient methodology for the representation, implementation and
manipulation of knowledge.

In section 1 of this chapter we formulate the requirements that should be met in the
applications that we consider. Although the expert systems approach is promising, current

produels did not meet our demands. In section 2 we investigate how a new product with

greater computational efficiency can be attained. Sections 3 through 10 describe the steps

that have led to the final product SIMPLEXYS. These sections are not meant to present a
design history, but to give the reader some insight into the 'why' of the language features of

SIMPLEXYS. Finally, section 11 demonstrales that SIMPLEXYS roeets the requirements of

what an effective tooi should offer.

4.1. Requirernents for expert system applications

In a search for an expert system that could be used in the types of application that we
had in mind and that could run on a small, inexpensive computer such as a PC, we soon

discovered that expert systems research is still a very young science in which most research

focusses on theoretica! considerations (how to represent knowledge; how to elicit domain

knowledge from the experts), and that the produels that have reached the market place are
mostly immature and reflect the state of the art of several years in the past. Implementations

were based mainly on the programming language LISP, a nice and flexible but inefficient

47

tooi, that allows almost anything but needs large computers and even then is slow1•

Although there are versions of LISP that run on a PC, LISP programs are very slow

compared to, say, Pascal programs that perform a similar task; and although there are many
versions of LISP that run on workstations, the cost of a workstation is ten times more than

that of a PC. We also found that most current expert systems operate interactively, through

question and answer sessions. In an interaction, the human who consults the expert system

often takes most of the time in considering responses to questions, and thus the speed with

wbich those systems reacts is not too important.

But in real time applications, speed becomes of the utmost importance. Analysis cycle
times are short, in the order of 5 seconds. The analysis of the data must be available before

those data have become irrelevant, and before the next data arrive: tbe expert system must

be fast enough to keep up with the enormous quantity of rapidly incoming data.

We then formulated these requirements:

1. Our previous applications (e.g. DADS [Meijler, 1986]) were smal! enough to run on a

PC-sized machine; in order to be cost-effective, new expert system based applications

must be able to run on a machine as smal! and inexpensive as a PC, too.

2. Our applications should be fast enough; the expert system should be geared toward real

time work.

3. Our applications should have custom-designed user and device interfaces, not sarnething
prescribed by the expert system~ In particular, a custom interface to peripherals like AD­

and DA-converters, RS-232 ports, keyboard and such should be easy. Also, the

application, not the expert system tooi, should decide what to show on the compoter's

video display.

4. There will be Iots of computations, and these should be as fast as in a standard

programming language such as Pasca12•

5. The expert system should not only be fast on average, it should have an easy to estimate

worst case response time.

6. The expert system should be easy to program, test, debug and use for persons used to

programming in a standard computer language; the people who wil! be updating and

maintaining the expert system are generally not Al researchers.

7. The knowledge base should be easy to read and rnaintaio and serve as a good
documentation for the implemenled knowledge.

1 Buchanan and Shortliffe [1984] about LISP: 'Fora research effort ... we were much more
concerned with saving days during programming development than with saving seconds at
run time'. In a real time application, however, a one second difference in run time may be
very important.
2 In our opinion, and in that of many educators, Pascal is the best prograrnming language
where transfer of ideas is concerned; although a 'C' version of SIMPLEXYS exists as wel! as
a Pascal version, in this dissertation we use Pascal tbraughout for its better readability.

48

8. Safety is very important in our type of application. Exhaustive checks of the implemenled

knowledge, right from the very early design stages, are mandatory; tests should not wait

until the final application runs. Safety first, not last!

Our survey of available produels indicated that none was suitable. Some appeared able to
handle our type of application, but required expensive computers, whereas we wanted our

applications to run on something as smal! as a PC. None seemed to be designed with
efficiency in mind. Many had a fixed user interface; we wanted to be able to design our own.

And too little information was available to estimate their worst case performance; they were
too much a 'black box'. And although many of the commercial packages have, for reasoos of

efficiency, left LISP behind astheir implementation language, their spirit, list searching (or

its mathematica! counterpart, unification, the basis of Prolog), is still that of LISP.

Safety seemed to be an unimportant issue, too. 'Truth maintenance' is a major theoretica!
issue, but the reliability of expert systems is not. Few products test for semantic errors like
conflicts between different chunks of knowledge or infinite loops in the evaluation process.
Inconsistencies are hard to avoid in everyday life, yet we want to go as far as possible in the

attempt to insure that the end product will be error-free.

4.2. Toward more efficiency

At first, in our search for efficiency, we attempted some approaches different from expert
systems. The problem was formulated as follows: given some facts (the input data), design a

mechanism to derive all possible conclusions (alarm messages) as fast as possible. We
perceived the scheme of figure 4.1.

interenee engine

-·r--·---~-----· --I····
0 I c3J EJ

fa cts

conclusions

Figure 4.1. An inference engine somehow converts facts to conclusions.

The facts F (i) are given, acquired through e.g. Pascal code, and have 'symbolic' va lues:

either one of tme, fa/se or unknown. The conclusions C (i) need to be derived; they, too, are

'symbolic' and can have the values tme, false or unknown.

We first investigated the following strategies:

49

First approach: build a decision table or logica! matrix linking the facts with the
conclusions. This approach promises maximum speed; in hardware it bas taken the shapes of
a read-only memory (ROM) and a programmabie logic array (PLA). The set of facts farms a
pattem or address, that, through a simple lookup, directly generates the output pattem of
the conclusions. But this approach proved to be too inflexible; only AND and OR arrays are
easy to implement, and we wanted the possibility to realize more complex logica! functions.

Second approach: write each condusion C (i) as a logica! function of the facts. Derivation
of conclusions is then the evaluation of those functions. Such an approach can be realized in
hardware as well, by suitably linking a number of discrete logica! building blocks. In software
it is just as easy. But we realized that those functions would have many sub-expressions in

common, and that repeated evaluations of those sub-expressions should be avoided, at least
in a single processor system. So the functions should be 'chunked': common sub-expressions
should be discovered, set apart, and evaluated just once. Chunking is essential, too, to retain
sufficient insight into the knowledge that is actually implemented. This approach as such is
too simplistic; yet, it looked very promising and was always kept in mind. Much of it is,
though in a much more sophisticated way, realized in SIMPLEXYS.

We exercized with both approaches, but soon gave up, because the solutions became very
convoluted. So we turned to expert systems, our last recourse.

Most expert sysfems are.rule based. Rules, also called production rules, are small 'chunks'
of knowledge that are easy to uoderstand and maintain; rule based systems are intuitively
appealing. They are also easy to implement. Semantic networks are another choice. They

have the advantage of using the relations between concepts in order to optimize searching

and toperfarm some correctness checks. Frames [see e.g. Rich, 1983] areanother well
known basis, an extension of the semantic network idea. Frames are most useful if the
knowledge domaio to be implemenled has a hierarchical structure. They are more genera!,
but also more difficult to implement than rules. SIMPLEXYS 'rules' borrow ingredients
from all these approaches; they look like production rules, they are linked as in a semantic

network, and they resembie frames in that they have 'slots' that can specify additional
operations and/or actions.

Thus we started what was to be called SIMPLEXYS, nol only because we were not
satisfied with what was available, but also because we wanted so much insight into the

innards of the expert system that we obtained the ability to estimate a worst case
performance. Moreover, in a new design we could use every trick we knew to speed up the

operation of the resulting expert systems. The enterprise was a challenge for two reasons.
First, optimistically, we thought that what we wanted was so simple, that the effort would not
be immense. Second, we saw no other alternative.

In a search for efficiency, two roads are open. The first approach promises the most:

choose an efficient algorithm. A successful choice of algorithm can provide an efficiency

50

increase of orders of magnitude, e.g. when an algorithm that needs exponential time 1 can be
discarded by discovering one that needs linear time2• Many of the welt known 'basic'
algorithms of computer science illuminate this search for ever more efficient algorithms (an
example is the large collection of sorting algorithms). The second optimization is an efficient
implementation of the chosen algorithm. The gains to be earned here are not as large and

often require hard labor. Moreover, they frequently require tuning an algorithm to the
hardware of the computer it wil! run on. Up to now, we have expended very little effort in
this second type of optimization.

4.3. Start of the loferenee Engine

We started with smalt problems and small systems and tried out and rejected many
approaches. The basic idea that over time grew into SJMPLEXYS is due to the following

Pascal 'special purpose micro expert system' shown to me by Hajek (Eindhoven University of
Technology Computing Center), when he presenLed his Artificial Jnteltigence course in 1986.
It solved the following problem, adapted from Michie [1980]:

Given: A unknown 8 true c true
D true E true F A and 8
G C and D H E J 8 and G
K G and E x (F and H) or (J and K)

Wanted: the plausibility o f X

Solution (the program, not the plausibility):

program infer; {special purpose inference engine)
var A, 8, c, D, E: real;
function cand (a, b: real): r eal; begin cand : = a* b end;
function cor (a, b : real): r e al; begin cor : = a+ b-a* b end;
function F: r eal; begin F : = cand (A, 8) end;
function G: real; begin G := cand (C, D) end;
function H: real; begin H := E end;
function J: real; begin J := cand (8, G) end;
function K: real; begin K := cand (G, E) end;
function X: real; begin X : = cor (c and (F, H), cand (J, K)) end;
begin

A : = 0.5; 8 : = 1.0; C : = 1.0; D := l.O; E := 1.0;
writeln ('X= ' 1 X)

end.

In this little program the 'facts' are implemenLed as real variables, where 'false' is
represented as 0 and 'true' as 1; any value between 0 and 1 represents a plausibility, a fuzzy
truth value, a different degree of 'unknown'. ihe 'rules' of the expert system are

1 An algorithm is exponential time if its run time is an exponential function of the number of
elements it has to process.
2 An algorithm is linear time if its run time is a linear function of the number of elements it
has to process.

51

implemented as real functions that return a 'conclusion', a value between 0 and 1. The
operators are real functions as well. The functions 'cand' and 'cor' replace the boolean
operators and and or for this fuzzy logic. A different definition of these functions could be
implemented as easily. Evaluation is automatic due to the features of Pascal (recursion). The
'inference engine' is bidden; the inferencing is performed through the standard Pascal
evaluation of function X.

This program illustrates many of the ideas behind SIMPLEXYS: the problem (both
'given' and 'wanted') should preferably be as simple as above; the goal or goals ('wanted')
must be explicitly stated; the problem must be converted into a compact, efficient 'special

purpose inference engine'; rules resembie functions with an LTM part (the function body)
and an STM part (the function's result); and inferencing is automatic ('bidden') evaluation of
the goal(s).

The main advantages of this program are that it is so simple and compact. There are only
two types of rules: one type is implemented as a real variable, the other as a real function
that evaluates a logica! expression consisting of other rules. And there are only two logica]

operators, and and or (due toa conflict with Pascal reserved words the operators cannot

have those names).

Another advantage of this type of program is, that the Pascal compiler perfarms some
· important correctness cheëking automatically as long as no functions are declared forward,

due to the fact that in the program text function B, if it calls function A, must succeed
function A. This ensures that no evaluation loops can exist. Logically, such a loop would be

a self-referential definition; computationally, recursion would go on indefinitely or until stack
overflow.

The main problem with this program is that it solves one problem only. A generalization
is easily achieved, however: implement A through E not as real variables, but as functions

that allow a user to enter their values, e.g. at a keyboard. Hajek's expert system Quixpert
[Hajek, 1988] was set up along these lines. 1t had two rule types, one type to ask questions,

and another type to do an evaluation.

Another problem, not so visible in this short example, is that each question rule asks the
same question again each time the answer is needed, and that each evaluation rule does a
complete recursion, down to the tips of the problem tree, even if some higher nodes had

been evaJuated already. Both these problems were solved by storing the rule's condusion
(into an array) and re-using it if it had already been evaluated. Besides convenience (not
asking the same thing twice or more), this salution increased the program's efficiency. Now

each rule needs to be evaluated once at most: an important step toward a very efficient
evaluation procedure. However, since they had become quite complex Pascal functions,
Hajek's rules were not very nice looking and understandable anymore, and writing a set of
mieswas quite an effort. We wanted a well-readable format like:

52

A: 'How plausible is A?'
ASK ~

X: 'X'
(F AND H) OR (J AND K)

and have some program translate the rules into an efficiently executable format.

ES terminology is not quite standardized. Although in expert systems jargon a ru/e is

commonly considered to be a (valueless) 'if-then' directive, we call, for want of a better

name, and in agreement with Fagan (1980], the 'knowledge chunks' combined in the above
lines ru/es, and we refer to the ru/es above as 'rule A' and 'rule X'. In production rule

terminology, the outcome of the 'evaluation prescription' in the second text line of rule A or

X is called the rule's condusion or consequent. In frame language, it is called a variabie or

parameter, because after evaluation it is assigned a logica! value.

4.4. Start of the SIMPLEXYS syntax

This approach resulted in an initia! syntax and a simpte 'Rule Compiler'. In the examples
above, rule A was called an ASK rule and rule X an EVAL (evaluation) rule. Compilation

of the rules into Pascal functions resulted in very large programs, however, so a more

compact representation was devised. The SIMPLEXYS Rule Compiler grew into being, and

the compact representation that it delivers is a set of taken arrays (see appendix 4). This

representation required a 'table walker' program for the interpretation of the tokens and
thus the evaluation of the rules; this table walker then became known as the 'lnference
Engine' (see section 5.5). The evaluation method did not change: a rule was essentially still a
function, and it was evaluated by calculating the value of its 'expression' and assigning that

value to the rule's conclusion. In expert systems terminology this is called backward chaining:

evaluate all the necessary sub-rules. We give a very much simplified example. The evaluation

rule's expression is:

(F AND H) OR (J AND K)

The Rule Compiler stores this, in prefix notation, into an array as:

OR AND F H AND J K

where the operator symbols OR and AND and the rule symbols F, H, J and K now stand for
unique tokens with a numerical (integer) value. This conversion of an expression into an

integer array is called tokenization (see appendix 4).

Obtaining the condusion of a rule is done by a call to function evalru/e, which evaluates

the rule, stores the result for future use and returns the result (the following is a
simplification; refer to appendices 4 and 5 for more details):

function evalrule (rule)i
var ternpj {local starage in case the call is recursive}

53

begin
value := rule_value [rule];
if value = not_yet_evaluated then
begin

{recover storeà value)
{must evaluate value)

case rule_type [rule] of
ask: value := ASKval (ruletext
eval: begin

[rule]); { ask question}

temp := ptr; {push current pointer)
ptr := eval index
value := evalexp;
ptr := temp

[rule]; {expression begin)
{evaluate expression)
{restore old pointer}

end
end {case};
rule_value [rule] := value

end;
evalrule := value

end;

{store value for future use}

{return expressicn's value)

where the following arrays are defined:

rule value [.] stores the rules' conclusions;
rule _type [.] stores the rules' type;
rule - text [.] stores the rules' text string;
eval - index [.] stores the rules' index into eval _store;
eval store [.] stores all tokenized expressions.

An evaluation rule's expression is evaluated by function evalexp, which interprets the

token that ptr points at:

function evalexp;
begin

taken := eval store [ptr]; inc (ptr);
case taken of

tNOT: evalexp : = apply_ not;
tAND: evalexp := apply_and;

1 .. N: evalexp := evalrule (taken);
end {case}

end;

where every operator has a function that applies it, such as

tunetion apply_not;
begin

u := evalexp;
case u of FA: u := TR; TR: u := FA end;
apply_not := u

end;

tunetion apply_and;
begin

{get taken}

{NOT taken}
{AND taken}

{rule taken}

u : = evalexp; v := evalexp;
case u of TR: u := v; PO: if v
apply_and : = u

FA then u := FA e nd;

end;

54

Thus, supported by its Rule Compiler and Inference Engine, a forma! SIMPLEXYS
syntax developed. An elementary rule consists of two text lines. The first line gives a

symbolic name to the rule, so that other rules can refer to it1• This symbolic name also
refers toa variabie (rule_value [rule] in the Pascal code above) which wil! receive the

condusion resulting from the rule's application; this condusion wil! have a value (TR, FA or

PO). The first line also gives a text string; initially it was the question to be asked, later it
became a textual expansion of the symbolic name that could be used bath to compose a

question and to display the condusion resulting from the rule's application. The second line
shows how the rule can obtain a conclusion. If it has a keyword like ASK, this line specifies

a methad to acquire a conclusion. If nat, it specifies a logica I e.xpression that must be
evaluated, through recursion.

The above discussion explains why SIMPLEXYS rules do nat have the familiar

production rule if-then format: 'if ... then .. .'. Instead, the format is definitional: ' ... is defined

as .. .'. A SIMPLEXYS rule thus does nat represent an implication, but an assignment.

For example, the production rule format 'if A and B then C', with logic:

A B c
TR TR TR
TR FA ** ** not defined (C's value is unchanged)
FA TR **
FA FA **

is most approximately translated into the SIMPLEXYS format 'C : = A and B' with logic:

A B C
TR TR TR
TR FA FA
FA TR FA
FA FA FA

The translation of the SIMPLEXYS format 'C : = A and B' into sarnething like
production rule format is: 'if A and B then C else if nat (A and B) then nat C'. In
production rule format, however, a negated condusion 'not C' does not ex.ist as a production.

The production rule if-then format belongs to two-valued logic, where default values are

false: C is 'known' to be false unless it can be proved that C is true. The SIMPLEXYS logic

is 'richer'; the default value for C is unknown, and inferencing tries to establish whether C is

true or false; hopefully, C is not both true and false: that would be a contradiction. This

distinction has been characterized as 'closed world' (in principle everything is known, as in

Prolog) versus 'open world' (in principle everything is unknown, as in SIMPLEXYS).

1 The Rule Compiler replaces each symbolic name by an index that is used to access arrays.

55

4.5. Adding THELSEs

Another Quixpert feature was gladly adopted: multiple conclusions from one rule.
Quixpert's philosophy was, due to its nature (the only primitive rule type asks questions), to
try to minimize the number of questions asked. Thus, when classifying animals1 the program

reached the condusion that the animal was a mamma!, it could not also be a bird, an insect
etc. Thus a rule could look sarnething like:

MAMMAL: 'it is a mamma!'
... {some evaluation}
IF SO THEN FALSE: BIRD, INSECT

The third line of this rule mentions a number of rules that get their conclusions
essentially free, without computational effort. As soon as MAMMAL becomes true, the
condusion 'false' is assigned to rules BIRD and INSECT. These latter rules need not be
evaluated, nor any other rules whose evaluation would be necessary to evaluate them. In
correct SIMPLEXYS syntax the third line would read:

THEN FA: BIRD, INSECT

which would be tokenized as

THENFA BIRD THENFA INSECT

where the symbol THENFA and the rule symbols BIRD and INSECT again stand for tokens
with a numerical value.

The THEN specifies, that the assignment should only take place if the rule evaluates to
TR, but other comhinations also exist, such as:

ELSE PO: assign ~ to other rules if the conclusion is EA
IFPO TR: assign IR to other rules if the conclusion is ~

These constructs, THENs, ELSEs and IFPOs, collectively called THELSEs, provide
another increase in efficiency, because they help us toskip the evaluation of parts of the
knowledge base that suddenly turn out to be not relevant or, just the other way round,
evidential.

Note, that a THEN TR denotes an implication; the THELSE mechanism offers much

more than just an implication, however2•

1 For some reason, possibly because everyone is considered an expert on animals, classifying
animals is a popular example in Al texts.
2 These constructs resembie the inhibitory and excitatory links in what are called neural
networks, connectionist models or Boltzmann machines [Ackley et al, 1985].

56

Definition: A THELSE is a construct that specifies that a certain action (e.g. the assignment
of a certain condusion toanother rule) must be performed if the rule that it
belongs to obtains a certain matching condusion; the action is a by-product or
'side effect' of the rule's evaluation.

Definition: A matching THELSE is a THEN if the rule's condusion is TR, an ELSE if the
rule's condusion is FA and an IFPO if the rule's condusion is PO. THELSEs
are executed only if they are matching.

Note that these constructs are optional; they are not strictly necessary in a knowledge

base. When added, they provide the cross-links between chunks of knowledge that make
expert reasoning so much faster than novice performance'.

4.6. Limitation to ternary logic

Another efficiency increase is realized by discarding the fuzzy logic type where all values
between 0 (false) and 1 (true) were allowed, and introducing a simpler logic with only the
values TR (true), FA (false) and PO (possible; nol provably true, not provably false, i.e.
unknown)2; Quixpert affered a similar option by restricting 'logica! values' to only 1, 0 and
0.5. The reasans for this decision mainly depend on:

1. Theoretica! arguments: reasoning with Quixpert's logic is semantically nol dear and nol
intuitively obvious. The argument proceeds as follows: Fuzzy algebra demands not only
numbers for the truth values but also numbers for the co"elations betwe.en all variables.
An example will darify this. Assume an expression like:

x:= a and band ... and j, where a = b = ... = j = 0.9.

Now probability calculus shows, that the computed probability value of x will depend on
the correlation between the variables a, b, ... , j:

independence:
full dependence:

partial dependence:

x - 0.1: almost certainly false;
x= 0.9: almost certainly true;

0.1 < x < 0.9: almost fully unknown.

In practice, the correlations are mostly unknown, and even if known, it will usually be too
much effort to collect and provide these numbers, which will only be estimates anyway.

Thus. computed results would fake an unrealistic measure of precision; in fact, they

1 An abundant number of THELSEs may complicate the maintenance and update of the
knowledge base, however.
2 'Die Wahrheit der Tautologie ist gewiB, des Satzes möglich, der Kontradiktion unmöglich.
GewiB, möglich, unmöglich: Hier haben wir das Anzeichen jener Gradation, die wir in der
Wahrscheinlichkeitslehre brauchen.' Wittgenstein, Traetalus logico-philosophicus 4.464.

57

would be much fuzzier, much more imprecise than they pretend to be (see also section
2.1.3.1).

2. Computational arguments: reasoning with Quixpert's logic is computationally expensive,
especially on a PC (additions and multiplications of reals take Jonger than a simple
lookup, even with a mathematica) co-processor), and thus incompatible with the goal of
the greatest possible efficiency.

3. Practical arguments: in a real time stand alone system, the final decisions will always be
to either perform some action or not. This calls for a yesfno type of logic, not a
probabilistic one.

4. User misWlderstanding: users had difficulty assigning fuzzy truth values to answers they
would really like to give, such as 'usually', 'in most cases', 'almost always'. These can

perhaps be bandled by more extended types of logic, but we thought that the introduetion
of certainty ranges or other forms of fuzzy logic would confuse our generally formal-logic-

. naive users even more. Besides, these logies are usually computationally very inefficient.
It was therefore decided to choose a simpte type of logic, with only the values true, fa/se

and unknown, in which uncertainty canthen be handled by the rules1•

Uncertainty is a fact of life. But th~ kind of uncertainty that SIMPLEXYS deals with is a
very special oné· it is imcertainty due to missing information. It can be quite a predicament if
vita! information is missing; probability theory, fuzzy logic and such do not come to the
rescue if a yesfno type of action is called for. But in many cases the missing information is

not vita!. Either it can be found in a different way, or it is used in such combinations with
known inforrnation, that missing it is innocuous because a firm condusion can be reached
anyway. Thus the best interpretation of the truth value PO is: 'I do not have that
information', and the best description of the purpose of inferencing is the attempt to reach a
firm answer despite missing pieces of information.

4.7. Adding an interface with the outside world

In our type of real time applications, questions are not the only souree of information;
generally, questions ought to be avoided if at all possible. In addition, there ought to be a
rule type to test externally supplied data. In the TEST rule the actual test is done using
Pascal code.

The following rule assumes that a device delivers a number HR, which represents a heart
ra te, and a flag (boolean) V AlJD, which represents the physiological validity of that

number.

1 Experience shows that in SIMPLEXYS knowledge bases even the value unknown is
seldomly used.

58

HR NORMAL: 'the heart rate is in the normal range'
TEST

if not VALID then
TEST := PO

else if (HR > lowerbound) and (HR < upperbound) then
TEST := TR

el se
TEST := FA

ENDTEST

The keyword TEST in the rule's second line specifies a rule of type TEST, a 'hook' into
Pascal. The text between the words TEST and ENDTEST is Pascal code that should
somehow assign a value of type bool (TR, FA or PO) toPascal variabie TEST; if no such
assignment is done, FA will be returned as the default conclusion1• Some extra code will
subsequently take care of the assignment of the value of TEST to the rule. Th is takes care
of links with the outside world, since the Pascal code can do that. These links are an
essential ingredient to test data, to provide an input from the outside world.

A simplification of the TEST rule is the BTEST (for Boolean TEST) rule, which can only

return TR or FA. Th is 'syntactic sugar' makes many rul es much easier to read. lf no validity
check is necessary, a simpler alternative syntax for the above rule is:

HR_ NORMAL: 'the heart rate is in the normal range'
BTEST (HR > lowerbound) and (HR < upperbound)

where the text following BTEST contains a Pascal boolean expression.

An output link was provided by the so-called DO codes. DO's can execute any Pascal
code, e.g. to provide for actions such as displaying a resu\t or storing or updating of
variables. The previous example expanded:

HR_NORMAL: 'the heart rate is in the normal range'
BTEST (HR > lowerbound) and (HR < upperbound·)
ELSE DO writeln ('the heart rateis abnormal')

The ELSE specifies, as usual, that the code should be executed only when the rule
evaluates to FA.

4.8. Adding forward chaining

Thus far, a condusion tbat must be evaluated (which we starled to cal! a goal rule) can

only be derived by recursively evaluating its constituent rules, if any, until the recursion ends
in the primitive rules. This type of evaluation is called backward chaining. Forward chaining
works the other way around: whenever a rule is evaluated, be it primitive or not, it may

1 Therefore the 'else TEST : = FA' part in the rule above is superfluous.

59

become necessary, depending on the outcome, to evaluate other rules as well. Thus other
rules can be given conclusions (likewise recursively) just as if one evaluation had more than

one conclusion. The THELSEs can be considered a form of forward chaining: when a rule
condusion becomes known, other rule conclusions may become known too. True forward

chaining is different, though: when a rule condusion becomes known, other rule conclusions

may need to be evaluated, not assigned a fixed conclusion. Forward and backward chaining

complement each other. Sometimes, the one is more suitable, sametimes the other. We feit
that SIMPLEXYS should allow both.

The basic mechanism for forward chaining was there already, provided by the THELSEs.

We just needed sarnething like the last line of the following rule:

HR ABNORMAL: 'the heart rate is not in the normal range'
BTEST (HR < lowerbound) or (HR > upperbound)
THEN GOAL: HR_ALARM

The THEN has the usual meaning. The combination THEN GOAL states, that if

HR _ ABNORMAL becomes true, rule HR _ALARM should be evaluated. It is possible, but

not certain, that an alarm should be given; that depends on other conditions. Rule

HR _ALARM can then check those conditions and, depending on the outcome, either issue

the alarm or not by means of a DO. THELSE GOALs imptement forward chaining.

The following example solves

X = (F AND H) OR (J AND K)

by forward chaining. Forward chaining needs a start rule; in this example the start rule is
called S, and its condusion is TR. Since in this example rule types are unimportant, we use a
simplified notation.

s THEN GOAL: F
F THEN GOAL: H
H THEN TR: X, ELSE GOAL: J
J THEN GOAL: K
K THEN TR: x

In SIMPLEXYS, rules that start a forward chain are mostoften STATE rules (see next

section).

4.9. MEMO rules, STATE rules and rule histories

For some time SIMPLEXYS had just been a toy and an exercise in learning about expert

systems. A lot of small example programs had been designed and successfully run, butsome

questions remained. The most important one was how to sequence a series of analyses in

60

applications like patient monitoring, where new data arrive every few seconds (see figure
4.2).

['~ PERCEIVE ~>~ REASON ~>~

Figure 4.2. Sequencing analyses (from Woods [1986]).

In order to decide whether SIMPLEXYS was a suitable tooi for the design of this type of
expert system, we looked around for an existing expert system that could be emulated in and

translated to SJMPLEXYS. For several reasons, we chose Fagan's Ventilator Monitor
[Fagan, 1980; see also section 2.3]. First of all, it represented an example of the type of
application we had in mind: monitoring artificially ventilated intensive care patients for
respiratory problems. Second, because the problem was excellently described: Fagan's
dissertation gave a complete and easy to understand listing of all his rules; we did not have
to collect the knowledge and could focus on implementation issues. Third, because VM was
written in LISP, so we could try out whether SIMPLEXYS was really much faster1• Most of
Fagao's rules2 were easy totranslate into SIMPLEXYS. Yet, SIMPLEXYS needed a few

more features. The VM experiment had concentrated on how to handle context (is the
patient being monitored or not? is the patient on artificial respiration ar not?) and on time
(how loog has the patient's ventilation been assisted?). In a real time process, the situation
(the context) changes continuously and the context determines how to interpret the
observations (figure 4.3), i.e. which rules must be evaluated. In SIMPLEXYS, there was no
way yet to store context information or to remember earlier results. Thus the MEMO and

STATE rules and the 'rule histories' were added.

Figure 4.3. Sequencing expectancy dependent analyses.

The task of a MEMO rule is to provide a memory function from one run to the next.

1 Since we were unable to obtain Fagan's data, this comparison was never effected.
2 These rules are implemenled in LISP but doeurnenled in pseudo-English. In some
instances the use of this less exact pseudo-English and the absence of LISP code presented
us with the problem of what exactly was meant. In those cases we used our own expertise in
an attempt to recreate the exact interpretation.

61

Definition: A run is the process that derives all necessary condusions given a certain faed

set of inputs (i.e. these inputs belong logether and do not change during the
run).

The assignment to a MEMO condusion is by an INITIALLY1 or by a THELSE, and
'evaluation' of a MEMO rule is just reeavering its stored conclusion. An example of a
MEMO rule:

NMN: 'the patient is not being monitored'
MEMO
INITIALLY TR

and an example of a rule that updates the MEMO rule's condusion is:

MTR: 'the monitoring devices are operational'
TEST
THEN FA: NMN {if the TEST succeeds, NMN is to become FA}
THEN TR: MON {if the TEST succeeds, MON is to become TR}

The assignment of a new condusion to the MEMO rule cannot take place during a run;

other rules may already have used the value of the conclusion, and, in order to guarantee

consistency, this value must remain constant duringa run. The new condusion is therefore
remembered, .and takes effect in the next run (see figure 4:4).

run #i run #i+l

NMN TR
MON FA

MTR TR >

Figure 4.4. Condusions of MEMO rules do not change during a run. The new
condu.sion becomes effective in the next run.

The third line of rule NMN shows another addition to the SIMPLEXYS syntax. It
specifies, that rule NMN has the condusion TR when the expert system starts up, i.e. that
initially the patient is known not to be monitored.

MEMO rules proved to be a welcome addition, but using MEMO rules to store context
information led to rule sets that became difficult to comprehend. Some MEMO rules just
stored a temporary result (e.g. 'T-piece occluded'), while others were part of the protacol's
time sequencing. To separate these two important functions, STATE rules were added to
explicitly denote and remember contexts2, and ON statements to implement context

1 Assignment of an initia] value when the expert system starts up.
2 Allen [1983]: ... the representation should facilitate plausible inferences of the form ' if fact
P is true now, it will remain true until noticed otherwise'.

62

switches. This separation of functions is mainly 'syntactic sugar', but it proved important: it

greatly improves the understandability of the knowledge base, the analysis of problems and
the checks that can be performed by the Rule Compiler. So the above rule became:

NMN: 'the patient is not being monitored'
STATE
INITIALLY TR {NMN is the initial context}
THEN GOAL: ... {conclusion(s) to derive}

STATE rules embody the concept 'as long as'; here: as long as the patient is not being
monitored, the goal is to derive a certain set of conclusions.

A context switch was denoted as:

ON NMN_to_VOL FROM NMN TO VOL

where trigger mle NMN _ TO _VOL tests whether a context switch from NMN to VOL must

be done (see figure 2.1). Trigger rules (or simply triggers) embody the concept 'as soon as';

as soon as the conditions embodied in the trigger rule NMN _to _VOL are satisfied, NMN

becomes false and VOL becomes true. Code was added to the loferenee Engine to actually

actuate the context switches: if NMN was true, then if NMN _ TO _VOL a lso evaluated 10

TR, then NMN was to be set to FA and VOL to TR. In chapter 7 we will show a Petri net

representation of contexts and context switches.

Definition: A context is, at a eertaio moment of time, that set of STATE rules that have

condusion TR.

Definition: A context switch is the process, tha t, through an evaluation of trigger rules,

decides whether some STATE rules should become FA and others TR.

Definition: A trigger mie is a rule (the one following the ON in an ON statement), that

specifies that, if a eertaio set of STATE rules (the FROM-set) all have

condusion TR and if the trigger rule evaluates to TR, then all those STATE
rules obtain condusion FA, while all rules in another set of STATE rules (the

TO-set) obtain condusion TR.

Definition: A protocol is the set of all possible context switches, i.e. the combination of a ll
ON statements.

Although no forma] comparison study has been conducted yet, we currently believe that
most, if not all, questions that can be answered by a non-probabilistic temporal logic [Allen,

1983; Tsang, 1987] can also be answered by a SIMPLEXYS protocol.

63

Goals or goal rul es are special only in that those rul es (usually of type EV AL) are

explicitly defined as goals. The THELSE GOAL construct is a convenient method to define

the goals and to start the inferencing process.
Most often, primmy goals are connected toa STATE rule by a THEN GOAL; in that

case, they are evaluated only when that STATE rule is TR (in other words: is active, belongs

to the active context). However, primary goalscan also be connected toa STATE rule by an

ELSE GOAL; in that case they are evaluated whenever that STATE rule has the condusion

FA.
Why this is so needs some explanation. Initially, the idea was that the active context

should dictate all that should be done, in other words that STATE rules only ought to have

THENs, not ELSEs (STATE rules are forbidden to have IFPOs). This would make the

meaning of the 'protocol' more perspicacious: do such and such only under such and such

conditions. Yet we have removed the restriction. First, because it comes in handy once in a

while to have an ELSE GOAL from a STATE rule; and second, because the restrietion can

be circumvented by clever programming anyway.

Secondary goals are goal rules conneeled to other rules in a THELSE GOAL part. They

are evaluated as a consequence of the evaluation of the rule that they are conneeled with;

forward chaining is realized this way1•

Definition: A goal is a rule which is_ the ~rgurnent of a THELSE GOAL of a rule.

Definition: A primmy goal is a rule which is an argument of a THELSE GOAL of a

STATE rule.

Definition: A secondmy goal is a rule which is the argument of a THELSE GOAL of a rule

which obtains a condusion during the evaluation of a primary goal.

VM also had rules that checked whether a eertaio condition had existed for a certain

time. SIMPLEXYS needed a similar construct. Thus the concept of rule histories was added,

as well as appropriate additions to syntax, Rule Compiler and loferenee Engine. An

example: the term

NMN > (120)

in an evaluation expression has the semantics 'rule NMN is now true and it has been true

for at least 120 seconds', with outcome one of TR, FA or PO, as usu al. The term

HRSTABLE > (30 * minutes)

1 Because a THELSE GOAL asks for the evaluation of goal rules, FACT, MEMO and
ST A IE rules cannot logically be goals.

64

has the meaning 'the heart rate has been stabie for longer than 30 minutes'. Here, 'minutes'

is a Pascal constant with value 60. In fact, any valid Pascal numerical expression can be

inserted between the '(' and ')', including expressions containing variables1•

With these additions to SIMPLEXYS, which were easy to implement because the main
structures were there already, a paper re-implementation of VM was easily accomplished.

4.10. FACT rules

While monitoring a patient, there are things that never change, such as the patient's age
category or whether the patient has a known history of a certain disease. Such data are
normally available befare the monitoring process starts. FACT rules were added to store this
type of invariant information.

The idea is as follows. The knowledge in a knowledge base will aften contain information
about a large class of patients, and thus a lot of rules that depend on .and refer to this type

of 'factual' information. But the knowledge wil! be applied to the monitoring of one
individual patient, not to the whole class. lf we insert that 'individual' information into the

knowledge base, we obtain an 'individual' knowledge base that may be a lot simpter and
more compact than the original one. And thus a lot faster to evaluate. This could yield
another major efficiency increase.

Such methods do exist (see section 6.5.2.3.4); they depend on specialization or
optimization. A process of semi-symbolic evaluation of EV AL rule expressions can eliminate

all references toFACT rules once their conclusions are known, thus simplifying the

expression. An example: if A is known to be always true, rule X having the expression A

AND B AND C simplifies to B AND C. Another example: if A is known to be always true,
rule Y having the expression A AND B simplifies to B; rule Y is superfluous, can be

removed, and all references to Y can be replaced by references to B.
The simplification process may in turn lead to a simplified rule with a fixed conclusion.

An example: if A is known to be always true, rule Z having the expression A OR B

simplifies to true; now rule Z and all references to it can be eliminaled as well. Many rules
might eventually be completely eliminated2• Problems such as Michie's (section 4.3) would
totally disappear by 'implosion'.

1 These variables can be manipulated by the THELSE DOs of other rules.
2 Explanations of the steps taken in 'reasoning' would become very difficult after
compaction, however, since many of those steps would have disappeared; it would seem like
the expert system 'jumps to conclusions' (but quite correctly, like experts do). But since the
compacted net is logically fully equivalent with the original one, explanations, if necessary,
could repeat the evaluation using the original nel.

65

4.11. The relation between SIMPLEXYS and production systems

Many expert systems are production systems (see section 2.1.3). Since they arebasedon a
collection of rules of the farm

if P then X

production systems can be said to be rule oriented. Frequently more than one rule can lead
to the same conclusion. For example, assume that a rule base contains (only) three rules that
can yield a condusion X:

if P then X
if Q then X
if R then X

SIMPLEXYS can be said to be condusion oriented. It is a characteristic of SIMPLEXYS
that every condusion is conneeled to one and only one rule. This was achieved by
introducing the operator or, which allows the above three rules to be combined into one,

if P or Q or R then X

in which the or operator is evaluated conditionally; if P is true, neither Q or R needs to be
evaluated,just like in the oi-lginal combination Öf three rules. Sin~;; ~o other rule ~n l~ad to
condusion X, and since the default condusion for X, if neither P nor Q nor R is true, is
false in two-valued logic, the above rule has the meaning:

if P or Q or R then X := true else X := false

which is equivalent to the SIMPLEXYS-Iike nötation:

X : P or Q or R

which resembles a definition rather than an implication.

Connecting each possible condusion to a single rule has a number of advantages, the
most important of which is that it becomes much easier to link all rules tagether in a net
(see chapter 6). This linking can eliminate all searching for rules which are applicable in a

certain situation; it also allows a number of checks on the correctness of the interactions

between rules.

Production systems are built on implications and thus are conceptually forward oriented,
while SIMPLEXYS is backward or goal oriented. Other features of SIMPLEXYS describe

which goals are to be derived under which conditions. The STATE rules provide a
mechanism to specify the context, which defines which goals are to be evaluated. And the

66

ON statements provide a mechanism to specify how the context changes, leading to the

evaluation of a different set of goals.

4.12. A first evaluation

The re-implementation of VM had been easy, and we expected the same with the

implementation of other systems. Our requirements (section 4.1) were fully met. To
reiterate:

- SIMPLEXYS expert systems are easy to program and use; that was demonstraled hy
several students wbo built smaller or larger test applications, including the VM re­

implementation, which took less than 2 person-weeks for a student who initially knew

only the basics of SIMPLEXYS.

- SIMPLEXYS applications are small enough to run on a PC; the starage of the knowledge
is very compact. The VM re-implementation (118 rules, 12 ON statements) resulted in an
expert system code size (.exe file) of only 58 Kbytes, including the (simple) user interface.

- SIMPLEXYS applications can run on a PC and yet be fast enough; the inferencing
metbod is ideally suited to real time work and the loferenee Engine has little overhead.

On average, a run of the VM re-implementation was estimated to take approximately 0.5

seconds on an IBM PC-XT (8088 processor) system with a 10 MHz doek.

- The inferencing metbod (each ruleis evaluated at most once) allows a good estimate of
the worst case performance (see section 5.7). No run of the VM re-implementation took
more than about 0.8 seconds on an IBM PC-XT (8088 processor) system with a 10 MHz
doek. The worst case to average run time ratio is small, certifying good processor

utilization.

Computations are efficiently done in Pascal.
Our applications can have custom-designed user and device interfaces; the easy interface
with Pascal allows anything. The VM re-implementation could ask for values or obtain

them from a file, and could display numerical, textual and symbolic results.

- The knowledge structures that are available in SIMPLEXYS are well geared to the type

of applications. Due to the SIMPLEXYS syntax, the knowledge base is easy to read and

rnaintaio and serves as a good documentation for the implemented knowledge.
- The implemenled knowledge can be checked thoroughly, starting in the very early design

stages. Safety was a major design issue. Chapters 6 and 7 on semantic and protocol
checks will amplify this.

67

5. SIMPLEXYS: a real time expert systems tooibox

This chapter gives a detailed description of SIMPLEXYS. Section 1 gives and discusses
an example of a SIMPLEXYS program or 'knowledge base'. Section 2 explains thesemantics
or 'meaning' of the different syntax elements and how they are used in 'knowledge
programs', section 3 shows how SIMPLEXYS programs are structured, and section 4
describes how to program in the SIMPLEXYS language. Section 5 describes the inferencing
process. Section 6 gives an overview of the SIMPLEXYS 'tools' that are necessary to build,
test and debug expert systems.

The intentions in the development of SIMPLEXYS were efficiency and safety. Some

details on the efficiency of execution times of a knowledge base are treated in section 7,

while a review of the major efficiency issues is given in section 8. Safety aspects are treated
in chapters 6 and 7.

5.1. An example of a SIMPLEXYS program

RU LES

RUNNING:
STATE
INITIALLY TR
THEN GOAL: X

. {RU LES sectien) 11

'computJ.ng' f

{the on l y context rule}l
{TR, thus (part of) the initial conte~t) l
{werk to do in this context: evaluate X}

X: •rule X'
(F and H) or (J and K) {evaluation rule X's expression}

F: 'rule F'
ASK {obtain F's conclusion through asking)

H: ' r ule H'
BTEST 4 > 3 {obtain H's conclusion through testing data}

J: 'rule J'
MEMO
INITIALLY TR

K: 'rule K'
FACT
INITIALLY TR

READY: 'ready'
F and H and J and K

PROCESS

{recover J's previous conclusion} '

{recover K's (fixed) conclusion}

{evaluation rule READY's expression}

{PROCESS section}

ON READY FROM RUNNING TO * {finish as soon as READY is TR)

Figure 5.1. A smal! but complete and correct SIMPLEXYS program.

68

Chapter 4 bas given an informal description of all tbe SIMPLEXYS syntax elements.

Appendix 1 gives a forma! definition of SIMPLEXYS as a programming language. An

example of a SIMPLEXYS program or 'knowledge base' is given in figure 5.1.

In contrast with most other expert systems, each SIMPLEXYS rule is associated with a

unique condusion (consequent, result)1. Tbis allows us to speak of a rule's condusion and to

equate appiication of rule R to evaluation of mie R's conclusion; we will also use the

equivalent sborter terminology evaluation of mie R to signify both aspects: the application of

the rule and the evaluation of its conclusion. This evaluation can refer to the computation of
the value of a logica! expression (rules X and READY), to tbe acquisition of the answer to a

question (rule F), to the acquisition of tbe result of a test expressed in Pascal code (rule H),

or to tbe recovery of an earlier stared value (initially, tbe value true bas been stared into the

conclusions of rules RUNNING, J and K).

The RULES section contains all the rules. STATE rules specify the goals. STATE rule
RUNNING, wbose initia! condusion was stipulated to be TR, specifies, through its THEN

GOAL, tbat X is the goal rule, i.e. the goal is to derive or evaluate condusion X. Derivation

of condusion X is performed by evaluating rule X's 'evaluation expression'. In this

derivation, (at least some of) the conclusions of rules F, H, J and K need to be acquired;

these conclusions can be acquired by asking the user, performing a test on data, or by

reeavering a previously stared conclusion. The goals remain unchanged as long as the
condusion of STATE rule RUNNING has value TR. Thus condusion X will be derived

repeatedly; each derivation of condusion X constitutes a mn. The PROCESS section states

that rule READY is the trigger mie, which must be evaluated as long as RUNNING

evaluates to TR. As long as READY evaluates to FA or PO (because at least one of F, H, J

and K does not yield condusion TR), condusion RUNNING is unchanged and a new run is

started. As soon as READY evaluates to TR (because F, H, J and K all yield condusion
TR), the context switch makes STATE rule RUNNING's condusion FA, and the program

comes to an end; the end of a program is reached as soon as none of its STATE rul es

condude to TR anymore. This sequencing is shown in figure 5.2.

evaluate goal evaluate trigger context switch halt

[§=~~---·---{deri~~ R~:D:~ :: > ~ RUNNING ~=~-- >
Figure 5.2. Condusion X, the goal, will be derived repeatedly until condusion

READY, the trigger, evaluates to TR. Then condusion RUNNING is set to FA

and the inferencing halls.

1 THELSEs provide an additional mechanism. A THELSE iets one rule's condusion
stipulate condusions associated with other rules without the necessity of actually evaluating
those other ru Jes.

69

The SIMPLEXYS philosophy hinges on the idea that in each run every rule needs to be
evaluated just once; a second 'evaluation' is just a look-up of the condusion of the first. The
underlying idea is that the data to be analyzed come from a 'snapshot' of the world; these
data have no time skew, 'belong together', and deriving the same condusion about the same

data twice or more times is superfluous and a waste of time.
lnstead of coming from a photographic snapshot, we can also view the data as coming

from a filled-out form. In contrast with a photographic snapshot, a form's data may be
mutually inconsistent. If possible, inconsistencies between the items should of course be
discovered; the problem is, however, that this discovery requires deep knowledge and is even
then not always possible. The same is true if the data originate from a collection of
monitoring devices; a device can be disturbed and generate erroneous results. Yet, here too,
deriving the same condusion about the same data twice or more is superfluous.

The snapshot notion does create problems, however, if a true snapshot (i.e. collecting all
the data at the same time instant) is impossible. If a problem must be solved by asking

questions, all questions cannot be posed at the same time; moreover, we want to pose only
the relevant questions, so whether a question is asked may depend on the answers to other
questions. Likewise, a filled-out form need not be complete; in some cases, some entries may
be irrelevant. We must now assume that the data supplier keeps in mind that all questions

'belang together' and are about one specific problem. But again, it is important to try to
discover inconsistencies in the data supplied.

5.2. Elements of the SIMPLEXYS syntax

The SIMPLEXYS programming language is based on a few important concepts that wil!
be described before entering into details.

5.2.1. Rule's conclusions

SIMPLEXYS is basedon a three-valued logic [see e.g. Mamdani and Efstathiou, 1988].
Conclusions have values of Pascal type bool (pseudo-boolean). Operations on conclusions
expect and return variables of type bool:

type bool = (TR, FA, PO) {true, false, unknown}

TR: the variable's value is true;

FA: the variable's value is false;
PO: the variable's value is unknown ('possible'); it is impossible to show that the variable's

value is either true or false; it could be either false or true; there is currently no

information that al/ows us to decide wlzether the va/ue is true or fa/se.

70

In some expert systems other types often exist, e.g. enumerated types; variabie AGE

might have a value of either INFANT, BABY, CHILD, ADULT or AGED1• Variables of

this type do nol exist in SIMPLEXYS but they can be translated into a number of variables

of type bool, e.g. AGE_is_INFANT, AGE_is_ADULT etc. (which in this case are mutually

exclusive, too). Type bool is sufficient: it can implement any other finite type.

Rules obtain their condusion in one of two different ways: by evaluating the rule or by

assigning a condusion to the rule. A rule is evaluated whenever its condusion is needed but

nol yet available. A rule can be assigned a condusion as a specified side effect of the

evaluation of another rule.

A rule also has a history counter. At all times, this history counter contains the period, in

seconds, during which the rule's condusion has uninterruptedly been the same. So a rule

actually has two val u es, a boo/ value (TR, FA or PO), and a history value, an integer number

in the range 0 to 2A31 (approx. 2000000000, equivalent to more than 60 years). Thus we wil!

not only be able to answer questions like 'is X true?' but also 'how long has X been true?'.

5.2.2. Rule types

There are 5 primitive rule types:

1. FACT rules denote constants; the condusion of a FACT rule never changes. FACT rules

obtain their condusion (TR, FA, PO) from known facts, acquired before the inferencing

starts, e.g. from a database or from questions to the user. Thereafter these conclusions

cannot change again in subsequent runs2•

2. ASK rules ask questions from the user, who can answer either 'y' for 'yes' (giving a

condusion TR), 'n' for 'no' (giving a condusion FA) or '?' for 'I do not know' (giving a

condusion PO). ASK rules return a condusion as soon as the answer is entered on the

keyboard. In a reaJ time expert system, therefore, ASK rules should be avoided, but

during the design phase they are indispensablé. The condusion is valid during the

current run only.

3. TEST rules test externally supplied data through an interface to Pascal. The result of the

test is either TR, FA or PO. The condusion is valid during the current run only.

1 Such variables are quite convenient in an interactive expert system, because they lead to
Jess questions.
2 FACT rules can be 'optimized away', so that the inference engine never needencounter
one; see sections 4.10 and 6.5.2.3.4.
3 Asking questions without having the system wait for the answers is treated in section 8.1.3.

71

4. MEMO rules remember results. MEMO rules obtain their conclusion exclusively through

other rules' THELSEs. Unlike ASK and TEST rules, MEMO rules keep their conclusions
across runs unless a new conclusion is assigned. For an example, see section 4.9.

5. STATE rules denote the current context. Their conclusions are assigned either as an
initia! conclusion for the first run or via the 'protocol' (a set of ON statements that
describe context switches).

There is only one rule type that combines results of other rules:

6. EV AL (evaluation) rul es calculate higher level conclusions, given an expression that

combines other rules (either primitive or evaluation rules) using a number of monadic

and dyadic operators. The conclusion is valid during the current run only. An example of
an evaluation rule:

TIGER: 'it is a tiger'

MAMMAL and CARNIVORE and TA WNY and BLACKSTRJPED

This rule can be read in two ways. First, syntactically, as a sequence of test procedures: 'if
the object passes the test for MAMMAL, then the test for CARNIVORE, next the test

for TAWNY, and finally the test for BLACKSTRIPED, it will be considere_d a TIGER'.
Second, semantically, as a dëfinition: 'a ti gei is a blackstriped, tawny, camivorous

mamma!'. If there is a discrepancy between these two readings, either the definition is

incorrect, the definition is implemenled incorrectly, or both.

5.2.3. The logic of SIMPLEXYS

To evaiuate expressions, SIMPLEXYS implements a simple propositional type of logic,

comparable to boolean logic. SIMPLEXYS expressions consist of two types of entities,
propositions and operators. Propositions are indicated by 'names', such as p, q, r, anima!,

normal, etc. Operators are indicated by the 'special symbols' not, and, or, etc. Operators are

manadie (monadic operators have one argument, e.g. not in: not p) or dyadic (dyadic

operators have two arguments, e.g. and in: p and q). Parentheses can be used to form

subexpressions. Examples of correct expressions are:

p
not poss p
pand (q > (30))
q or s or not t and u
notpor ((q and not poss r) and s)

Expression evaluation normally proceeds from left to right, but parentheses can force a
different order. History operators have the highest priority. Next in priority are monadic

72

operators, which all have the same priority; and dyadic operators, which all have the same
priority, too, have lowest priority. Thus

not A and B or C > (s) and D

is logically identical with and evaluated as

((((not (A)) and B) or (C > (s))) and D)

In most logies, and is considered to have a higher priority than or. In SIMPLEXYS,
priority can be forced with parentheses:

(notA and B) or (C > (s) and D).

Thus, in SIMPLEXYS, expression (C) is nol logically equiva lent with (A).

5.2.3.1. Two-valued logic

(A)

(B)

(C)

Many formal logies are two-valued. In a two-valued logic, a logica! value can be either

TR (true) or FA (false). Monadic operators (i.e . operators with one argument) transform a
logica! value into a new logica] value. This is written as:

q :; opl (p) or q :; opl p

where pand q are logica! values and opl is the operator. In two-valued logic, the only

meaningful monadic operator is nol.

Dyadic operators (i.e. operators with two arguments) combine two logica] values into a
new one. This is written as:

r : ; op2 (p, q) or r :; p op2 q

where p, q and r are logica] values and op2 is the operator. Some meaningful dyadic

operators are and, or, and implies.

The narnes of the operators curre ntly used in forma! logic have a long history; they are

identical with and originate from naturallanguage words (mathematicallogic can be thought

of as a formalization of the grammar of natura! language words like 'not', 'and', 'or', 'if ...

then .. .'). Other choices of operator would also be possible. In fact, only one wel! chosen

dyadic operator would be suftkient to implement all others (e.g. nand = nol and, nor = nol

or = neither, also called Sheffer's stroke).

73

5.2.3.2. Three-valued Jogic

In the type of three-valued logic, that is implemenled in STMPLEXYS, a value can be
either TR (true), FA (false) or PO (unknown). Three-valued logic is a better approximation
of human reasoning, because in many practical situations it wil! neither be possible to decide

that a proposition is true nor that it is false. lf p is any proposition, we can distinguish these

three truth values:

p = TR: p has been proved to be true;
p = FA: p has been proved to be false;

p = PO: p has neither been proved to be true nor proved to be false; at this moment we do
not have the knowledge to decide either that p is true or that p is false.

The logica! values TR, FA and PO are not equally satisfying; 'reasoning' will usually

attempt to establish a definite answer (TR or FA), even if one or morevalues in a logica!
expression are unknown (PO).

In the internals of SIMPLEXYS, invisible to the user, there is a marker or tag UD (for

'undefined'), which often plays a role analogous to a truth value:

p = UD: no attempt has yet been made to establish p's truth value; rule p has not been_
evaluated yet.

Whenever the loferenee Engine encounters p = UD, this encounter implies that p's truth

value is needed and wil! immediately and automatically lead to an attempt to show that

either p is true or that p is false, possibly resulting in the condusion that the knowledge to

prove either is missing. Thus UD is not a truth value proper, and the value UD does not
occur in proofs. When tracing/debugging a knowledge base, the user may at the end of a run

encounter a condusion with 'truth value' UD, however; then it signifies that that condusion

was not needed in the evaluation of the goals.

5.2.3.3. Operators

While many logies are theorem-oriented, the SIMPLEXYS logic is value-oriented. In
mathematica! terms it is an algebra rather than a logic. Theorems must be derived through a

proof procedure that normally involves a lot of searching; values are obtained through
computations by the application of operators, or, preferably, just looked up in operator truth

tables. Computationally, the latter is the fastest procedure.

SIMPLEXYS implements the monadic operators not, must and poss, and the dyadic

operators and, ucand, or, ucor and alt (see appendix 2 on additional operators).

74

Manadie operators

Operators with I argument are nol, must, and poss.

V I not

TR FA

FA TR

PO PO

""'f' TR FA

~~t~A
FA TR

llQt V :~ if V ~ TR then FA else
if V = FA then TR else V

~ v := if v = PO then FA else V

~ V :~ if V ~ PO then TR else FA

Besides not 1, we have introduced two more operators: poss (poss p: 'no definite value

can be found for p'), and must (must p: 'p is guaranteed to be true'). It can be shown that

with a combination of these three operators all manadie logica! operators can be formed.
Examples are:

V FA PO TR
========
TR FA FA
TR FA TR
TR TR FA

Dyadic operators

must not v
not pass v
not must v

Operators with 2 arguments are and, ucand, or, ucor, and alt. These operators have equal

priority; parentheses may be used to force the order of evaluation.

The operators and and or have a meaning similar to their meaning in two-valued logic.

And jucand

u - -
V TR

TR TR

FA FA

PO PO
-

·- -
FA

FA

FA
r---

FA

- -
PO
--

PO

FA

PO

u .a.n.d V : ~ if u FA or v ~ FA then FA els.e
if u ~ PO or v PO then PO else

TR

And bas the intuitive meaning. The difference between and and ucand is, that in u and v,

vis not evaluated when u = FA. In u ucand v both u and vare a lways evaluated. Logically,

they are equivalent in that the result of their application is identical.

1 The fact that NOT PO is defined to be PO can create problems in some cases; these are
discussed in section 6.5.2.3.

75

Or /ucor

u
V TR

TR TR

FA TR

I
PO I TR

FA PO

TR TR

FA PO

PO PO

U ~ V := if U TR or V
if u = PO or v

TR then TR else
PO then PO else

FA

Or has the intuitive meaning. The difference between or and ucor is, that in u or v, v is
not evaluated when u = TR. In u ucor v both u and v are always evaluated. Logically, they

are equivalent in that the result of their application is identical.

Alt

The operator alt is new. In the expression u alt v, u and v are logically equivalent

alternatives (rules or expressions) that represent different solutions to the same problem. In

other logies, it may be possible to have several rules which evaluate to the same result. In
Prolog, one can have

x exprl
· x expr2

This is not allowed in SIMPLEXYS. It violates the convention that all rule narnes must
be unique; no two rules named x are permitted. If expr1 and expr2 are logically equivalent\
the equivalent SIMPLEXYS construct is

x : exprl ~ expr2

Such a construct has the added benefit that in the knowledge base all knowledge about x

is kept together. The alt operator introduces the possibility of a conflict; a conflict arises if

the two alternatives are discovered to be not logically equivalent, i.e. one of the operands
evaluates toTRand the other to FA. This results in the following definition:

~- -~ v R FA PO ** conflict

r· t~ ~.- ;. U .all V :=
if (u TR and v = FA) or

~ -;:- F~r;.- (u FA and v = TR) then
conflict el se

if (u TR or V TR) then TR el se L PO TR FA PO if (u FA or V FA) then FA el se
-~ ~- - ----- PO;

1 If not, use the or operator rather than the alt.

76

Contlicts can arise only if the validation mode (see section 5.5.3) is active, where the
evaluation is unconditional, so that both u and v are evaluated. When a conflict is discovered
duringa logica! evaluation in a run of a SIMPLEXYS expert system, the evaluation ideally
should be stopped because tbis is a knowledge base inconsistency error. We let the user
decide, however: either consider the error as fatal and stop the expert system's operation
immediately, or consider the error to be non-fatal 1 and continue the evaluation, taking as
the resulting value that of u; in either case, the inconsistency does result in an error
message, however.

Normally, evaluation is conditional, i.e. it stops when u = TR or u = FA, so that no
conflict can arise. Only if we cannot reach a definite salution (TR or FA) through u (i.e. u
evaluates to PO), we try to reach it through v. Another interpretation is that v is the default

value for the expression, which is taken only if u evaluates to PO. If more than two

alternatives exist, multiple a/t's can of course be used, as in: p alt q alt r alt s.

We consider the alt operands to be logically, but not semantically equivalent. Thus, if in

the expression p alt q, p is found to be either TR or FA, we do not give q the sa me value,
nor do we, if q is found to be either TR or FA, give p the same value. Two reasons support
this approach, a logica! reason and an implementation reason.

The following example clarifies the logica! reason. If p, x and y are rules, and p's
expression is

p : x alt y

then, if x evaluates to TR, while y evaluates to (or would evaluate to) PO, e.g. because some
knowledge is temporarily unavailable, then setting y to TR might interfere with other rules
that rely on y being PO, i.e. on the fact that the knowledge is unavailable.

The following example clarifies the implementation reason. If in the rule

p : q alt (x or y)

q evaluates to TR, there is, in SIMPLEXYS, no way to store the knowledge that x or y is
TR, because only the components of the expression, x and y, can be given values.

History operators

Besides a (logical) conclusion, a rule also has a (numerical) history counter which contains
the period, in seconds, since the rule's condusion last changed. History operators do not

1 This is the prudent approach; intercepting this error allows the system to shut down in a
graceful way.

77

perfarm a logica! operation but a numerical comparison; they inspeet the history counter and
can provide answers to questions like 'how long bas X been true?', where X is any
conclusion.

There are six history operators:

equal

> greater than

< less than

< > not equal

> = greater than or equal

< = less than or equal

History operators are used as follows:

r historyop (numerical expression)

where r refers to any rule. The right hand side of the history operator, between '(' and ')', is
any valid Pascal expression1•

Application of a history operator is done in two steps. The result is first set to the value

of r (r is evaluated if at this point it was nol yet evaluated). If the result is TR or PO, r's

history counter value (see also section 5.2.1) is compared, using the history operator, to the

value of the numeric expression. If the comparison yields true, the result is unchanged, else
the result is made FA. For example, the value of the expression

HRN > (120)

with interpretation ' the heart rate has been normal for langer than 120 seconds' is given in

the following table:

value (HRN)
TR
TR
PO
PO
FA

his tory IHRN)
) 120

<= 120
) 120

<= 120
any

Y.a.l.ll.e
TR
FA
PO
FA
FA

The logic of this table is na t free from problems. No problems arise if a rule's condusion

is somehow restricted to the values TR and FA only. Problems do arise if a rule can

temporarily have condusion PO (e.g. due to an invalid measurement) or is marked UD

(because the rule is not evaluated in some runs).

Assume that rule HRN in the example above represents the concept ' the heart rate is
normal'; that the heart rate has been normal for more tba n 120 seconds; that 20 seconds ago

1 Note that a history operator is conneeled to a rule, nol to an expression; an expression has
no history counter.

78

the signa!, from which the heart rate is derived, was momentarily not availahle, teading to

condusion PO (unknown) for HRN at that time instant; and that we want to know whether

the heart rate has been normal for more than 120 seconds. Because HRN's history counter
will now have the value 20, this situation, depicted in figure 5.3, leads to the counter­

intuilive result FA rather than PO.

TR
PO

___r--------------
FA > time
Figure 5.3. The rule's condusion may have been true at all times, but at some time it
was impossible to establish ·its conclusion. The history counter reflects the time,

indicated by the arrow, where the condusion last changed. The history operator

erroneously returns FA rather than PO.

Correcting this problem would demand somehow storing the values of earlier conclusions.
No metbod could be found to achieve a correct solution in an efficient (time- and storage­
wise) manner.

Sil)Ce there is no way to guarantee a correct history if conclusions can have value PO,

only the histories of STA TE rul es are fully trustworthy. The histories of other rul es cannot

be trusted, unless the knowledge engineer verifies that during each run the condusion of a

rule whose history is used will be either TR or FA.

as:

An example of a complete rule using another rule's history is:

CAN EXTUBATE: •extubation is allowed'
ASSIST > (15 * minutes) and RESPIRATION STABLE
THEN DO writeln ('cons ider extubation') -

In this rule, 'minutes' is a Pascal constant with value 60. This rule should be interpreted

'ij the patient has been on ASSIST for more than 15 mimites and his RESPIRATION is

STABLE then extubation is allowed'.

5.2.3.4. THELSEs

There are three types of THELSEs. One, the THELSE GOAL type, is used to specify

rules that must be evaluated; this type has an inferencing function, not a logica] one.

Another type, the THELSE DOs, specifies Pascal code to be executed. The third type, the

THELSE TR/FA/PO category, is a collection of implication-like expressions such as ' if q =
x then p : = y', where p and q refer to rules a nd x and y are any constant logica! value (TR,

FA or PO). Their logic is:

79

q THEN TR p if q TR then p := TR
q THEN FA p if q TR then p := FA
q THEN PO p if q TR then p := PO *)
q ELSE TR p if q FA then p := TR
q ELSE FA p if q FA then p := FA
q ELSE PO p if q FA then p : = PO *)
q IFPO TR p if q PO then p := TR
q IFPO FA p if q PO then p := FA
q IFPO PO p if q PO then p := PO *)

*) At first sight, it seems strange to set a condusion to value PO. However, sametimes one
condusion implies that it is known that another condusion cannot possibly be derived.
This knowledge can be exploited to prevent a later superfluous attempt to evaluate the
conclusion.

These expressions state that if rule q has condusion x, then rule p's condusi!ln is known
to be y; rule p itself need not be evaluated: its condusion is reached without additional
effort.

But this also implies that under certain conditions condusion p can derived by evaluating

rule q. The lnference Engine therefore uses such THELSEs in two directions. An example
wiJl clarify this. Given are the following two rules:

M H and L
B F atid E; THEN- FA: M

The Inference Engine can obtain condusion M in the following two ways:

- Assume that somehow 8 is evaluated first. If 8 evaluates to TR, the condusion of M is
known to be FA. Hence M'sexpression need not be evaluated1•

- Assume that somehow M is evaluated first. If the evaluation of M's expression leads to

condusion PO (unknown) for M, there is another possibility to reach a more condusi~e
result for M: evaluate 8, because 8 can give condusion FA to M. If 8 subsequently
evaluates to TR, M obtains the result FA. lf 8 evaluates to PO or FA, the condusion of
M will continue to be P02•

1 In validation mode, however, M's expression is evaluated anyway, in order to detect a
possible conflict.
2 As long as M is PO, the Inference Engine will continue to evaluate rules that can give M
the value TR or FA, until there are no more such rules.

80

5.2.4. ON statements

ON statements describe context switches or state transitions. Each ON statement has the
format:

where

ON tg FROM sl TO s2

tg is any rule;

slis a non-empty STATE rule list;
s2 is a STATE rule list.

Rule tg is called the trigger mie or simply the trigger. A state change or context switch
takes place if all STATE rules in list sl have condusion TR (a STATE with condusion TR
is called an active STATE) and if tg evaluates to TR. On a change of state, allSTATEsin
list sl become FA (inactive) and allSTATEsin list s2 become TR (active). List s2 can be
empty; an empty list is denoted by the symbol '*'.

When the system starts up, all STATE rules that have an INITIALLY TR (error
checking by the Rule Compiler assures that there is at least one) are active. As soon as no
STATE rules are active any more, the expert system halts.

5.3. SIMPLEXYS as a programming language

This section describes the structure of SIMPLEXYS 'knowledge programs'. We will show

that this structure correlates well with how a real time expert system operates.

5.3.1. A typical operation of a SIMPLEXYS expert system

The following global description of a typical operation of a SIMPLEXYS expert system is
from the point of view of the data being processed; the inferencing is extensively described

in section 5.5 and appendix 5.

First is an initialization, a start up phase (figure 5.4). The first operation is to acquire any

factual data (FACT rule conclusions) that may berelevant for the system's operation, fixed
knowledge about the current case. Then a global initialization procedure (INITG code) is
executed, that perfarms actions such as testing which instruments are connected, initializing
and calibrating those instruments, opening disk files etc. This completes the initialization

phase.

After the initializations, one or more runs will take place. The knowledge base defines an
initia! context by means of an INJTIALL Y TR appended to one or more STATE rul es, and

81

these STATE rules determine by their THEN GOALs which goal rules are to be evaluated
in the first run.

pursue goal #1
pursue goal #2

Figure 5.4. A typkal expert system operation.

The first action in a run is to acquire data or anything else that is necessary for this run;

this is done by executing the INITR code. Next all THELSEs are executed and thus the goal

mles are evaluated and any actions conneeled to them executed, such as adjustment of

instruments, presentation of results, etc. Then the system attempts to perfarm a context

switch; this is done by executing the ON statements. After this, a mn exit procedure is
executed, e.g. to display or store the run's numerical results; this is done by executing the

EXITR code. Then the expert system program checks whether the new context is empty (i.e.
whether any STATE rule still bas condusion TR). If so, another run is started. If not, the
global exit procedure specified in the EXITG code is executed, e.g. to shut down instruments,
close disk files, etc. Then the expert system halts.

5.3.2. SIMPLEXYS programs

A SIMPLEXYS program consists of up to 7 sections. The first 5 program sections are
optional; they are necessary only if the rules need to interface with Pascal code (e.g. to
perfarm acquisition of data, print output etc.). Program sections 6 and 7 are mandatory. The
program sections need to appear in this order:

82

1. DECLS declarations

2. IN ITG global initializations optional,

3. INITR run initializations ; Pascal code
4. EXITR run exit code

5. EXITG global exit code

6. RU LES the rules

7. PROCESS the protocol

5.3.2.1. Declarations

In this program section, all variahles, that are used by initializations, exit code, TESTs

and DOs, must be declared and their type must be specified; types and variables must he

declared in valid Pascal code. Similarly, all procedures and functions that are used in the

initializations, exit code, TESTs or DOs must be declared. The Pascal compiler indudes the

code in this program section into the SIMPLEXYS loferenee Engine without changes.

5.3.2.2. lnitializations and exit code

Program sections 2 through 5 contain Pascal code. The Pascal compiler includes the code

in these section into the SIMPLEXYS loferenee Engine without changes.

The statements in the INITG section will be executed when the expert system starts up.

The statements in the INITR section wiJl be executed at the start of each run, induding the

first one. The statements in the EXITR section wil! be executed at the end of each run,

induding the last one. The statements in the EXITG section will be executed only once, at

the end of the last run.

5.3.2.3. Rule definitions

Program section 6 starts with the keyword RULES. The rules must be inserted here;

rules consist of two to four parts:

rule header (na me and text string)

rule type or rule's expression

initia! condusion

THELSEs

ma ndato ry

mandatOry

optional

optional

1. The rule header. First comes a symbolic name by which the rule and its condusion can

be referenced by other rules. This name consists of alphanumeric characters (numbers

are allowed but not recommended) a nd underline characters (except in first position).

Each rule must have a unique name. The name is foliowed by the character ':', which is

foliowed by a text string that is used in questions, to show results and for explanatîon

purposes. The text may be empty, but it must be surrounded by single or double quotes,

and it must be a valid Pascal string.

83

2. The rule body, which indicates the rule's type. It consists of either:

a. The special symbol FACT; thus the ruleis a FACT rule.

b. The special symbol ASK; the ruleis an ASK rule.

c. The special symbol TEST; the rule is a TEST rule.
- The remainder of the line contains text. The text is one valid Pascal statement,

which has the purpose to assign a value of either TR, FA or PO to the reserved
symbolic name TEST; the default value is FA. Example:

TEST if HR > 120 then TEST := TR else TEST := FA

- The remainder of the line contains no text. The following lines, as many as
necessary, consist of one ar more Pascal statements. The purpose of the Pascal
code is to assign a value of either TR, FA or PO to the reserved symbolic name
TEST; the default result is FA. The end of the Pascal code is marked by the word
ENDTEST on a new line. Example:

TEST
if HR) 120 then TEST := TR el se
if H~ < 6Q then .TEST : = FA el se

TEST .- PO;
HR SAVE := HR

ENDTEST

d. The special symbol BTEST (for Boolean TEST); the ruleis a TEST rule with a
slightly different syntax. The remainder of the line is used to specify a valid Pascal
boolean expression (not an assignment statement). The Pascal code evaluates to a
condusion of either TR or FA. A multi-line version of BTEST is not implemented.

Example:

BTEST HR > 120

This example is fully equivalent with and only a more compact way to write

TEST if HR > 120 then TEST := TR else TEST := FA

e. The special symbol MEMO; the rule is a MEMO rule.

f. The special symbol STATE; the ruleis a STATE rule.

84

g. An expression; the ruleis an EVAL (evaluation) rule. The expression cannot be

langer than a single line1.

3. The initia! conclusion. The keyword INITIALL Y foliowed by TR, FA or PO; the

INITIALLY of STATE rules can be foliowed by FA or TR only. By default, unless

overridden by an INITIALLY, FACT and MEMO rules are initialized to P02, and

STATE rul es to FA. ASK, TEST and EV AL rul es are marked UD.

4. THELSEs. Each THELSE line starts with either THEN, ELSE or IFPO; this is foliowed

by one of the keywords TR, FA, PO, DOor GOAL, and then foliowed by argument(s) or

Pascal code.

a. TR/FA/PO takes as argument(s) other rules, but not FACT and STATE rules.

b. GOAL takes as argument(s) other rul es, but not F ACT, MEMO and STATE rul es.

c. DO is foliowed by one or more Pascal statements.

- The remainder of the line is not empty. The text following DO is one valid Pascal
statement. Example:

THEN DO writeln ('the heart rateis abnormally low')

- The remainder of the line is empty. Successive lines contain Pascal code, as many

lines as needed. The end of the Pascal code is indicated by the word ENDDO on a

new fine. Example:

THEN DO
writeln ('the heart rateis abnormally low');
HR_SAVE := HR

END DO

5.3.2.4. Tbe PROCESS section

Program section 7 starts with the keyword PROCESS. This section describes the

dynamics of the process. All state transition or ON statements are inserted here.

The Rule Compiler will recognize the start of this program section by the keyword

PROCESS, and the end of the section by the fact that the end of the file is reached.

Frequently, in simple applications where the goals remain the same in every run, the

PROCESS section wiJl consist of only one ON statement such as:

ON READY FROM RUNNING TO *

1 lf an expression is Jonger than one line, split it up into more than one rule; this is easier to
understand and almast always more efficient.
2 PO rather than UD, since UD signifies that a rule's condusion can be acquired through
some type of evaluation.

85

where RUNNING is the expert system's only STATE rule (and thus it must be INITIALLY
TR) which specifies the goal rules, and READY is a rule that tests whether the expert

system is ready and must halt. For an example, see figure 5.1.

5.3.2.5. Time keeping

In many final versions of the expert system the time will be obtained from the computer's
real time clock. During the design and testing phases, which are normally not real time and

where because of testing a run may last any period of time, this is often impractical. While
testing, a run which in real time must take 5 seconds might last 5 minutes, upsetting all

history counters. OptioJ1ally, therefore, a simuialed time can be specified as a run time

option. In this mode it is assumed that runs succeed each other with fixed time intervals,

which the user can specify. In most cases, this wil! make a transition from testing mode to

real time mode painless.

Time keeping is done through the variables _time and _timeO, according to the following
Pascal declaration1:

var _time, _timeO: longint;

Their usage is dependent on the type of time keeping:

Simulated time: The user has, as a run time option (see section 5.6.2), specified a 'simulated

time' period (in seconds) between successive runs having a constant value _time _inc. Th is

results in ioclusion into the loferenee Engine of a Pascal dedaration like:

const _time_inc = 5;

On system startup, _time is reset to 0. At the start of each run _time is incremented by
time inc. Variabie tirneG is not used. - - -

Rea/time: On system startup, _ tirneG is read from the system doek. At the start of each run,

_time is updated (using function sys_time) from the system doek, using the expression

_ time := sys_ti me - _ timeO

Thus _time has the meaning: 'the number of seconds elapsed since system startup'. This

implies that normally the cyde time of the expert system should be greater than one second

and preferably an integer number of seconds.

1 In order to prevent conflicts between names, it is a convention that internally used
SIMPLEXYS narnes start with an underscore chluacter and that the user does not employ
such names.

86

Each rule's history counter is set to the _time at which the rule's condusion changes, so
the Pascal expression

_time - _history [rule)

has the meaning: 'the number of seconds si nee the condusion last changed'; th is expression
is used when SIMPLEXYS expressions contain history operators. An example:

HR_STABLE > (15 * minutes)

is translated by the Rule Compiler into the following Pascal code pattern:

TEMP : = _evalrule1 (_R [_HR_STABLE));
if (TEMP = TR) or (TEMP = PO) then

if nat (_ time- _histor y [_R (_HR_ STABLE])) > (15 * minutes)
then TEMP := FA;

where TEMP is a variabie of type bool that returns the result of the evaluation of the
expression, _ R [.] is the array that stores the rules' conclusions, _ history [.] is the array that
stores the rules' histories, and _HR_STABLE is a constant index, assigned by the Rule
Compiler.

Time keeping uses these procedures and functions:

function sys _time: longint; returns the system time (in seconds);

procedure init_time; initializes time-keeping; resets _time; uses sys_time at system start up to
initialize _timeO if real time mode is selected;

procedure update_time; updates _time; uses sys_time at the start of each run if real time
mode is selected; otherwise increments time by _time _inc.

5.4. Programming in SIMPLEXYS

One of the main characteristics of SIMPLEXYS is that it is designed for real time
applications and that it can evaluate its rules with high speed. Common designs of Inference
Engines are not efficient: tbey imply an enormous amount of searching through the
knowledge base and in some imp)ementations even a very time consuming 'matching' of

consequents before a rule can be applied. The searching and matching in SIMPLEXYS is
only dorre once: by the Rule Compiler (see section 5.6.1). This compiler transforms the
separate knowledge chunks into a set of tables (see appendix 4), in which the relations

1 See section 4.4.

87

between the rules are represented by pointers. At execution time, these tables can be
traversed at high speed.

A fundamental principle of SIMPLEXYS is thus, that the knowledge base must be
compiled before the knowledge can be used by the Inference Engine. The SIMPLEXYS
tools therefore perform two basic operations: compilation of the rules into a correct internal
representation, and binding that internat representation of the knowledge with the Inference
Engine.

Programming in SIMPLEXYS entails the following steps:

1. Acquire the knowledge to be implemented. This is usually done through interviews with a
'domain expert'.

2. Implement the knowledge using the SIMPLEXYS language. This results in the
'knowledge base' or 'knowledge program'. If the knowledge cannot be formalized because
it is unclear, COntradietory or incomplete, go back to step I.

3. Generate the internat format of the knowledge, i.e. the code and tables that the Pascal

compiler wilt include into the Inference Engine. This is done through compilation of the

knowledge base by the SIMPLEXYS_Rule Compiler. A number of extra passes of the
Rule Compiler perf~rm syntactic and semantic correctness checks, both on the 'statie' and
the 'dynamic' parts of the knowledge base. If implementational errors are signalled, go
back to step 2; if contradictions are signalled, go back to step 1.

4. Select any run time debugging options that may be deemed necessary.

5. Compile the expert system, by combining the SIMPLEXYS lnference Engine with the
Rule Compiler's output and the run time options. This is done by the Pascal Compiler.

6. Run the expert system.

7. Correct imperfections and errors, repeating steps 1 to 5 until satisfied.

This procedure is called 'rapid prototyping' [Klingler, 1986; Politakis and Weiss, 1984]. It
assumes that the major problem is step 1, the acquisition of knowledge, because the domain
expert does not know what he knows: much of his knowledge has become subconscious. In
the early design stages, therefore, step 6 wiJl yield many imperfections. Such imperfections
are easy to recognize by the expert, however, and their conscious recognition is an essential
step in the acquisition of the knowledge. Step 7 allows the repair of errors that become
visible. Because some errors,or limitations wiJl only show up in the long run, it is hard to say
when the expert system is 'finished'. Logically, never, because it will never be 'complete';

practically, as soon as it is sufficiently 'useful', a very subjeelive assessment.

88

5.5. lnferencing in SIMPLEXYS

The purpose of the inferencing processis to derive all necessary conclusions (or goals)

about data that are offered to the system. Generally, the data will change over time, and
therefore the analysis wiJl need to be repeated, possibly many times, and possibly with
different goals. Each evaluation of all the goals is called a run; a typical run may take 5
seconds, including the acquisition of data and the display of results. Figure 5.5 shows how
different goal rules are evaluated in a sequence of runs.

run #1

rule #3
rule #7
rule #8

run #2 run #3 run #4

>1 ule #3 >-l~ul~Jt~>- rule #3 - >
rule #7 rule #5 1 rule #5
rule #8 rule #7 rule #9

Figure 5.5. A sequence of runs of the expert system and the goal rules to be
evaluated in those runs.

The determination of which condusions are to be derived, i.e. which rules are goal rules,
is specified by a match between the prevailing value of a rule's condusion at the start of the
run and that rule's THELSE GOALs. The arguments of these THELSE GOALs are the
primary goals, and they are evaluated as follows:

for i := first rule to last rule do
case conclusion (i] of -

UD: {do nothing, i.e.~ evaluate the rulel};
TR: evaluate all THEN GOAL arguments of the rule;
FA: evaluate all ELSE GOAL arguments of the rule;
PO: evaluate all IFPO GOAL arguments of the rule;

end case;

The order in which the goals are executed thus depends on the ordering of the rules of
which they are a goal. The order in which the THELSEs are executed is: first the THELSEs
of the ASK rules, then those of the TEST rules, EVAL rules, FACT, MEMO rules, and
finally those of the STATE rules1• Within a rule type dass, the order in which the goals are
executed is the order in which the rules appear in the knowledge base text. But in a correct
knowledge base this order is immaterial: all goals will eventually be evaluated. What is
important, is the correct execution order of the goals (or rather of all THELSEs) of each

single rule. These are executed according to the order which the user specified. In the

1 To do this efficiently, the Rule Compiler sorts the rules into this order. Note also, that at
the start of any run but the first, only FACT, MEMO and STATE rules can already have a
condusion or value (TR, FA or PO); only the conclusions of these rule types are carried
over from one run to the next. The condusions of ASK, TEST and EV AL rul es, on the
other hand, are undefined (tagged UD) at the start of each run. In the first run, however,
ASK, TEST and EV AL rul es can have a value as well, if such a value is specified by an
INITIALLY.

89

following example this ordering is important, because data must be acquired befare they can
be analyzed, and the analysis must preeede the presentatión of the results (see section 2.3.5
for a similar ordering in VM).

X: 'rule X'
STATE
THEN DO acquire_data
THEN TR: DATA ACQUIRED
THEN GOAL: CHECK ARTIFACTS, ANALYZE_DATA, SELECT_ALARMS
THEN DO present_alarms

Evaluation of a THELSE GOAL argument can cause secondary goals to be evaluated, if
the argument rule has THELSE GOAL'i as well. A secondary goal is thus a rule, that is the
argument of a THELSE GOAL of a rule that obtains its condusion during the evaluation of
the primary goals.

Normally, the primary goals are attached to STATE rules, because these are meant to
describe the problem solving context. They can also be attached to FACf rules and MEMO
rules, however. The goals of FACf rules are context independent; their goals will thus be
evaluated in every run. MEMO rules can be used to specify goals which are 'condition

dependent' rather than context dependent Goals attached to ASK, TEST and EV AL rules
are always secondary goals.

The Inference Engine's sequencing of analyses (shown in figure 5.6) takes care of
establishing the context, evaluating the goals that belang to the context and, if necessary,
switching toa new context, until no active context exists anymore, i.e. until all STATE rules
have condusion FA.

initia!-,.-- > goal >
context rules

must do Y
context
switch?

define ~lu~J-e

r------ -----------~~ N

de fine
new I-­

context

final
L_ ______ ----------------------~~ context <

?

y

Figure 5.6. The inference loop. At system start up, an initia! context is defined,
determined by the initially active STATE rules. The goal rules of these STATE rules
are then evaluated. The loferenee Engine next evaluates the rules which determine
whether a context switch must be performed. If so, the new context is defined, and the
goals belonging to that context will be evaluated in the next run. If not, the same goals
as in the previous run wil! be evaluated again, presumably with different input data.

The inferencing process that analyzes one 'snapshot' of the data (figure 5.7) takes place
within an established context.

90

>~>ff~~i~~~t- > 1 ~~~: -] (a)

) ' dO ~~~u u)Jdi~-pl~;l (b)
work __ j Lresul::_J

Figure 5.7. Analysis of one data set. Figure (a) gives the general scheme, figure (b) an
example. First the current time is acquired. The run initialization code usually obtains
the data to be analyzed. Execution of the THELSEs involves the evaluation of the
goal rules of the current context. The run exit code can display results or perform
other output operations.

In SIMPLEXYS, inferencing is performed in and across a number of runs. The

inferencing that is performed in one run is called single run inferencing, the inferencing that
sequences the runs is called global inferencing. Each run is a sequence of the following two
steps:

1. Given a certain context, evaluate all primary goals of that context. Primary goals are
usually EV AL rul es, although they can also be ASK or TEST rul es. As a result, some
secondary goals may become evaluated as well.

2. Given the context, determine the next context. This step calls for the evaluation of all
trigger rules (the rules after the keyword ON in the ON statements), that could possibly
cause some STATEs to become FA and others to become TR (frequently some of those

trigger rules have already been evaluated in step 1). This step is called a 'context switch'.

In accordance with the above, figure 5.8 shows how in each run not only goal rules are
evaluated, but also trigger rules.

run #1 run #2 run #3 run #4
,-------

rule ll3 I->- rule #3 1- >- #3 ->- rule #3 ->
rule #7 rule #7 115 rule #5
rule #8 rule #8 #7 rule #9

trig #1 trig #1 116 trig #2

Figure 5.8. A sequence of runs of the expert system and the goal and trigger
rules to be evaluated in those runs.

The loferenee Engine is both simple and safe. The simplicity is derived from the
automalicity of its recursion process. Run time safety is ensured by an abundance of
(possibly superfluous) syntactic (and a few semantic) checks. All these tests take very little
time and therefore do not degrade the performance.

91

5.5.1. Single run inferencing

A single run inference does the following:

Update the time.

Execute the run initialization code, procedure INITR.

Execute the matching THELSEs (see section 4.5) of all FACf rules, then those of all
MEMO rules and finally those of all STATE rules1•

Try to perfarm a context switch; abort on a deadlock2•

Execute the run exit code, procedure_ EXITR.

Undefine all ASK, TEST and EV AL rul es for the next run.

Appendix 4 describes the important data structures used by the Inference Engine.
Appendix 5 describes the lnference Engine's main procedures and functions.

5.5.2. Global inferencing

The Inference Engine is a Pascal procedure (procedure .:_infer), which does the following:

1. Initialize the conclusions and history values of all rules to their proper default values (see
section 5.3.2.3) or the values assigned by INITIALLYs.

2. Ooiain the-conclusions of those FACT rules, -~hich did not obtain a value through an

INITIALL Y, by asking the user. If the FA Cf ru Ie conclusions are to be obtained in a
different way, e.g. by interrogating a data base, the user must provide the appropriate
code as a Pascal procedure.

3. Initialize the time.

4. Execute the global initialization code, procedure INITG.
5. repeat

do a single run inference

until no STATE rule has condusion TR anymore.
6. Ex ecu te the global exit code, procedure _EX !TG.

1 First run only: start this step by executing the matching THELSEs of all ASK rules, then
those of all TEST rul es and finally those of all EV AL rules that have an initia! condusion
due to an INITIALLY.
2 A deadlock should not occur, because it is detected and flagged by the Protocol checker;
see section 7.3.4.

92

5.5.3. The validation mode

A validation mode is available for debugging purposes. When debugging and testing an
expert system, it is frequently very difficult to provide all combinations of inputs, so that all

rules are thoroughly exercized in the attempt to catch as many inconsistencies as possible.
The validation mode makes this easier. Essentially all rules (within the active context) are
fully evaluated.

A selection is possible between two evaluation methods:

1. Conditional or short-cut evaluation. Using this method, in an expression like

A and B and C and D

A will be evaluated first. lf A evaluates to FA, neither B, C nor D will be evaluated. Due
to its efficiency, this is the normal evaluation method. It has the drawback that if A is

always FA, errors due to (conflicts with) rules B, C and D will never be discovered. In
genera], correctness testing of the knowledge base using this method is quite difficult, as

it is very much dependent on the actual inputs supplied.

2. Unconditional evaluation. This method is selected when there is the need to test the
consistency of the knowledge base. Now in an expression like

A and B and C and D

A, B, C and D will all be evaluated, regardless of their values. Due to its inefficiency, this

is not the normal evaluation method. Using this method, all questions (from ASK rules),
that apply in the current context wil/ be asked and all tests (from TEST rules), that apply
in the current context will be performed.

The validation mode uses unconditional evaluations, but there are other differences, too.
Compared to normal inferencing, the following differences are to be noted:

1. The second argument of the operators an.d, or and alt is evaluated whether necessary or
not, i.e. there is no difference between an.d and ucand, and between or and ucor. The

resulting value will not be different, but the side effects (THELSEs) generally will1•

2. The second argument of the alt operator is evaluated whether necessary or not. A logica!
con tradietion will occur if one operand is TR while the other is FA (reeall that alt stands

for 'logically equivalent alternative' ; see section 5.2.3.2). lf such an error occurs, the

1 More rules will generally be evaluated, and these may have THELSEs.

93

system continues 1 and the value of the first operand is assigned to the result of the
operation, but an error message is issued. In validation mode the following expression
applies for the alt evaluation:

U .ê.l.t V := if u = FA and v TR then FA (but signa! error) el se
if u TR and v FA then TR (but signa! error) el se
if u FA or V FA then FA el se
if u TR or V TR then TR el se

PO

The expression for u alt v given above applies only if the validation mode is active.
Normally evaluation is conditional, i.e. it stops when u = TR or u = FA; then no error
can be detected.

3. In validation mode a THELSE does nat just assign a rule's conclusion. lnstead, the rule is
evaluated by function _ evalrule and the evaluation's result is compared to the value that
should be assigned. Discrepancies are signalled.

4. In function _ evalrule, the purpose of step 3 was to obtain a TR or FA condusion through

other rules' THELSEs if 'normal' evaluation did not succeed. Step 3 now is
unconditional: the results of all THELSEs to the rule are compared with each other and
with the evaluated conclusion. Discrepancies are again noted.

In validation mode, lots of superfluous questions may be asked and many extra tests may
be performed in order to test for incompatible data and/or inconsistent processing of the
data Therefore this mode is not efficient, and should probably nat be used in a final design.

By default, none of the extra errors is fata!, in order to carry on with the testing, but the

user may want to decide to halt the process.

5.6. Tbe SIMPLEXYS Tooibox

SIMPLEXYS is meimt to be an easy-to-use toolbox. It provides a number of instruments
(tools) for the implementation of expert systems:

1. The SIMPLEXYS language has already been discussed extensively.
2. The SIMPLEXYS Rule Compiler (see section 5.6.1) translates the knowledge into an

internal representation that can be easily checked (by the Semantics Checker and the
Protocol Checker) and managed (by the lnference Engine).

3. The Semantics Checker (see chapter 6) is an additional pass of the Rule Compiler, which
perfarms a number of semantic correctness checks on the static component of the

knowledge base.

1 But the user may intercept the error and halt the system.

94

4. The Protocol Checker (see chapter 7) is an additional pass of the Rule Compiler, which
perfarms a number of semantic correctness checks on the dynamic component of the
knowledge base, the protocol.

5. The Options Builder (see section 5.6.2) is a small program that can instruct the loferenee
Engine to select certain debugging options.

6. The loferenee Engine (see section 5.6.3), whose mechanism has been described in section
5.5, implements the necessary 'reasoning' ability. By combining the internat representation
of the knowledge generated by the Rule Compiler with the loferenee Engine, a ready to
run expert system results.

7. The Debugger/Tracer (see section 5.6.4) is a tooi to examine the inferencing processof
the expert system while it processes symbolic information.

5.6.1. The SIMPLEXYS Rule Compiler

The Rule Compiler is very simple. It is of recursive descent type [see e.g. Wirth, 1976b) ,
where the 'descent' is defined by the SIMPLEXYS syntax.

The SIMPLEXYS Rule Compiler expects an input file containing a 'knowledge program'
in the syntax described above; the file extension must be '.rul'. This 'knowledge program' is
created and edited using any editor or ASCII-output word processor. The knowledge
program souree code is then compiled into Pascal code, resulting in several output files that
contain both tables (the internat representations of both static and dynamic nets, stored as
arrays; see appendix 4) and executable code (for the INITG, INITR, EXITRand EXITG
sections and the Pascal code of the TEST rules, history expressions and DOs). The Rule
Compiler checks the rules for all syntactic and some simple to detect semantic errors, and it
checks the completeness of the rule set; it checks the non-Pascal text only. It halts at the
first error it finds and shows the offending line with a self-explanatory error message.

File rdecLqqq wil! contain the user's declarations from the DECLS section, the code from
the INITG, INITR, EXITR and EXITG sections (in the procedures _INITG, _INITR,
_ EXITR and _ EXITG), the code of TESTs (in the function _ FTEST), the code of all history

checks (in the function _FHISTORY), and the code of all DOs (in the procedure _FDOS).

File rinfo.qqq will contain all tables, either as Pascal const or var array declarations (see

appendix 4).

The Rule Compiler error checks are mostly simple. Some are:

1. There are no rules.
2. Duplicate rule name.
3. There are no STATE rules.
4. No STATE rule is INITIALL Y TR.

5. There are no ON statements.

95

6. A FROM or TO list contains a non-STATE rule.
7. A rule is unconnected (in no way used by other rules).

The most complex error check is:

8. Incomplete rule set. Often, this is caused by a typing error: a rule needs for its evaluation

another rule which cannot be found because its name is misspelt Another possibility is
that a rule is referenced (in an evaluation expression, by a THELSE or in an ON
statement), but not defined.

In the design stages, this 'forgetting' to define a rule can be done to advantage. The Rule
Compiler can, optionally, generale missing rules automatically; they will become rules of

type ASK. This 'forgetting' allows knowledge acquisition and implementation to praeeed

in an orderly, top-down manner, if design is started with the top level rules only. Since no

rule text string is available for missing rules, it will be copied from the rule name, sa that

the rule name itself will be used as the question prompt and explanation text.

In addition, the Rule Compiler checks for a number of internal errors, e.g. 'rule store

overflow', which may occur due to a too large number of rules in the knowledge base. The

maximum number of rul es that can be compiled is currently, due to the limited memory si ze
of MS-DOS machines, approximately 400 to 600, depending on the complexity of the rules.

The Rule Compiler output consists of a number of text files containing arrays and Pascal

code sections, that are to be included into the bare loferenee Engine to yield a complete
expert system.

The DECLS section will be included as such, directly after SIMPLEXYS's own type

definitions and declarations of internal variables and procedures. The Rule Compiler does
nat check any of the Pascal code in this section; that is left to the Pascal compiler.

The code in the INITG, INITR, EXITR and EXITG sections will be gathered into the

procedures _INITG, _INITR, _EXITR and _EXITG. The code in the INITG section, for

example, is packaged into a procedure as follows:

procedure _INITG;
begin

{insert INITG code here}
end;

Such code will be called at the appropriate time by the loferenee Engine.

The code in the RULES and PROCESS sections is translated and tokenized into
SIMPLEXYS tables and arrays (see appendix 4), that wil! be used by the loferenee Engine.

State transitions are tokenized and stared into a table that is traversed by the loferenee
Engine when it must perfarm a context switch.

96

The translation of FACf, ASK, MEMO and STATE rules is trivia!; they have no
arguments so only their type needs to be stored. The Pascal code of all TEST and BTEST
rules are gathered into a procedure _FfEST, which is a large case-statement, where the case
index is the rule's sequence number:

function FTEST (t: word): bool;
var TEST:-bool;
begin

TEST := FA;
case t of

{TEST statements or bodies are inserted here)

{rule 5: BTEST x 0)
5: begin

if x = 0 then TEST := TR
end;

{rule 7: BTEST x > y + z)
7: begin

if x > y + z then TEST := TR
end;

else {no valid case}
fatal error (' invalid TEST# •, t)
{this-internal inferencing error should never occur}

end; {case}
FTEST : = TEST

end;

Evaluation rules are tokenized and stored into a table, that is traversed by the lnference
Engine when it must evaluate a rule. For each evaluation rule, an index is created into a
large array, where aJl the expressions are stored in prefix notation, as tokens (for the
keywords) and rule numbers1• An example: the expression

(F AND H) OR (J AND K)

is stored as

OR AND F H AND J K

In addition, the Pascal code for history tests is compiled into a function _FHISTORY,
just like the Pascal code of the TEST rul es is compiled into function _ FfEST.

Code for THELSEs is stored into tables, similarly to the expressions. The Pascal code for
THELSE DOs is stored into a procedure _FDOS, the same way a~ TESTs are stored; DO
code sections are copied without change and without checks.

1 Both preftx and postftx notation avoid the storage of parentheses. Prefix notation was
chosen because it allows a simple implementation of conditional evaluations.

97

As mentioned before, missing rules can automatically be generated; they then become
ASK rules. This is easy to do. The Rule Compiler inserts all rule narnes into a table as soon
as they are encountered, and it also keeps track of which rules have been defioed. If, at the
end of compilation, the table still contains undefined entries, these can easily be added as

ASK rules, which do not need arguments (the string is copied from the rule's symbolic
name). Using this option, a missing rule in a TO or FROM list will thus become an ASK
rule; this will subsequently lead to the error 'FROM or TO list contains a non-STATE rule'.

Tbe Semantics Checker and the Protocol Checker run without user interaction. They act
as extra passes of the Rule Compiler that perfarm static and dynamic semantic checks; these
checks are expanded upon in chapter 6 and 7.

5.6.2. The SIMPLEXYS Options Builder

The Options Builder is a program that asks for a number of run time options and then
builds a file 'options.qqq'. The options are used in the loferenee Engine for these purposes:

1. Real time or simulated time. During the design and testing phases it is necessary to

mimic the final system as closely as possible. The major problem is usually the real time

nature of the final system. We expect that most frequently a final system will use a run to
analyze data that are acquired at regularly spaeed time intervals and take actions as a
resuJt. When using simulatèd time, the user can specify the time period, in seconds, that
the expert system should assume to occur between successive runs. Simulated time then
creates rule histories as they would exist in the final system.

2. Debugging mode. During the design and testing phases it is often to advantage to be able
to see the intermediale results of the inferencing process. It is possible to choose sub­
options such that more and more details become visible on the computer's screen. These
sub-options exist:

a. show the condusion of a rule as soon as the rule obtains a conclusion;

b. show the progress of tbe inferencing mechanism by messages like 'starting the
evaluation of rule .. .', 'finished the THELSEs of rule .. .' and 'obtained the condusion
of rule .. .';

c. show operators when they are applied, as well as the result (value) of their
application;

d. show the table positions which correspond with the operation the loferenee Engine is
currently executing;

e. show, after each run, all conclusions that have .been derived, i.e. all rul es with a
condusion TR, FA or PO, as well as their previous condusion and their history count;

f. use validation mode (see section 5.5.3).

3. Dump results. During the design and testing phases it is often to advantage to be able to
investigate the fimil results of the inferencing process at leisure. All results, i.e. user

98

interaction andfor debugging information, can be stored either to a printer or to a disk

file.

5.6.3. The SIMPLEXYS loferenee Engine

The SIMPLEXYS loferenee Engine is entirely written in Pascal. The expert system code
consists of the coded inferencing mechanism, described in section 5.5 and appendix 5, and
include compiler directives1 for the Rule Compiler's output files. The Pascal compiler
checks for any errors in the knowledge program's Pascal code sections.

The loferenee Engine is a Pascal procedure. The main program, which prints a header

text and then invokes the loferenee Engine, is short, simple and self-documenting. It may
readily be modified for other applications. The SIMPLEXYS program can, a~ a pro.cedure,
be part of another program.

To give an impression of the size of the executable programs: the compiled size of the
loferenee Engine itself is about 30 Kbytes. The size of 'knowledge programs' depends very
much on the number of rules and the size of the Pascal sections that they contain. A small

expert system would be about 35 Kbytes, a medium-sized one 80 Kbytes and a large one 300
Kbytes. The blood pressure controller of chapter 9 is a medium-sized application; its size is
112 Kbytes.

5.6.4. Tbe SIMPLEXYS Debuggerfl'racer

The design of a correct knowledge base is difficult, and in this design process, testing and
debugging are the most difficult [Pau, 1987; Hendler, 1988]. In comparison with systems
written in a procedural language, rule based systems are extremely hard to debug. For an
review of debugging problems and for more details on the SIMPLEXYS Debugger/Tracer
see de Hair [1988] and Philippens [1989].

One difficulty in debugging a knowledge base is to discover that a problem or
shortcoming still exists; success in debugging is possible only if the knowledge engineer is a

near-expert in the problem domain. Another difficulty is how to locale a problem. Despite a

careful design process, incorrect actions may still be observed during the expert system's
performance. The best metbod to locale an error in a knowledge base is to follow this
'hypothesize and test' algorithm:

1. Discover and describe the symptoms.
2. Guess which error might cause these symptoms.
3. Guess wbich additional symptoms the error would cause.

1 This is because Turbo Pascal does not offer separate compilation and linking of program
modules.

99

4. Discover whether these additional symptoms actually occur; if not, go back to step 2.
5. I...ocate the moment when the symptoms first occur, and trace back to the cause.
6. Repeat and refine the process until the error is found.
7. Delermine how to repair the problem.
8. Repair the problem.

This debugging process wiJl be much easier and faster if debugging tools are available,
particularly a tooi that allows tracing (step 5 above). Debugging aids are like stethoscopes,
necessary to isolate the cause and location of an error. Three different categoTies of
debugging tools can be distinguished, all of which are available in SIMPLEXYS.

Snapshot tools give a picture of the program or the program's variables at a certain point
in time. Two kinds of snapshot tools exist: program listings (before execution of the
program) and specificfnon specific dumps (during the execution of the program). Listings of
SIMPLEXYS programs are well structured and easy to peruse. During a run of a
SIMPLEXYS program, a dump of all currently evaluated conclusions can be generaled at
any point in the inferencing process by calling procedure dump, a utility (see appendix 3),
e .g. by appending a 'THEN DO dump' to a rule. A samedump can be obtained by

answering an ASK rule's question with the symbol '!'.

Dynamic tools show the program or its variables in opera ti on._ We distinguish two
different kinds of -dynamic tools: -

Tracers indicate which statements are executed and in which order. In debugging, there

are two dimensions to be traced: space and time. The space dimeosion refers to the

starage space of the program, and the time dimeosion refers to the completion of
computation cycles during the execution of the program. Tracing the time dimeosion is
usually most important and most time consuming, but debugging aids should allow the

programmer to trace both dimensions.

Variabie displays show, while the program is running, the value of one or more variables
as they change.

The SIMPLEXYS loferenee Engine supports several levels of dynamic displays,

selectable by the Options Builder (see section 5.6.2).

lnteractive tools offer the user broad powers to stop the execution of the program in

arbitrary places and under broadly specifiable conditions. During such suspensions of
execution, these systems allow the user to examine such internal status information as the
values of variables. These systems enable the user to study error phenomena in minute
detail, and they support the process of unravelling the causa! threads leading to the first
rnaniCestation of an error which might have actually occurred long before.

100

We distinguish between three kinds of interactive tools: systems which offer the user to
suspend execution (1) at any specified program location (the breakpoint capability), (2)
wben any specified program variabie changes value (the watchpoint capability), or (3) after
some fixed prespecified number of program statements have been executed (the program
stepping capabilîty) [Osterweil, 1983]. The SIMPLEXYS Debugger /Tracer is such an
interactive tooi (see figure 5.9). It can be used in two ways.

error not found yet

Figure 5.9. The interactive debugging process.

First, during simulations where the input data is not of a time-critical nature, it can
analyze the Inference Engine's inferencing steps while the expert system is running. The user
is able to 'step out' of the inferencing process into an analysis process to ask questions like

'why is this rule evaluated' and 'how did this rule get its conclusion'.

Second, and much more important, it can, after a real time expert system has finished its
operation, analyze the debugging information that the expert system has stared to disk. In

this latter mode, the debugger/tracer examines symbolic information only; by discarding all
questions to the user and all Pascal code, it completely mimics the expert system at the
symbolîc level. To onderstand its operation, we have to describe how storing as small as
possible a quantity of information to disk (to file simplex.sav) during the actual operation of
the expert system wiJl allow us to analyze how it progressed through its inferencing steps.

Duriog tracing/debugging, the loferenee Engine considers symbolic data (rules and their

conclusions) only, not the user's Pascal code. Thus there is no user-defined interface to the
outside world, which means that the Tracer /Debugger can freely use keyboard and screen;
this means, moreover, that tracingjdebugging is in no way time-critical.

All the user's Pascal code must thus be eliminated, but without effects on the inferencing
process. Reeall that the Inference Engine's interface with the outside world is through FA Cf

and ASK rules, through the Pascal code in INIT and EXIT sections, TEST rules, DOs and
history tests, and through the system's time keeping. We will describe how this information
can either be discarded or stored to disk in a compact format (for details, see Philippens
[1989]).

1. The Pascal code of the INIT and EXIT sections and DOs can be discarded without
influencing the syrnbolic processing.

101

2. When the expert system starts up, the INITIALLYs determine the Inference Engine's
initia! conditions. Then tbe conclusions of the FACf rules are acquired; these can be
viewed as initia! conditions as well. Thus the set of all rules' conclusions after the
acquisition of the FACf rules' conclusions characterizes the 'extended' initia! conditions.
These are stored to disk.

3. The start time of every run must be stored to disk.
4. The conclusions of all ASK and TEST rules represent the questions asked and the tests

performed. These are stored to disk as soon as they are evaluated.
5. The history expressions can contain any Pascal code, but the application of a history

operator results in just a boolean value. This value is stored to disk as soon as it is
evaluated.

The complete symbolic operation of the Inference Engine can be replayed by using,
besides the knowledge base itself, only these stored data. Numerical input data are of course

lost, as well as all generated output.

The storage of data is very compact; the time takes 32 bits per run, and each rule's
condusion can be stored in two bits only.

The debugger /tracer is thus identical with the expert system with these exceptions:

1. All Pascal code is disregarded; the processing is purely symbolic.
2. At start up, the 'extended' set of initia! conclusions, i.e. including the FACf rule

conclusions, is reeavered from disk.

3. Instead of employing the system time, the stored time is reeavered from disk at the start

of every run.
4. Whenever an ASK or TEST rule's condusion or the result of a history operator is

needed, the value is reeavered from disk.

L Rule base F========= >>==================~

11

Trace

Simulator

real time :lL_ 11

expert system - > > ===========!~

syrnbolic output 11

Figure 5.10. The process of debugging the rule base.

The debugger /tracer has two modes, trace and explain, as shown in figure 5.10. The user
can switch back and forth between the two.

102

In trace mode, the real time system's stared symbolic output can be analyzed; there are
options like single step, run until or go back to a certain time, run until a specified rule gets a
specified conclusion, run until a specified rule gets any new conclusion, etc. A time trace of
the conclusions of a selectable number of rules can be shown in a graphical format in which
it is easy to recognize patterns and correlations; an example is shown in figure 5.11.

run # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

STATE

TR ____fL----ll---EVAL PO
FA

___r-·
Figure 5.11. Display of traces of a STATE rule and an EVAL rule conclusions.
STATE rule conclusions are either TR or FA. The drawn line represents the value
TR; when the value is FA, no line is drawn. This way only one display line is
necessary to display the trace. EV AL rule conclusions can be TR, FA or PO. These
values are all drawn at different levels by a continuous line. Three display lines are
now necessary to display the trace.

Cursor keys allow moves through the trace. Moving to the right or to the left selects the

next or the previous run. Moving up or down selects the 'active rule', whose information

(name, text string, type, initia! value etc.) is displayed in a text window.

In explain mode the knowledge base needs to be consulted as well; there are options like
show the culTent goals, show the goal that is currently pursued, show the ru/es that have given
the current rule its conclusion, etc. The 'why', 'how' and 'when' questions are the most
important:

- 'Why is it important to delermine that .. .'. Asking why questions is rnaving into the
direction of the root or goal in the rule's evaluation tree.
'How was it established that...'. Asking how questions is rnaving toward the leaves or

primitive rules of the rule's evaluation tree.

- 'When was it established that...'. In contrast with the other two types of questions, we do
not move in the evaluation tree but ask for the history counter value of that rule.

Several built-in explanation systems for different expert systerns all try to answer these
questions [Coombs, 1984; Gupta and Prasad, 1988; Khoroshevsky, 1985], but the
implementation and layout of these systems heavily depend on the type of expert system to
be elucidated and the degree of knowledge of the user. We, too, found that the explanation
must be in terms of well-known SIMPLEXYS concepts. To answer the above type of
questions, the information and the relevant section of the knowledge base are shown
graphically.

103

In tbe following examples, we use a rule's sequence number rather than its name.

Numbers preceded by S indicate a STATE rule, numbers preceded by R indicate any rule.
The tracer/debugger uses numbers as well; narnes are aften toa long to allow a convenient
display. The correlation between name and sequence number can be found in file rinfo.qqq,

generated by the Rule Compiler.

An exarnple of the display of an evaluation rule ' tree' is shown in figure 5.12. The rule's

knowledge base text is:

R1: ' ... '
(NOT R2 AND (R3 OR R4 OR RS OR R6)) OR R7
THEN FA: R10, R11
THEN TR: R12, R13

Besides, rule R8 has a THEN FA to the rule.

The display does not only show how the rule is connected in the net (see chapter 6), but

also the current values of the relevant conclusions. Note that rules R5 and R6 have thus far

not been evaluated.

IF THEN FA 10
THEN FA 11
THEN TR 12

- . -· -- ------- ---- FA 8 THEN FA THEN TR 13

FA 2 NOT

~]
OR - - 1 TR

FA 3
~

OR
TR 4
UD 5 j
UD 6
FA 7
Figure 5.12. An evaluation rule display.

Figure 5.13 displays an ON statement where the trigger ruleis the display's center. Figure

5.14 shows a part of the protocol; the STATEruleis the now display's center, and all trigger

rules teading to it and teaving it are shown.

12
ON R12 FROM S3 TO S2 3 - >-f- >- 2

Figure 5.13. A display centered on a trigger rule.

ON R10 FROM S1 TO S2 2
ON Rll FROM S2 TO S3 1 - >- 10- >=1 t:=• - ll- 3
ON R12 FROM S3 TO S2 3 - >- 12- > >- 13- - 1
ON R13 FROM S2 TO S1

Figure 5.14. A display centeredon a STATE rule.

The display is not large enough to show all rules and their connections at the same time,

but there is usually room for several of the above displays at the sarne time; the rules

104

displayed and the display format can be sdected by the user. Moreover, cursor keys
conveniently allow movements through the net and the protocol, in order to select a new
display centered on any of the neighboring rules shown on the display.

5.7. Worst case performance of SIMPLEXYS expert systems

In this section we will demonstrate that the worst case time required to evaluate all goals

in a SIMPLEXYS knowledge base is approximately linear with the total number of rules in
the knowledge base. We will not offer a proof, but an informal demonstration why this
should be so.

In practice, each context often requires a fair percentage of all rules to be evaluated. The
worst case upper bound for the time required to evaluate all rules in a eertaio context is
obtained when all rules must be evaluated. A rule is either a primitive rule or a composite
(evaluation) rule. Primitive rules can be evaluated directly; their evaluation does notdepend
on other rules. Thus the time required for the evaluation of a primitive rule can be acquired
by actually evaluating it. Composite rules reference other rules; to evaluate a composite rule
requires inferencing, evaluation of other rules and operators.

In this discussion about timing we will nat consider ASK rules, because the time taken to
answer a question is nat under the control of the expert system. Thus, if the rule is a
primitive, it can be either a FACT, a TEST, a MEMOor a STATE rule. Evaluation of a
FACT, MEMOor STATEruleis just reeavering its previously stared value. This recovery is
a simpte process, which requires a constant measure of time TP. Let the combined number

of primitive rules of type FACT, MEMO and STATE be N1• The total time required to
evaluate all these rules is thus

lf the rule is a TEST, we assume that the evaluation time required to evaluate it is finite
and constant. lf it is nat finite, we are in serious trouble because no tools exist to check the
Pascal code for finiteness, but usually insight into the code combined with testing of each
single TEST rule can provide a high level of confidence. The required evaluation time is not
the same for all TEST rules; let the average time to evaluate a TEST rule be T .. If tbere are
N2 TEST rules, the time to evaluate them is

Evaluation of a composite rule calls for a) evaluation of a number of 'subordinate' rules,
and b) evaluation of the expression. lf the subordinate rules are primitives, the time
necessary to evaluate them has been accounted for in T1 or T2, and the extra time required
is due to the application of the operators. lf one or more of the subordinate rules is
composite as well, evaluation of the rule again calls for a) evaluation of a number of

105

'subordinate' rules, and b) evaluation of the expression. The time taken to evaluate all

composite rules is thus related to the total number of operators in the knowledge base. Let

there be N3 composite rules with a total of N0 operators, let the time to evaluate one
operator be To, and let the overhead time to evaluate a composite rule be Tc. Evaluation of

all composite rules thus takes a time

excluding the time necessary to evaluate all primitive rules that are referenced by those
rul es.

Thus far we have not considered the THELSEs that may be executed. Worst case is that

a THELSE TR/F A/PO to a TEST rule has no effect, because the rule that it is directed at

has already been evaluated. This is due to the fact that application of a THELSE is

generally faster than an evaluation. A THELSE TR/FA/PO toa MEMO rule only takes a
fixed overhead time. Worst case for a THELSE GOAL is evaluation of its goal rules, but

this has already been accounted for in T1, T2 and T3• Worst case for a THELSE DO is
execution of its DO code. Let there be a total of N4 THELSEs, let the overhead time of

evaluating a singleTHELSE be Th, and let the combined time to execute all DOs be Td.

Executing all THELSEs then takes

This leads to a tata! worst case run execution time of

T = T1 + T2 + T3 + T4 =

NI * TP + N2 * T, + N3 * Tc + N0 * T0 + N, * Th + Td

which is linear in the number of rules. To this should be added a context switch overhead,

which mainly depends on the complexity of the protocol (but note that the time required to

evaluate the trigger rules has already been accounted for). TP' Tc, T0 and Th are processor­
dependent but can be measured. T, and Td can be measured or estimated. The numbers N1,

N2, N3, N0 and N, can be obtained from the knowledge base. In practice, the proportions of

these numbers are aften relatively constant.

The above is a simplification. In order to obtain more insight into the evaluation times

required, some simulations were performed. The following tests were executed on an IBM­

XT compatible PC with a 10 MHz 8088 processor. The tests consisled of evaluations using

the following rule sets:

test 1: evaluation rules, no operators, recursion
rule 1 BTEST true;
rule i rule i-1, 1 < i < N
GOAL rule N

106

test 2: evaluation rules, one operator, recursion
rule 1 BTEST true;
rule 2 rule 1 and rule 1
rule i rule i-1 and rule i-2, 2 < i < N
GOAL rule N

test 3: primitive rules ooly, no recursion
rule i BTEST true, i > 0
GOAL : rule 1, rule 2, ... , rule N

... ;=·~=0=· .. =----------------,

lÀ

1.2

0.8

o.o

I 00 200 300 400 600 600

n urnber of rules

- ~st I -+- t.oMt 2 __._ tost. 3

Figure 5.15. Test run times on a 10 MHz
8088 computer.

The run times of these tests (with a very simple protocol) are shown in figure 5.15;

results for tests 1 and 2 for a nesting of more than 200 rules cannot be obtained due to an
overflow of the processor's stack1• The tests indicate an inferencing overhead (context switch

and bookkeeping) of approximately 8 ms per run, a recursion time of about 1.4 ms per

evaluatioo rule without operator, about 1.0 ms for the evaluatîon of one operator plus one

rule's condusion lookup, and about 1.7 ms for the evaluation of one THELSE plus one

sîmple primitive rule. As a global rule of thumb for this JO MHz 8088 processor we provide
these times as rounded estimates:

overhead per run 8 ms

TP = evaluation of a FACf, MEMOor STATE rule 1 ms
T1 = evaluatîon of a simple TEST rule I ms

Tr = evaluation of an EV AL rule 1 ms

T 0 = evaluation of an operator 1 ms
Th = evaluatîon of a THELSE 1 ms

1 In practical cases, this will generally not be a lîmitation.

107

With a faster processor, these times decrease proportionally.

5.8. Summary of efficiency issues

To summarize, the efficiency of SIMPLEXYS is most of all due to these factors:

1. Rules are evaluated only once (each run). Thus each node of the problem network is
visited once at most, preventing a combinatorial explosion of the search space. Evaluation
takes linear time.

2. Rules can yield multiple conclusions from one evaluation.
3. Rules are evaluated only in those contexts in which they are relevant. The protocol

makes it possible to specify which rules need to be evaluated in which context. This
effectively eliminales the evaluation of inappropriate rules.

4. Links between rules are compiled; there is no searching for the rule(s) to be evaluated
next.

5. The type of logic implemenled allows fast evaluation using truth tables, not complex
formulae.

6. The operators provide conditionat evaluation; rules are not evaluated if their condusion
is irrelevant.

7. Data are stored in known memory locations, not in lists; there is no searching for data.
8. The loferenee E ngine is efficient. lt is implemented in Pascal, a very efficient language

compared to LISPand PROLOG, the Üsual expe~t systems implementation languages1.

9. The full power of Pascal is available to the knowledge base designer. Pascal code can be
included into the rules, e.g. to perfarm calculations, to acquire new data or to imptement
a user interface. Essentially, the SIMPLEXYS language is a superset of Pascal2•

1 The efficiency can be increased by about 50% by compiling the loferenee Engine code with
some non-default compile options: no stack checking, no array index checking, etc. This is
not recommended. If greater efficiency is wanted, use the C version of SIMPLEXYS. It is 3
to 4 times faster.
2 For the SIMPLEXYS C version, replace 'Pascal' by 'C'.

108

6. Checking the semantics

This chapter discusses the theory on which the SIMPLEXYS Semantics Checker is based;

for more information and some additional background see Boon [1987]. It describes how the
basic elements of SIMPLEXYS, the rules, are linked together into what is called a net, how
evaluation takes place and how errors can be found. Errors occur if a rule's condusion
somehow could obtain two different, and thus connicting, values; both evaluations and
THELSEs must be considered, since these lead to conclusions, as well as the ways in which
they interact.

In the examples in this chapter a simplified rule syntax notation is used. Since we
consider evaluations, THELSEs and their interactions only, we will use a shorthand notation
for each of these single elementary parts. Also, a rule name beginning with an E is an
evaluation rule, a rule name beginning with a P is a primitive rule, and a rule name
beginning with an R is any rule. For example, from the evaluation rule definition

El: 'this is rule El'
E2 AND E3 OR (Pl AND P2) OR P3
THEN TR: ES
THEN FA: P 7

we derive the following shorthand notation for its three elementary parts:

El: E2 AND E3 OR (Pl AND P2) OR P3
El: THEN TR ES
El: THEN FA P7

the expression
first THELSE
secend THELSE

Evaluation rules play a special role in the net because only they have an expression.

6.1. The need for knowledge acquisition support

The development of expert systems is difficult and time consuming. According to
Waterman [1986], it takes five to ten person-years to build an expert system that can solve a
moderately complex problem. Early systems such as MACSYMA and DENDRAL took
much more effort to build, each over 30 person-years. This is due not only to the difficult
nature of the task but also to the Jack of sophisticated and refined knowledge engineering

too\s to assist in the acquisition, documentation and debugging of knowledge.
PROSPECTOR, for example, was directly implemented in INTERLISP, a powertul but
rather low level language as far as expert system building tools go1•

1 Building a new application is of course much easier if a previous application has resulted
in a set of tools that can be reused.

109

The acquisition of the domain knowledge, i.e. the process of extracting the knowledge
from a human expert, is by far the most difficult part of building an expert system, because
the human expert has no ready access to his own store of knowledge. Support in this area is
most needed. One of the most wanted forms of support is generally considered to be a
program to check the correctness of the knowledge as it is implemenled in the expert

system: a knowledge base checker /debugger. One such tooi has al ready been described in
section 5.6.4, but that tooi analyzes an expert system's run time performance. Testing the

integrity of the knowledge base at compile time is even more important si nee it prevents run
time errors from occurring; errors are discovered in an earlier phase of the design process.

It is very important, but also very difficult, to ensure that the expert system will give
correct solutions to the problems it is expert at. In the process of verifying that a system is
accurate and reliable, the major task is checking that the knowledge base is correct and
complete [Suwa et al, 1984]. Unfortunately, no forma! mathematica! methods are available
to analyze the system's deep knowledge; analyzers do nol uruierstand. Knowledge base
debugging therefore usually involves repeatedly testing and refining the system's knowledge.
This is necessary because many errors can arise in the process of transferring expertise from
a human expert to a computer system. Even if we assume that the expert is perfect, three

types of errors exist. The knowledge base can contain errors or limitations because:

the expert's knowledge is incompletely transferred;
the knowledge engineer's interpretation of the expert's knowledge is erroneous;
the implementation (transcription, instrumentation) of the knowledge into the support
language's syntax and semantics is erroneous.

The standard way of debugging the knowledge base is by observing the system's behavior
in a great number of test cases. Although this is an essential part of testing the consistency
and completeness of a knowledge base, no amount of testing can ever guarantee that the
knowledge base is completely correct [Dijkstra, 1972]. Especially for expert systems that have
to operate autonomously and without human supervision and interaction, it is an unpleasant

idea that the knowledge base may contain hidden errors. One of !he SIMPLEXYS
applications is a clinical 'smart alarms' expert sys!em for monitoring the integrity of a
patient's artificial respiration during anesthesia [van der Aa, 1990], and another, an
automatic blood pressure controller, is described in chapter 9. It is obvious that such systems
should be as reliable as possible.

A better way to strive for reliability is to try to design a program that checks the
knowledge base during all the system's top-down development stages and thus maintains
completeness and consistency of the knowledge base as it expands. Some work in this field

has been reported, e.g. Nguyen [1988] and TEIRESIAS [Davis, 1976], a program that
provides aids for debugging an EMYCIN knowledge base. Step-wise development of the

knowledge base is usually a good idea; catching errors is almost always easier in the early
development stages.

110

No program can offer full-proof checking, because no program has a deep understanding

of the domaio knowledge. But some aspects of the knowledge base can be systematically
checked by algorithms: its logical (syntactic, and partially semantic) completeness and
consistency. Static nets eneode the static aspects of the knowledge base and are discussed in
this chapter. Protoeals eneode the dynamic aspects of the knowledge base and are discussed

in the next chapter. Both are ideally suited for such checks.

6.2. Semantic nets: nodes and links

Although to the knowledge base developer SIMPLEXYS expert systems appear to be

rule based, internally the knowledge is represented as a net. Quillian (1967] developed the

idea of the semantic net, consisting of nodes to represent concepts and associative links

between those nodes to represent meaning insome way1• His nodes were dictionary entries,
and the 'meaning' of such a node was the collection of nodes that could be reached through

one or more links. With semantic nets, Quillian could introduce notions like the 'nearness' of
concepts in terms of the number of links between concepts, and he could answer questions
like 'what is the similarity between a car and a bicycle', in net terms: 'which nearest nodes

are common to the concepts car and bicycle', and 'what is the difference between a tiger and

a lion', in net terms: 'which nearest nodes are not common to the concepts tiger and lion'.

For most other types of questions such a definition of 'meaning' is unmanageable. The

'first order meaning' of a concept (node) is the collection of all concepts (nodes) pointed to
by links originating in the initia! concept, i.e. the dictionary explanation (or rather expansion)

of the concept. The equivalent, but further expànded 'second order meaning' is the usually

much larger collection of all concepts pointed to by two successive links, i.e. the collection of
all dictionary expansions of the dictionary expansion of the concept; and so on in ever

widening circles. The ultimate 'meaning' of a concept would probably include most
dictionary entries. Such definitions are essentially circular.

Semantic nets became much more manageable, when 'primitive' nodes were introduced,

nodes which thernselves are obvious in some sense and need not be defined in terms of

other nodes. Primitives seem to be possible in 'micro-worlds' only, such as Winograd's [1972]

blocks world, where the blocks and the operations on them are primitives. This is nol much

of a limitation in expert systems, since necessarily expert systems can be concerned only with
some smalt aspect of the real world, which itself is considered decoupled from the rest of the

world, and where all concepts that are frequently referenced can be primitives. The

advantage is obvious: possibly with some effort, non-primitive nodes can now be expressed in

(expanded to) primitives only; hence, if the (values of the) primitives are known, all nodes

can be explicitly 'evaluated'.

1 In Quillian's first paper, nets had just one type of link, with the impHeit meaning: 'is used
in the definition of'; later researchers started to distinguish several types of links or relations.

111

Another increase in usefulness originated when different types of links were introduced,
each with its own interpretation1• A further development was the introduetion of additional
information into the nodes: nodes thus became frames (Brachman, 1983).

We will use Michie's example, earlier de.scribed in section 4.3, to show the translation of

a problem into a graphical representation of a net. The problem was:

Given: A, B, C, D and E are primitives
F = A and B; G = C and D; H = E; J =Band G;
K = G and E; X = (F and H) or (J and K).

Wanted: X.

Figure 6.1. A graphical representation of an AND-OR net.

It is customary to draw a net as an inverted tree-like structure, with the root at the top.
As drawn, the net is an AND-OR net, in which only two-input and and or operators occur;
these operator symbols are somelimes replaced by special graphical symbols. It is also
customary to split up complex expressions; in the example, this results in the two
'anonymous' nodes below X.

The links are directed. The link from F down to A indicates that, in order to evaluate F,
the condusion of A is needed. The symbol and below F indicates, that the condusion of F is

obtained by applying the and operator to the conclusions of the nodes below it.
The net is not a tree because nodes can be referred to more than once by higher level

nodes; in figure 6.1, for instance, B is needed in the evaluation of both F and J.

1 The interpretation of a link is a complex issue, however (Brachman, 1983].

112

6.3. Speed aspects

In SIMPLEXYS, run time searching for the relations between concepts is avoided
completely because, besides storing the information embodied in the concepts, the links

associated with themarestored as well (section 5.6.1). A prerequisite for this is, that the
knowledge base (the rule set) is fixed, and that it is also known befarehand how to start the

inferencing, i.e. which condusions are to be derived. Then all rules and all links between
rules are known and available for analysis, and they can be built into an internal

representation of a net through a process called compilation, which assigns them known
memory locations. Then, when a rule is evaluated, sub-rules (in 'backward chaining') or

'next' rules (in 'forward chaining') need not be searched for, but can be directly found.

Checking for errors in the knowledge base at run time decreases the inferencing

efficiency. Although as much run time consistency checking is performed in SIMPLEXYS

expert systems as efficiency allows, full run time checking is not compatible with efficiency.
Moreover, run time checking, even if fairly exhaustive, will generally not discover all errors.

Run time error checks are warranted only if errors of that type cannot be discovered at
compile time.

6.4. Safety aspects

Before we explain how the knowledge in SIMPLEXYS expert systems can be verified, it
is necessary to briefly review how knowledge is represented in such systems or, more

accurately, how the evaluation of rules is performed. Rules can obtain a condusion in either

of two ways: by evaluation of the rule or by assignment of a condusion as a result of the

evaluation of another rule.

6.4.1. Rule evaluation

Two types of rules exist, primitive rules and composite rules. Evaluation of a primitive
rule is a direct evaluation of its condusion by some procedure, independently from other

rules. A composite rule, also called an evaluation rule, needs the conclusions of other rules;

it has an evaluation expression which expresses the way in which the rule acquires its

condusion if it must be evaluated.

Evaluation rules get their conclusion by evaluating their constituent rules; when those

rules are composite rules themselves, these are also evaluated. This recursion process ends

when primitive rules are reached.

113

6.4.2. Coneinsion assignment

The SIMPLEXYS syntax allows multiple conclusions from a single evaluation. Whenever
a rule is evaluated, THELSEs may give conclusions to other rules based upon the previous

evaluation. This assignment is automatic and is considered part of the primary rule's
evaluation. For example:

Rl: THEN FA R2 R3: ELSE TR R4

The first example states that R 1 implies NOT R2. The second example, likewise, that
NOT R3 implies R4. These assignments can, in turn, produce new assignments, e.g. R2:
ELSE TR R5; i.e. assignments recursively propagate as well.

6.5. Systematic checking of a knowied ge base

6.5.1. Checking for completeness

An important aspect of systematic checking of the knowledge base is a check for

completeness: does the knowledge base contain all the rules necessary to produce the
desired conclusions?

One approach to identify missing rules would be to assume that for all possible
combinations of domain variables a rule should apply. However, there may be a great many
of such combinations, most of these combinations would probably not be meaningful and
therefore deep semantic knowledge of the meaning of the rules would be required before

this task could become of practical significance. In genera!, the program that must check the

knowledge base has no such deep knowledge of the problem domaio and is thus not capable
of checking the deep semantics of the rules. Therefore such a program cannot guarantee a
completely correct knowledge base; it can only imprave our confidence in a correct behavior.

SIMPLEXYS does not check for completeness other than for missing rules, i.e. rules
which are referenced but not defined (see section 5.6.1)1•

1 Rules which are defined but not referenced are also detected by the Rule Compiler.

114

6.5.2. Checking for consistency

In a rule based knowledge base, errors at the rule level [Suwa et al, 1984] take the form
of:

1. Conflicts. A conflict arises if, when two or more evaluation paths exist for one conclusion,

those evaluations can give conflicting results. This situation can lead to inconsistent or
even erroneous behavior of the expert system.

2. Redundancies. Redundancy arises when two or more rules always necessarily result in the

same conclusion. Although redundancy normally does not cause erroneous behavior (this

depends on the knowledge engineering language), it points out a possible implementation

error. At least it indicates that the knowledge base can be simplified.

Similar errorscan occur within a single rule:

1. A con/radietion arises within a rule's expression if the rule's condusion is alwaysfa/se,
regardless of the situation in which it is applied. lf the contradiction is not the result of

an implementation error, such rules are superfluous and can be removed.

2. A tautology occurs within a rule's expression if the rule's condusion is always tme,

regardless of the situation in which it is applied. lf the tautology is not the result of an
implementation error, such rul es are superfluous and can be removed. A partial tautology
occurs within a rule if its condusion does not depend on one or more of its terms. If the

partial tautology is not the result of an implementation error, such rules can be

simplified.

Contradictions and tautologies are very similar types of redundancies. Because they are

treated alike in all tests we will, in the remaioder of this chapter, call either a tautology.

The following sections will discuss the above types of errors in SIMPLEXYS knowledge

bases, but we first describe two valuable tools.

6.5.2.1. Semi-symbolic evaluation and Quine's metbod

In the intermediale stages of the process of error detection, two generally applicable
discovery mechanisms play an important role, called semi-symbolic evaluation and Quine 's

method. This section discusses these mechanisms.

Assume that a rule has an evaluation expression 'Rl AND R2'. Also assume that it is
known that RI always has the condusion TR. We can enter this knowledge into the

expression by writing it as 'TR AND R2'. Such an expression, that includes at least one

115

constant value (TR or FA), is called a semi-symbolic expression1• Many of the correctness
tests use a procedure that simplifies semi-symbolic expressions; the result of the
simplification is either a fully symbolic expressions (in the example above: 'R2') or a
constant value (TR or FA). An example of the latter is when the expression is again 'RI
AND R2', but now Rl is known to be FA; this results in 'FA AND R2', which can be
simplified to 'FA'.

Examples of semi-symbolic expressions and their simplifications are:

El: FA AND E3 OR (FA AND P2) OR P3
E2: El AND E3 OR (Pl AND P2) OR TR

->
-)

El: P3
E2: TR

The semi-syrnbolic evaluator uses eight very simple simplification rules. These are:

TR
ANY
FA
ANY

AND
AND
AND
AND

ANY
TR
ANY
FA

-> ANY
-> ANY
-> FA
-> FA

TR
ANY
FA
ANY

OR
OR
OR
OR

ANY
TR
ANY
FA

-)

_,
->
-)

TR
TR
ANY
ANY

where ANY represems any expression. More sophisticated simplification rules like Pl OR
NOT PI -> TR can be shown to be superfluous.

Anotber procedure used in many of the tests is one that can (partially) simplify symbolic
expressions; the result of the simplification is again either a fully symbolic expressions or a
constant value (TR or FA). This procedure is based on Quine's truth-value analysis [Quine,

1958], to be referred to as Quine's method. This metbod impiemenis the following idea:

- select a variabie that occurs in the expression;
reptace that variabie by the value TR, use the semi-symbolic evaluator to simplify the
resulting expression, and note the (symbolic or constant) result;
replace the samevariabie by the value FA, use the semi-symbolic evaluator again to
simplify the resulting expression, and note the second (symbolic or constant) result;
if both results are the same2, that variabie is redundant.

The following example demonstrales that expression El is independent of the term Pl:

El: Pl OR P2 OR NOT P3 OR NOT Pl

Pl
Pl

TR - > El: TR OR P2 OR NOT P3 OR FA
FA -> El: FA OR P2 OR NOT P3 OR TR

_,
-)

El: TR
El: TR

1 Note tbat the SIMPLEXYS syntax does not allow such expressions; they always represent
an intermediale step in the checking process.
2 Checking for logica! equivalence of two expressions is described below.

116

This exarnple does not only show that El is independent of Pl, but also that expression

El is a tautology. A necessary condition for a symbolic expression to be a tautology (have a
constant value, either TR or FA) is that some term in that expression occurs both in the
positive and negative form. A term appears in negative form when it is part of a NOT

expression, e.g. NOT PI, or when that term belongs to a sub-expression that is preceded by

a NOT operator, e.g. NOT (Pl OR P2), where both Pl and P2 are in negative form.

Generally, one application of Quine's methad simplifies an expression by eliminating one
redundant variable. Multiple applications can of course eliminate all redundant variables
from the expression. A good substitution strategy is to choose the variabie that has the
greatest number of repetitions and also occurs both in the positive and negative form; this

strategy tends to hasten the disappearance of variables, and thus to minimize the work. The
expression is a tautology if all sub-expressions evaluate to the same constant value (TR or

FA; using this method, the value PO wiJl not arise).

Another use for Quine's methad is to check whether an expression can obtain a certain
value. For example, if

El: P2 AND P3 and E3: P4 AND NOT P2

are given, El will a lways have value FA and is thus a tautology. But in

El: (P2 AND P3) OR P5 and E3: P4 AND NOT P2

El can have both vaJues FA and TR, the latterif PS has value TR.

Checking whether two expressions are logically equivalent is done with Quine's methad
as well. First symbolica lly simplify both expressions to remave redundant variables. A
necessary condition for the two expressions to be logically equivalent is now that both
expressions contain exactly the same variables. Replacing each variabie in turn by both TR
and FA in both expressions and semi-symbolically simplifying the results builds two trees all

of whose leafs wiJl match if the expressions are logically equivalent.

6.5.2.2. Checking for conflicts

Checking the SIMPLEXYS knowledge base is done by several passes of the Rule

Compiler; the first pass checks for syntactic errors, later passes for semantic errors. Because

the logica! independenee of thesetof primitive rules (e.g. TEST rules that tests externally

supplied data) cannot be guaranteed (for an example, see section 6.5.2.3.1), the remaval of

redundancies cannot be complete, but otherwise a SIMPLEXYS knowledge base is well
suited for consistency checking and especially for conflict checking.

117

The condusion of a rule must be consistent with the conclusions of all related rules.
Whenever, during an expert system's operation, a rule obtains a defined condusion (TR, FA
or PO), that condusion is not allowed to change again during the same run. For example, a
THELSE-construction trying to assign condusion FA to a rule that already has condusion
TR, causes a run time error. Such an error is normally due to an inconsistency in the
knowledge base and should be repaired by the knowledge engineer. We can often prevent
such run time errors by trying to discover them at compile time. The Rule Compiler detects
conflicts in the knowledge base by looking for possible erroneous interactions among rules.

We now take a closer look at the way in which the presence of conflicts in a knowledge
base is checked. FuH checking is not possible, because no deep knowledge of the domain is
available, but many logica! conflicts can be detected.

6.5.2.2.1. neteetion of circular definitions

An evaluation rule usually gets its condusion through backward chaining or evaluation.
The evaluation is conditional, i.e. the evaluation stops as soon as the condusion of the
expression cannot change anymore, but in the worst case all operands must be evaluated. An

evaluation can end only if its expression is fully reducible to primitive rules. A never ending
evaluation appears only if the rule somehow references itself. In that case the net contains a
loop1• A program checks whether each evaluation rule is a function of primitive rules only. ·

·This is done by building a connectivity matrix, where matrixentry [i, j] indicates whether rule
i (a rule of any type) occurs in rule j's expression (this is meaningful only if rule j is an
evaluation rule). Whether a rule uses another rule directly can be found in the rule's

tokenized expression (see appendix 4); this information is entered into the matrix. Whether
a rule uses another rule through any number of recursions can be decided by building the
transitive closure, using the following algorithrn:

procedure closure;
var

i, j, k: 1 .• number_of_rules;
begin

for i := 1 to number_of_rules do
for j := 1 to number_of_rules do

if connected [i, j] then
for k := 1 to number of rules do

if connected [j, k) then
connected [i, k] := true

end {c1osure};

Figure 6.2 shows the relevant parts of the connectivity matrix before and after application

of procedure dosure, where the matrix is initially constructed from:

1 In graph-theory terminology: a correct net has to form a directed acyclic graph.

118

Rl: R2
R2: R3 AND R4

I Rl R2 R3 R4

Rl ! *

R21 * *
-

Figure 6.2. The uses connectivity matrix before and after dosure.

Loops in the knowledge base are detected by checking the diagonal entries of the matrix.
This test is rather trivia!, but is needed as a basis for further checking. An example of a

loop:

El: E2 OR E3
E2: Pl AND P2
E3: P3 OR El

-> El: (Pl AND P2) OR (P3 OR El)

Note that without this check it is not unthinkable that an expert system containing such a

loop operales without errorfora long time (e.g. because P3 is almost always TR) and then
suddenly breaks down completely.

6.5.2.2.2. Deleetion of circular THELSEs

THELSEs can also form loops, but these loops are of a different nature. The evaluation

of an expression is a form of backward chaining whereas THELSEs are a form of forward

chaining. A problem can arise if a THELSE of a rule starts a chain or sequence of
THELSEs that indudes the rule that started the chain. This THELSE loop is illegal if a
rule, that starts a chain of THELSEs is given a conflicting condusion by that chain. In real­

world knowledge bases, these chains can be hidden by their length. Testing a knowledge
base by observing the system's behavior in a number of test cases does not always reveal

these errors. An example:

R 1 : THEN TR R2; R2: THEN FA R3; R3: ELSE FA Rl

This example shows an incorrect small chain that, whenever rule Rl has the condusion

TR, also tri es to give it the condusion FA. To detect such conflicts, a THELSEs connectivity

matrix is built where each matrix entry denotes the THELSE operation (e.g. THEN TR or

ELSE FA), and another transitive ciosure procedure is executed, which forms a combination
through appropriate matching. Two matchings are necessary in the previous example:

Rl: THEN TR R2; R2: THEN FA R3
I L_j I

Rl: THEN FA R3

119

and subsequently

Rl: THEN FA R3; R3: ELSE FA Rl
I L____j I

Rl: THEN FA Rl

The latter combination is the one that shows the conflict. Figure 6.3 shows the relevant

parts of the THELSEs connectivity matrix befare and after the closure. The error is

discovered by noticing that after the ciosure a diagonalentry has a THEN FA.

Rl Ri R3 Rl R2 R3

Rl TT Rl TF TT TF

R2 TF R2 TF TF
r----

R3 EF lR3 EF

Figure 6.3. The THELSEs connectivity matrix befare and after closure.

If the example is modified into

Rl: - THEN TR R2 i R2: THEN FA iU;

there is still a loop, but this loop is harmless (and Jegal); a diagonal entry 'THEN TR' in the

THELSEs connectivity matrix does not signify an error.

6.5.2.2.3. Deleetion of THELSEs to successors

A rule's evaluation expression contains references to other rules, that must be evaluated

to give the rule its conclusion. It is not logica! for the farmer rule to a!so assign a condusion

to those latter rules. If a rule needs infomwJion from rules lower in the net, it cannot also

already know the conclusions of those rules. The connectivity matrices provide the

infonnation for these checks. An example:

El: E2 AND E3 El: THEN TR E2

After the evaluation of El, during which E2 was evaluated, E2 is assigned a conclusion,

which might conflict with the evaluated conclusion.

6.5.2.2.4. Deleetion of THELSEs to predeeessors

A rule's evaluation expression contains references to another rule, lower in the net. lt is
then not logica! for the rule lower in the net to assign a condusion to the rule above it. If a

rule needs infonnaJion from rules below it in the net, the lower rule cannot also know the

120

condusion of one above it. The connectivity matrices again provide the information for these
checks. An example:

El: E2 AND E3 E2: THEN TR El

During the evaluation of El, El is assigned a condusion when E2 is evaluated, which
might conflict with the condusion that the evaluation wil! later return'.

6.5.2.2.5. Detection of conflicting THELSEs

6.5.2.2.5.1. Checking THELSE operands

A THELSE construction consists of an operator, e.g. THEN TR, and two operands, the
left-hand side and the right-hand side of the THELSE. The rule on the left-hand side is
called the souree rule and the rule(s) on the right-hand side the target rule(s). Whenever the
souree rule and a target rule expressions refer to common rules, that THELSE should be
checked; this is a generalization of the checks of sections 6.5.2.2.3 and 6.5.2.2.4. A problem
occurs if a combination of common variables exists so that hoth rules get conclusions that

conflict with the THELSE. Consider the following situation:

El: Pl AND P2
E2: NOT Pl AND P2 AND P3
El: THEN TR E2

El is the souree rule, E2 the target rule of the THELSE. Primitive rules Pl and P2 are

the common variables, common to bothEl and E2. If both Pl and P2 are TR, an error can

occur (and if Pl and P2 are independent, the error wilt occur once in a while at run time).
Wben E2 is evaluated first and gets the condusion FA, then evaluating El gives an error:
El evaluates to TR and activales the THELSE that tries to give E2 a conflicting conclusion.

Checking the THELSE combination is done as follows. Souree and target rule
expressions, each fully decomposed into primitive rules, are combined into one expression.
Tbis expression is constructed in such a way that when it is subjected to Quine's metbod and
a condition can be found that makes its value TR, an erroneous THELSE is found. The
combinations are as follows:

Rl: THEN TR R2 -> Rl AND NOT R2
Rl: THEN FA R2 -> Rl AND R2
Rl: ELSE TR R2 -> NOT Rl AND NOT R2
Rl: ELSE FA R2 - > NOT Rl AND R2

1 The loferenee Engine also checks for this error at run time; it does not allow assigning to a
rule while that rule is in the processof being evaluated.

121

The THELSE construction needs to be checked only if the expressions of souree and
target rule have common primitives. Using Quine's method, one of the common variables is

selected and replaced by both TR and FA, giving two sub-expressions. The checking of a
sub-expression ends if that sub-expression becomes FA after simplification or if it contains

no more common primitives. All sub-expressions are checked this way and whenever one

evaluates to TR, an erroneous THELSE construction is found. When the two operands have

no primitive rules in common, nothing can be checked. If all primitive rules are independent,

this check is complete. An example of the method:

Given El: (Pl AND P2) OR (P3 OR P4 OR PS OR P6)
E2: (PS AND P6) OR P7
El: THEN FA E2

Common primitives: P5, P6

Combined expression: El AND E2

If PS = TR and P6 = TR then
El = TR and E2 = TR so

(El AND E2) = TR -> CONFLICTING THELSE

6.5.2.2.5.2. Checking conDicting THELSE ebains

- Assignments can p·ropagate new assignments. On~ of the consequences can he that a
souree ru\e can give a condusion to another rule in more than one way. This situation

occurs if two or more ebains of THELSEs exist from one rule to another. In order to check

if those ebains of THELSEs have the same effect, the THELSEs connectivity matrix is

inspected. Consider the following THELSEs:

Rl: THEN TR R2
Rl: THEN FA R3

R2: THEN FA R4
R3: ELSE TR R4

Th is set of THELSEs has two conflicting ebains of THELSEs:

Rl: THEN TR R2; R2: THEN FA R4 - > Rl: THEN FA R4
Rl: THEN FA R3; R3: ELSE TR R4 -> Rl: THEN TR R4

All ebains are automatically obtained when the transitive ciosure of the THELSEs

connectivity matrix is built. Every new chain is compared with the ebains found before, and

conflicts are signalled.

6.5.2.2.5.3. Checking THELSE common targets

If two different rules both have a THELSE to a common rule, and if both THELSEs give

the common target rule a different conclusion, then this situation must he checked. An error

122

occurs when both rules can get conclusions such that their THELSEs will conflict. For

example:

Rl: THEN TR R3 R2: THEN FA R3

When both RI and R2 are TR, the two THELSEs conflict. The test is, again, to combine

the two expressions into one, and to use Quine's methad to check if a combination of

conclusions of the common primitives exists so that both THELSEs will fire . In the example

this means a combination of conclusions making both R 1 and R2 TR. Wh en both rul es have

no primitive rules in common, nothing can be checked. The two expressions are combined as

follows:

Rl: THEN TR R3; R2: THEN FA R3 -) Rl AND R2
Rl: ELSE TR R3; R2: THEN FA R3 -) NOT Rl AND R2
Rl: THEN TR R3; R2: ELSE FA R3 - > Rl AND NOT R2
El: ELSE TR E3; E2: ELSE FA E3 -> NOT Rl AND NOT R2

6.5.2.3. Checking for redundancy

6.5.2.3.1. Deleetion of tautologies

A tautology is an expression whose value after evaluation is always the same, regardless

of the values of the operands. Finding a tautology does not automatically mean that a true

conflict is detected. A tautology will not, for example, cause a run time error. Nevertheless

we check for tautologies, because a tautology is usually caused by a knowledge base

implementation error. It is peculiar to define a rule in such a way that the condusion of that

rule is independent of the expression's operands. In most cases a tautology is caused by a

wrong combina tion of primitives, probably by a misinterpretation of the expert's knowledge.

lf this tautology is caused by an implementation error, the expression must be repaired.

Otherwise the rule can be replaced by a constant conclusion, thereby simplifying the

knowledge base: the rule can be removed and all expression rules that refer to this constant

rule can be simplified or, in turn, eliminaled as well.

Looking for tautologies means checking all evaluation rules after they are symbolically

evaluated into functions of primitive rules only. Tautology checking can be done in several

ways; the simplest method is by building and checking the expression's truth table, but

because the number of truth table entries is exponential in the number of variables, this

method is not practical; it is normally much faster to use Quine's method. Generally, the

substitution process in Quine's metbod has to be repeated only a few times, each time

substituting another variable. The process stops, condoding that the expression is not a

tautology, as soon as one of the sub-expressions evaluates to a constant value that differs

from earlier found values or when a sub-expression cannot be simplified further; such an

expression cannot represent a tautology. For more deta ils, see Lutgens [1989].

123

It is obvious that an expression that is a tautology because of the semantics of the

primitives is nat found by the tautology checker. An example of two dependent primitive
(Boolean TEST) rules:

Pl: BTEST age > 30 and P2: BTEST age <= 30

To allow more comprehensive checking, the rule base builder should remave rule P2 and

replace all references to it by NOT Pl.

A history operator and a history expression connected to a rule are also considered a

primitive. Here a similar problem exists: the checker has no access to the Pascal code. For

example, if the history expression 'Rl > (3)' occurs more than once in the knowledge base,

the checker wiJl consicter all its occurrences to be different entities. Thus an expression like

(Rl > (3)) OR NOT (Rl > (3))

wil! not be discovered to be tautological. To allow more comprehensive checking, the rule

base builder should create a new evaluation rule which contains the history expression only,

and replace all occurrences of the history expression by a reference to the new rule.

The checker mustnecessarily assume tbat all prill)itives are semantically independent. It
is therefore recommended to structure the knowledge base in such a way, that, as much as

possible, primitives are indeed independent, so that the relations between chunks of

knowledge are visible to the checker. This means that, for instance, no primitive rule should

ex.ist that can be expressed in other primitives.

6.5.2.3.2. Deleetion of partial tautologies

Partial tautologies can also occur. A partial tautology occurs if oot the evaluation

expression as a whole is a tautology, but only part of it. For example:

Pl AND (P2 OR NOT P2) -> Pl AND TR -> Pl

The expression can be simplified by the semi·symbolic evaluator. One way to find partial

tautologies is by Quine's Method: choose one variabie and make two expressions, one with

T R and one with FA instead of the variable. The expression is independent of tbat variabie

if both resulting expressions cao be simplified to equivalent expressions.

Partial tautologies can occur even if a term does nat occur in bath positive and negative

form, as in

Pl OR (Pl AND P2) - > Pl

124

This makes finding partial tautologies a more time-consuming activity than finding

tautologies.

6.5.2.3.3. Completion of expressions

Finding tautologies and partial tautologies is important. In SIMPLEXYS expressions,

problems can arise with the operators and and or in expressions that are tautologies in two­

valued logic, such as

p and not p and p or not p

In standard two-valued logies, the results are always false and true, respectively, regardless

of the value of p. We would expect the same in three-valued logic. This is not true. If p has

value PO, the run-time evuluation of the expressions yields PO and nol PO = PO or nol PO

= PO, which is counter-intuilive and may be considered a defect of the SIMPLEXYS logic.

In contrast, the evaluations are intuitively correct in the expressions

p and not q and p or not q

The problem is introduced because in the first two expressions the terms p and not p are

coffelated (they are each other's logica] inverse). In other words: two-valued logic yields the
intuitively obvious simplification rules

pand not p -> FA
por not p - > TR

that are often used in symbolic evaluations of (i.e. substitutions in) logica! expressions.

Intuitively, these rules should also apply in SIMPLEXYS logic. However, the semi-symbolic

evaluation that we treated in section 6.5.2.1 yields the correct results, whereas the loferenee

Engine's value evalualion does not. This discrepancy is unsatisfying, and must be repaired.

First we must recognize all tautologies in a knowledge base, because they usually are

errors. lf either p and nol p or p or nol p occur in a logica! expression (possibly after

expansion of that expression into primitives), this is probably an implementation error

because thesemantics of the expression are unclear and resembie nonsensical sayings like ' it

ra ins but it does not ra in' or superfluous sayings like 'it ra ins or it does not rain'. If such an

expression occurs in a knowledge base, it must therefore be found and signaled to the user

as a probable error.

But the problem is more pervasive, because many expressions can result in a tautological

form in some special cases. Let us restale the problem in genera]: evaluation by the

loferenee Engine should give the same results as semi-symbolic evaluation would. This is

achieved as follows. If an expression references a term X both in positive and negative form

125

(this can be verified by expanding that expression into its primitives), we can always rewrite
that expression as:

(X and El) or (not X and E2) or E3

with truth table

El E2 E3 X=TR X=PO X=FA

TR TR TR TR TR TR
TR TR FA TR PO TR <- error
TR FA TR TR TR TR
TR FA FA TR

I
PO FA

j FA TR TR TR TR TR
FA TR FA FA PO TR
FA FA TR TR _j_ TR TR
FA FA FA FA FA FA

-- --------- .

The lnference Engine would generale an erroneous outcome when El = E2 = TR and

E3 = FA; in that case the expression reduces to the tautology X or not X. Since both X =
TR and X = FA yield a result TR, X = PO should of course give result TR as well. Th is
observation immediately suggests a solution, however: expand the expression that the
Inference Engine ·must evaluate into: -- - --

(X and El) or (not X and E2) or E3 or (El and E2)

Logically, the expansion is superfluous, but with it the Inference Engine's evaluation
proceeds correctly for all values of X. If the expression contains more terms in both positive
and negative form, extra expansions for these terms must be introduced as well. With this
procedure, a correct result is obtained in all cases.

Modallogic [e.g. Hughes and Creswell, 1968; Chellaas, 1980] offers some insight into this

problem. Besides the truth va lues true and false, it has the 'modifiers' possibly and necessarily.
An expression is necessarily true if it is true regardless of the conditions; we have called such

an expression a tautology, and an expression that is necesswily false a contradiction. Modal
logic learns us, that in order to establish whether an expression is possibly true or necessarily
true requires a globa/ evaluation, which may need to take into account many other items in
the knowledge base; we have indeed seen, that in either case we need to expand the
expression into its primitives. But whereas whether an expression is a tautology can be
established at compile time (because it is true regardless of the actually occurring

conditions), the establishment of whether an expression is possibly true cannot be done at
compile time (because this does depend on tbe actually occurring conditions).

In practice, the number of necessary expansions will often be small. Many expressions will

not contain both positive and negative references to any rule. And if rule X is of a type that

126

cannot have value PO (BTEST or STATE), no expansion need take place. lf an expansion is
necessary, the extra evaluation effort will be small, since no extra rules need to be evaluated
when the loferenee Engine encounters the expansion; if at that point the value of the
expression is either TR or FA, evaluation of the expansion need not take place at all. More

shortcuts are possible. Instead of straightforwardly evaluating the expressicn's expansion

... or (Eland E2)

we can perfarm the evaluation

if R = PO then
if eval (El) TR then

if eval (E2) = TR then R := TR;

where R is the result of the original evaluation and eva! is a function that evaluates an

expression. Since El and E2 have already been evaluated before, the necessary rule values
can simply be looked up; not a single additional rule needs to be evaluated.

At this point, we cannot properly evaluate this 'expansion mechanism' since we have not

enough insight into how aften such expansions must be added to expressions in an average

rule base, nor how much extra effort is necessary to evaluate an average expansion 1•

6.5.2.3.4. Elimination of FACT rules

A related but much less complicated situation wiJl be encountered frequently, due to the

probable occurrence in the knowledge base of primitive rul es of type FACT. F ACT rul es

have a constant condusion during the expert system's analysis phase, because the conclusions

of these rules are acquired befare the expert system starts up. From that moment on, the
knowledge base contains rules with constant conclusions. It is possible to eliminate all FACT

rules and to semi-symbolically simplify the evaluation expressions containing these rules, thus

simplifying the knowledge base.

6.5.2.3.5. Detection of equivalent rules

Redundancy means that a rule is superfluous because it is equivalent to another rule. As

with tautologies, the SIMPLEXYS loferenee Engine does not have any practical problems
with redundancies; they do not lead to run time errors. Nevertheless, we check for redundant

rules because, again, redundancy usually indicates an implementation error. lf not, redundant

rules can be removed from the knowledge base without affecting the eperation of the expert

system; the effect is a more compact knowledge base and thus a more efficient evaluation.

1 This is because the only major size rule bases we have currently experience with do not
employ the truth value PO and therefore do not require such expansions.

127

6.6. Limitations

A major limitation to checking is the fact, that the checker has no access to the Pascal
code. It would be a major effort to incorporate a fully functional Pascal compiler into the
Rule Compiler. However, doing so would allow several checks that so far are impossible;

some problems have been meotioned above. Another series of errors can occur because
SIMPLEXYS allows any Pascal code in TEST rules and DO sections. It is not hard to
imagine a situation in which several TEST rules need the value of a Pascal variable, while
other Pascal statements change the value of that variable. This makes the order of execution
of the rules very important, and the result could be very unpredictable behavior.

In other respects, too, checking is not full proof. A good design methodology, an

awareness of the limitations of his tooibox and a critica! attitude with respect to the
implemenled knowledge are necessary assets for a knowledge engineer.

6.7. Conclusions

SIMPLEXYS allows better consistency checks than many other expert systems languages,
most of all because the relations between rules are explicitly expressed in boolean-like
expressions and by THELSE constructions. The consistency checks described here must be
conside_~ed a first attempt _to develop methods to ensure the consistency of SIMPLEXYS -
knowledge bases as much as possible. The currently implemenled checks have proven to be

very useful.

128

7. Checking the protocol

This chapter discusses the theory on which the SIMPLEXYS Protocol Checker is based.

It describes protocols, their translation into Petri nets, what protocols denote, how they can

be analyzed, and how they are used in SIMPLEXYS. Forma! definitions of Petri nets can be

found in the literature [Petri, 1986; Reisig, 1985]. Many different Petri net classes have been

invented, all with common basics, but each with its own special features; the terminology

that is used depends on the class of the considered net. SIMPLEXYS protoeals correspond
best with the Petri net class of what are called Live Safe Place/Transition nets [l.ammers,

1990a], but we will use a terminology that reflects the use of these nets in SIMPLEXYS

(state insteadof p/ace, trigger insteadof transition).

Petri nets, first described in Petri's dissertation (Petri, 1962), are abstract data structures

that specify or model the dynamic (time sequenced) behavior of systems or processes, such
as message passing systems or computer networks. Since this first publication, Petri nets have

become an important topic for research; the terminology has been formalized and many

additional theoretica! results have been derived. Petri nets are ideally suited to describe

systems in which concurrent events can occur, i.e. systems in which some parts operate in

parallel with other parts.

7.1. From ON statements to protocol

We reeall that the syntax of an ON statement is:

ON trigger FROM listl TO list2

where listlis a list of STATE rules, to be called the FROM-list or pre-state list, and list2 is

also a list of STATE rules, to be called the TO-Iist or post-state list.

The ON statements of a SIMPLEXYS knowledge base collectively define a protocol or

Petri net (for the moment we wiJl assume that protoeals and Petri nets are identical). A

Petri net consists of four sets of elements:

1. STATE rules or simply states, drawn as circles.

2. Trigger rules or simply triggers, drawn as boxes or bars.

3. Directed arcs that describe the relationship between the states and the triggers.

4. Tokens; tokens can be placed in states and removed again; the configuration of the

placed tokens is called the 'marking' or 'context'. An operation of rnaving one or more

tokens is called a 'context switch'.

Given the set of ON statements of a SIMPLEXYS knowledge base, the graphical

representation of the protocol is constructed as follows: Draw a circle for every STATE rule

129

and for every '*' in the set of ON statements (i.e. every '*' is to be considered an additional,
unique, anonymous STATE rule). Draw a box or bar for every trigger rule. For every ON
statement, draw arcs from all states in the FROM (pre-state) list to that ON statement's

trigger, and also arcs from that trigger to all states in the TO (post-state) list. Finally, put a

taken in all states that correspond with a STATE rule with an initia! value true1•

Figure 7.1 gives the graphical representation of a set of ON statements as a protocol2•

ON statements:

ON tl FROM sl TO s2
ON t2 FROM s3 TO s6
ON t6 FROM s2 s6 TO
ON t3 FROM s3 TO s4
ON t4 FROM s4 TO s5
ON t5 FROM s5 TO s6
ON tl FROM s7 TO *

sl and s3 are STATE rules
with initia! value true

s7

tl

52 s6

t6

57

tl

Figure 7.1. Graphical representation of
ON statements.

54

sS

Active states are marked with tokens. The set of stales that is simultaneously active will

be called the context. The initia! context is the set of states that is active when the system
starts up. In figure 7.1 the initia! context consists of states si and s3.

A trigger is enabled if all states that have an are to it are marked with a taken. In figure
7.1, triggers t1, t2 and t3 are enabled, by the fact that sl and s3 are marked. An enabled
trigger can fire. Wh en a trigger fires, one or more tokens migrate: all pre-stales loose their

tokens while all post-stales obtain a token. Such a migration is called a change of state or
context switch. Thus, in figure 7.1, when t1 fires, sl looses its taken while s2 gets one.

Each ON statement specifies a trigger and its pre- and post-states. The trigger's pre-stales

are those in the FROM list, and its post-states are those in the TO list. The trigger is

1 In this chapter we write true and false rather than TR and FA; the value PO plays no role
in protoeals and Petri nets.
2 This is a very small example. The graphica l representation of most protoeals would be far
too large to display. The tracer/debugger tooi (section 5.5.7) can display small selected parts
of the protocol while debugging a knowledge base.

130

enabled if all its FROM list STA TE rul es have value trne. lf the trigger is enabled, the

Inference Engine eva!uates the rule connected to the trigger. If the rule evaluates to true, the
trigger fires and we have a context switch: all STATE rul es in the FROM list become fa/se

and all STATE rules in the TO list become true.

States that are in the initia! context are called initia/ states. There are also flnal states,

anonymous states represented by a '*'; this is concomitant with the notion that a protocol

normally has a beginning and an end. The flnal context is defined as the context in which
only final states have a token. When the Inference Engine delects the final context, it halts:
the protocol has reached its end.

A context is called reachable if there is a sequence of ON statements, called a flring

sequence, that when executed results in that context. A reachability list can be constructed

that contains all contexts that are reachable from the initia! context. The first entry of the
list1 is the initia! context. In the initia! context, usually several triggers are enabled. Firing
one of the enabled triggers results in a successar context. Symbolically firing each of the

enabled triggers in. turn results in all possible successar contexts; these are added to the .list
if they are not already in it. These contexts can again be expanded to their successors, and
these are also added to the list if they are not already in it. This way a list with all possible
contexts can be constructed. In a valid protocol, the final context must of course be

constructed as wel!. Figure 7.l's reachability list will have the following 10 entries:

sl s3 initial context
s2 s3 tl fired from initial context
sl 66 t2 fired from initial context
sl s4 t3 fired from initial context
s2 s6 t2 fired from s2 s3
s2 s4 t3 fired from s2 53
sl 55 t4 fired from sl s4
s2 s5 t4 fired from 52 54
s7 t6 fired from s2 s6
* tl fired from s7

One or more goals are usually connected to each state; these goal rules are evaluated

when that state is true, i.e. belongs to the context. The relationship between the protocol and

the remainder of the rule base is that the protocol defines the goals that must be evaluated,

and that the remainder of the rule base delivers the values of the triggers which the protocol

needs to change the context. States, triggers and goals play different roles in SIMPLEXYS:

states represent (context) memory, triggers (context switch) actions, and goals conclusions to
be derived in that context.

1 We actually construct a tree rather than a list, in order to be able to present more helpful
error messages.

131

7 .2. Petri net basics

SIMPLEXYS protocols are not proper Live Safe Place/Transition nets\ and Petri net
theory cannot be applied to SIMPLEXYS protocols: proper Live Safe Place/Transition Petri
nets have an 'endless' protocol. A SIMPLEXYS protocol can be converted into a net of the
desired Petri net class, however, by extending it with a single extra trigger from all the final

anonymous ••• states to all the initia! states; this extra trigger 'closes the loop'. In a
monitoring context this extra trigger would mean that the expert system is 'ready for the next
patient'. We wiJl nat differentiate between such an 'extended SIMPLEXYS net' and its Petri
net interpretation.

The relationship between Live Safe Place/Transition Petri nets and SIMPLEXYS
protoeals is not a strict one; SIMPLEXYS protoeals are much more lenient (see section 7.4).
Petri net theory is used as a toot to discover possible e"ors: erroneous or questionable steps
in the protocol. A SIMPLEXYS protocol need not necessarily be live or safe in the Petri net
theory sense, but if it does not have both these properties, it is constructed in an intuitively
unobvious way, which might indicate an implementation error (but the protocol might also

be correct but tricky, and therefore difficult to maintain).

An example of a regular Petri net is given in figure 7.2. In the SIMPLEXYS protocol,
states s3 and s7 were anonymous fin al states, but_for convenience these have been_given
names. Trigger t7 'extends' the SIMPLEXYS protocol into a Petri net.

Figure 7.2. A regular
Petri net.

The initia! context consists of state sO only. When tO fires, sO looses its taken while sl and

s2 get one. This results in the context shown in figure 7.3.

1 The definitions of live and safe are given at the end of this section, after the basic notions
have been introduced that are used in these definitions.

132

In figure 7.3, a new situation exists; both tl and t2 are now enabled because their pre­

stales sl and s2 are marked. Triggers tl and t2 can fire independently: if one fires, the other

is still enabled. There is concurrency: the left branch of the net can operate in parallel with
and independently of the right branch.

Figure 7.4 shows the result after both tl and t2 have fired. Both t3 and t4 are enabled,
but if t3 fires, t4 is no Jonger enabled and if t4 fires, t3 is no Jonger enabled. Th is is called a

choice: the single taken can move either along t3 or along t4, but not both ways. If two

triggers that are in a choice fire at the same time, a situation that Petri net theory calls a
conflict arises: it is not specified which way the taken should go. Conflict checks are

described in sections 7.3.2, 7.3.4 and 7.4.

Figure 7.3. The context
has switched FROM sO
TO sl, s2.

Figure 7.4. The context
has switched FROM
sl, s2 TO s3, s4.

Figure 7.5. The context
has switched TO s3, s7.

When trigger t4 fires, t5 is enabled; then, when t5 fires, t6 is enabled; the subsequent
firing of t6 then results in the net shown in figure 7.5. This context is identical with the one
that would occur if in figure 7.4 trigger t3 had fired.

In figure 7.5, t7 is enabled. When t7 fires, the net returns to its initia! context of figure

7.2. It is a property of a correct Live Safe net, that such a return to the initia! context is

possible.

In Petri net theory, the state capacity of a state is the maximum number of tokens which

that state cao carry. Most often the capacity of every state is taken to be equal to one. This

means that no state is allowed to have more than one token, and that either triggers can

only fire if there is enough capacity to store the tokens transporled on firing, or that a token

gets lost when it merges with the one already present. In a message passing system, the term

'state capacity' makes sense; it is the number of messages a buffering node can contain. In
SIMPLEXYS, the term looses its meaning; a state is either active or not.

133

A net is called N-safe if, due to its topology, every state can have at most N tokens. For

short, 1-safe will be called safe. Firing a trigger that puts a token on a state that already has
one is thus a vialation against safeness. In an unsafe SIMPLEXYS protocol, a true STATE
rule can be made true again. This may well be a protocol design error.

A net is called live if every trigger can be enabled from every reachable context by some

firing sequence, i.e. there are no triggers that can never fire. In a non-live SIMPLEXYS

protocol some trigger rule can never fire. This is a protocol design error: the trigger rule is

superfluous.

The net has a deadlock if it has a reachable context in which none of the triggers is

enabled: that context has no successar context, the tokens are stuck. This is a vialation

against liveness. In a protocol with a deadlock, no progress wil! be possible after the

deadlock occurs; the protocol cannot end. This is an obvious error.

7.3. Systematic checking of the protocol

Computer tools are available [Feldbrugge and Jensen, 1986; Jensen, 1986] to check a net

for having the properties of Live Safe Place/Transition nets, but adaptation of these tools to

the SIMPLEXYS programming environment would be inadvisable: if the net is incorrect,

error messages must bc:_provided that are understandable (or knowledge engineers who are
not Petri net experts.

The goal of the analysis is to check whether the ON statements in a SIMPLEXYS rule

base represent, when extended, a Live Safe net. If not, this probably indicates an error in the

implementation of the logic or the ordering of the prolocol's elementary operations. The

analysis is divided into sections that check whether the net has the desired properties of live

and safe. Live and safe are, however, complex properties (see section 7.3.4), that in turn

depend on other properties which are easier to check. Therefore the checks are sequenced

in such a way that easier checks preeede more difficult ones. An additional advantage of this

ordering is that more meaningful error or warning messages can be given.

7.3.1. Deleetion of syntax errors by the Rule Compiler

The Rule Compiler has already performed some elementary syntax checking on the rule

base, including the ON statements which are part of it. According to the Rule Compiler, a

set of ON statements is syntactically correct if

a. Every state has non-empty FROM and TO lists. A TO list may contain the special symbol

'*', which stands for an anonymous jinal state.

b. The rules in the FROM and TO lists are STATE rules.

c. At least one STATEruleis initially true.

134

When the Rule Compiler finds the knowledge base syntactically correct, the protocol

analyzer takes over. Semantic checking of the protocol is performed in three stages. The first
stage perfarms some additional syntax checks (section 7.3.2), the next two stages check for
correct topology (section 7.3.3) and dynamics (section 7.3.4) respectively.

7 .3.2. Deleetion of other syntax errors

Sets of triggers and sets of states are important internat data structures of the protocol
checker. Pre- and post-sets of a state are sets of triggers, pre- and the post-sets of a trigger
are sets of states. A set can contain from zero up to all states or triggers that the net
contains.

The ON statements are first transformed into the internat format by storing the pre-set

and the post-set of every state and of every trigger. This allows a fast analysis and the use of
algorithms that a re similar to the Petri net tools. During the transformation a first check is

performed: the (extended) net mustnothave empty pre- and post-sets; that can be shown to
be a necessary condition for a Live Safe net.

The syntax check reports the following errors:

No final stale. lf there is no ON statement with a '*' in its TO list, the expert system can
never stop.

State cannot become active. Every state, except initia! states1, must have at least one
trigger teading to it. This means that every state must be in at least one TO list. lf not, that

state is unreachable; it can never become true.

State cannot become inactive. If a state has no trigger teading from it, once flue it can
never become false.

sO

x

sê s3 s2

y y

(a) (b) (c)

Figure 7.6.
a. Conflict at sO with trigger X.
b. No conflict.
c. Both sl and s2 get a taken when X fires.

1 Initia! stales are recognized by the fact that their initia! value is true.

135

Conflict between triggers. More tban one trigger may be enabled in a context. In figure 7.1
triggers tl, t2, and t3 are concurrently enabled. Triggers tl and t2 can fire independently: if
one fires, the other is still enabled. But t2 and t3 are dependent: firing one disables the
other way. There is a choice, either to fire t2 or to fire t3, but not both. A problem exists
when triggers t2 and t3 become true at the same time. It then depends on the textual order
of the ON statements in the knowledge base which trigger wil! fire; this is undesirable
because it may lead to maintenance problems.

Choices are unavoidable if the system is non-deterministic. Generally we wil! not know
whether t2 and t3 can become true at the same time; if that happens, the choice becomes a
conflict. At run time, the loferenee Engine would handle the conflict by firing only one of
the triggers. A conflict is certain, however, if two triggers are connected to the same rule and

have identièal FROM lists (figure 7.6a). One path, depending on the textual order of the ON
statements, can never be taken. This obviously warrants an error message.

Figure 7.6b gives a correct net. In this net triggers X and Y occur in more than one ON
statement, but no conflict occurs. In the net in figure 7.6a, there are identical FROM lists
and identical triggers. If, in figure 7.6a, it was the intention to give both sl and s2 a token
after X becomes true, figure 7.6c is tbe correct representation.

7.3.3. Deleetion of topological errors

In the ·second stage topcilogical èhecking is performed: the net must be pure, simple and
strongly connected.

The net is called pure if there is no are from a trigger to a state if there is an are from
that state to that trigger, i.e. there is no ON statement in which FROM and TO lists have
states in common, i.e. there is no loop from a state to that same state (figure 7.7 shows two
non-pure nets). A non-pure net is likely to be neither live nor safe, but this is not certain. A
non-pure net is quite intricate and therefore warnings are generated for non-pure ON
statements.

The net is called simple if there are no triggers with identical pre- and post-states and no
states with identical pre- and post-triggers. This must hold for all states and triggers. Simple
implies that no two net elements are functionally identical. Nothing is wrong with a non­
simpte net e lement, but it is likely that a mistake has been made. Moreover, the net can be
simplified by combining identical net elements. For non-simple nets warnings are therefore

generated.

Finally strong connectedness is checked. The net is called strongly connected if every net
element can be reached from every other net element by walking along arcs; every state can

be reached and left again. A net that is not strongly connected wil! not pass the checks of
liveness and safeness (strong connectedness is a necessary condition for liveness and

136

safeness). By checking connectedness we report some errors in an earlier stage with more
precise messages.

(a)
Figure 7.7.
a. Self loop at t2.
b. Self loop at tl.

The topological check reports the following errors:

Self loop. A self loop exists if ON statements have common stales in their FROM and
TO lists. In figure 7.7a state s2, once true, can never become fa/se. Figure 7.7b gives the dual
situation: s2 must be true before tl can fire, but before s2 can be true t1 must fire. ON
statements that have a self loop are likely to result in a deadlock or in a non-safe state. But
this is not certain: correct nets with a self loop do exist. Self loops are therefore reported as
a warning.

ldenJical ON statements. Two ON statements are identical if they have the same FROM
and TO lists. This is not an error; it is reported as a warning. Identical ON statements can
be merged by or-ing their triggers.

ldenJical states. Two stales are identical if they have the same triggers leading to and
going from them. This, too, is a warning. Two identical states can be merged by discarding
one. Goals are taken logether and connected to the remaining state.

State nol conneeled with an initia/ state. There must be a path from one of the initia!
stales to every state. A net part that is not conneeled by arcs to an initia! state can never get
tokens.

State not conneeled with a final state. Every state must have a path to a fin al state. A net
part that is not conneeled to a final state can never loose its tokens.

137

7.3.4. Deleetion of dynamics errors

The final stage checks for dynamics errors. The reachability list is constructed and used
to prove liveness and safeness. In this stage more complex conflicts are also checked. Three
errors can occur: a deadlock, a non-safe state and a conflict.

The net must be safe. It is safe if firing a trigger never results in a state getting more thar
one token; in a safe net firing an ON statement will not cause a state to become tme if it
was tme.

The net must be live. lt is live if from every reachable context a firing sequence exists
that results in a cóntext that enables an arbitrarily chosen trigger.

When all reaebabie state combinations have been constructed, two more errors can be
detected: triggers that did not fire, and non-reachability of the final context.

The dynamics check reports the following errors:

Deadlock. A deadlocked context does not enable any trigger. There is a firing sequence
that results in a context where no further change of state is possible. Figure 7.8a gives a net
that tornes to a deadlock: in the initia! context tl or t2 fires, giving sl or s2 a token. This
token· flows to s3 or s4. Then we have a deadlock: to fire t5, .both s3 and s4 must ha,ve a
token, whereas only either s3 or s4 can have one. The intended net was probably the one
shown in figure 7.8b.

• sO • sO

t 2 t 2

sl s2 s2

t4 t4

s4 s4

t 5 t 6

sS

1'6
(u) (b)

Figure 7.8.
a A deadlock at t5.
b. A correct net.

138

Non-safe state. A state becomes true due to firing of a trigger while that state was al ready
true before firing (and is not made false by another trigger firing simultaneously). This
happens in figure 7.9a: when tl fires, both si and s2 get a token. These tokens flow to s3
and s4. Then firing t5 gives sS a token and firing t6 gives sS another one. Therefore sS is not
safe: it becomes true while it was already true. Figure 7.9b is probably the intended net.

sO

tl

Figure 7.9.

s2

t4

s4

t6

(oJ

a. State sS can get two tokens.
b. A correct net.

sO
•

t5

st

Figure 7.10. This net
cannot stop.

sO

ti

s2

t4

s4

t6

s6

t7

(b)

t

The system cannot stop. There is no firing sequence that leads to only final states being
true. Because the loferenee Engine does notstop as long as at least one state is active, the
system will never stop. It is possible to have a net that does not come to a dead lock whi.le

139

the final context is not reachable; in figure 7.10, t5 can never fire. This net can be corrected
in the same way as the net in figure 7.8.

s3

(o.) (b)

Figure 7.11.
a. Trigger t4 cannot fire.
b. All trigger can fire at least once.

Trigger cannot fire. Figure 7.1la gives a net that does not come to a deadlock, while the
final context is reaebabie .~ wel!. However, there are triggers that cannot fire at least once.

s l s2

y x x

(o.) (b)

Figure 7.12.
a. Conflict between two triggers X.
b. Conflict between three triggers X.

Conflict. In the syntax checking stage some conflicts have already been checked: ON
statements that have the same trigger rules and the same FROM lists. Conflicts can also
arise when the FROM lists have a non empty intersection (figure 7.12a). In context sl s2
both triggers, connected to the same trigger rule X, are enabled and must necessarily fire

140

simultaneously. But if the first has fired, the second cannot fire because s2 was made false by
the first.

Whether or not two triggers lead to a conflict depends upon their trigger rules being lme

at the same time. We can generally not fully check for this during analysis. A conflict is easy

to detect when two ON statements satisfy the following three conditions:

a. The two ON statements specify the same trigger rule;
b. The intersection of their FROM lists is not empty;
c. The two triggers are both enabled.

In the net of figure 7.12b there are three conflicting ON statements labelect with X.

Thus far, we have only reported on conflict checking where ON statements specify the
same trigger rule. A conflict check can be more thorough, however. Reeall that a conflict
can only occur if triggers are tme at the same time. To prevent this, we can reptace the
triggers by trigger expressions that mutually exclude each other. In figure 7.5, triggers t2 and
t3 can lead to a conflict. lf we reptace t2 by t2 and nol 13, and t3 by t3 and nol t2, no conflict

can possibly occur. However, in figure 7.6a such a substitution would lead to trigger
expressions with value X and nol X, i.e. fa/se : the triggers would never fire; this is obviously
incorrect.

Th is observation leads to the following check: use Quine's methad (see section 6.5.2.1) to
symbolically simplify the formed trigger expressions. Whenever this reduction leads to the
constant value false, there is a conflict; if not, a conflict will occur whenever the simplified

expression can obtain the. vah,1e false. The knowledge engineer can check whether such
conditions can actually occur and if so, whether they will lead to undesired behavior. The
latter may depend on the order of the ON statements in the knowledge base.

7.4. Correctness checks at run time

When no errors are detected, the protocol has all the properties of and thus is a correct
Live Safe Petri net. In many respects, the SIMPLEXYS lnference Engine is more tolerant
than the protocol checker, but this does not guarantee that at run time no errors can occur.
Whether or nol the expert system can reach the final context depends upon the triggers that
at run time become lme in each context. The stmclure ofa correct net guarantees tbat it will
always be possible to continue and reach the end context after some firing sequence.
However, whether this firing order is possible at run time depends upon the order in which
triggers beoome true or fa/se. Since the checker bas no deep semantic knowledge about the

trigger conditions and their correlations and time-dependencies, a full check is impossible.

There are some differences between the reaebabie contexts that the checker generales
and the contexts that are reachable at run time. It is possible that at run time, due to
correlation, two triggers will always fire simultaneously, although they are connected to

141

different rules. Whereas the checking algorithm wiJl generale the intermediale contexts that
result from firing each trigger separately, these contexts will never be reached at run time.
Only if the triggers refer to the same rule, no intermediale context will be created when the
checker simultaneously fires the triggers.

While the analyzer checks for many types of error, only four kinds can occur at run time,
and only one is detected and acted upon. These are:

Conflict. The loferenee Engine wil! fire one of the conflicting triggers, depending upon
the internal representation which is related to the textual order of the ON statements in the

knowledge base.- Logically; the loferenee Engine acts as if, with triggers tl, t2, t3, etc, trigger
expression.s tl, t2 and not tl, t3 and not t2 and not tl, etc, are formed. Figure 7.12b shows an
example: either the middle trigger wiJl fire and the left and the right will not, or the left and
right will fire simultaneously and the middle one will not. The second case leads to a non
safe state, s3.

True STATE rule becomes true. In Petri net theory, the non-safe state would get two
tokens. In SIMPLEXYS, this has no meaning; the Inference Engine merges the tokens.

System cannot stop. This error is not recognized by the loferenee Engine. The checker

guarantees that in. a correct-net there is-at least one-path to the final context, but it does not
have the deep domain knowledge to ascertain that such a path will indeed be taken.

Deadlock. A deadlock is the only fata! run time protocol error. The expert system halts
and reports the context in which the deadlock occurs. The checker, bowever, detects all
possible deadlocks; therefore these will not occur in a net for which no deadlocks were
reported.

7.5. Conclusions

Because SIMPLEXYS has formalized the time related aspects of protoeals into a Petri
net, it allows consistency checks of the dynamics of those protoeals that most other expert
system languages and tools do not have. Because the checker has no deep knowledge of the
domain, this checking cannot he complete, but the currently implemenled checks detect
many types of errors and have proven to be very useful.

142

8. Data and data processing

The expert system's function is to analyze real-world data. But which data are to be

analyzed, and how they are to be acquired and preprocessed is highly application-dependent.
Yet, in real time monitoring applications, the basic signa] processing procedures wil\ often
be comparable, as they perform the acquisition and processing of a more or less standard set
of measurements of a similar character.

Two probieros have a general character. The first is that the acquisition rate of many of
the measurements is so high that neither a human [Blom and Beneken, 1982; Beneken and
Blom, 1983] nor an expert system would be able to handle those 'raw' data; some sort of
algorithmic data preprocessing (data compaction, feature extraction) is required so that the
expert system will be affered more meaningful data at a much lower rate.

The second problem is that the quality of the data is to be suspeeled [Divers, 1987]. Due
to a variety of sources, the acquired data may not reflect the quantity that they are supposed
to represent. A process of data validation is required to establish the authenticity of the
acquired data.

This chapter describes how signa] processing might proceed in a patient monitoring
system that incorporates an expert system to provide 'intelligence'. The exact nature of the
monitoring functions and the intelligence cannot be considered here, since these are highly
application-dependent.

We assume that some basic information wi\1 always need to be made available to the
monitoring system. This basic information will be preprocessed, compacted, va\idated and

stored in a data base which can be consulled by the expert system. We therefore describe a
'library' of algorithms that are more or Jess independent of the final application. Whether
they are suitable for an individual application remains to be decided by the system builder,
of course. If not, they may provide some useful ideas.

Our earlierresearch has been called 'servo-anesthesia' [Beneken et al, 1979]; it focussed
mainly on automatic data acquisition [Beneken et al, 1983], data validation [Meijler and
Beneken, 1987], data processing [Beneken et al, 1978; Blom et al, 1979; Blom et al, 1985]

and data display [Meijler, 1986]. The approach that we will take here is an outgrowth of that
employed in the design of the Data Acquisition and Display System (DADS) [Meijler, 1986;

Meijler and Beneken, 1987]. In particular, wedevelopa general methad to validate quasi­
periadie physiological signals. In order to provide a specific example, this general validation

methad is then applied to a specific signa!: the arterial pressure. The ability to validate the
arterial pressure signa! is a prerequisite for an intelligent blood pressure controller (chapter

9).

Figure 8.1 provides a conceptual model for the processing of data. How the data is
acquired depends on the type of the data. The data validation process determines whether

143

the data are valid or artifactual. If the data contain much redundant information, e.g. in case
of a waveform, the feature extraction process extracts all meaningful features from each
period of the signa!, such as maximum, minimum, average, period duration, etc. Feature
extraction is usually combined with validation. lf one or more of the extracted features are
abnormal, the feature classification process attempts to delermine the type of abnormality.
The trend analysis process [Beneken et al, 1982; Beneken et al, 1983] classifies and analyzes
the dynamics of the data. The history extraction process builcts a compact history of the
feature over e.g. the last few hours.

~acquire data J
I .---------~---------,

validate data __] '-------- =r= __ _
extract features _] ..---·_._r ·-=--=
classify feature~ =·- ---

c=analyze trends J
.------I
J build history · J

·:r::_----
L data -ba:.:_:=J

Figure 8.1. Data processing.

The central problem in data processing is the high data rate; new data frequently arrive
hundreds of times per second. No expert system is able to analyze the data at such a rate,
but neither is this necessary: conclusions are usually not based on these 'raw' primary data
but on features extracted from them. Extracting the features from the data is usually an
operatien that can be performed by algoritlzms, which can be designed to be fast enough to
process the primary data. Feature extraction offers three advantages, that simplify the
construction of the expert system:

1. the design, implementation and testing of the feature extraction algorithms can praeeed
independently from the design of the expert system;

2. feature extraction reduces the quantity of information to be analyzed by the expert system
by eliminating redundancies in the data and/or irrelevant information;

3. feature extraction reduces the rate at which the information must be analyzed by the
expert system.

The prohlems that the expert system must solve delermine the information that must he
available in the expert system's data base. This information in turn delermines which signals

144

must be acquired and which features must be extracted from these signals. The
characteristics of the signals in turn delermine how the features must be extracted. Because

the data processing is so application dependent, it has thus far been impossible to provide
general mechanisms that can be incorporated into the expert system tools without

compromising efficiency.

An application independent consideration, however, is the integrity of the information in

tbe data base. The expert system will often be able to function correctly if data are missing,
nol if it assumes that data are correct if they are not. This makes data validation so
important. For a systematic description of data validation as a layered approach see van der
Aa [1990].

8.1. Data acquisition

We recognize four different categories of data, that need to be input to the system:
continuous measurements (to be monitored at all times), discontinuous measurements
(which provide data only once in a while), data volunteered by the medica! staff (also
infrequently), and demograpbic data (which need to be entered only once).

8.1.1. Demograpbic data

Some important non-ebanging data about the patient are often entered into the system
before the start of the operation: the patient's age, length, weight, known allergies, current

diseases, etc. These data can be manually entered into the system when it starts up, at which

time monitoring is not yet time-critica! because the transducers are not yet connected. A

much better approach is to have the expert system acquire such data from a 'hospita !
information system' of some type. Such acquisition, too, must be done when monitoring is
not yet time-critica!. The F ACT rul es are meant to store (condusions a bout) these data.

8.1.2. Volunteered data

There frequently is important information concerning the progress of the operation that,
due to limited functionality of the equipment, cannot be acquired automatica lly, but which

the staff wishes to impart to tbe system nonetheless, such as:

a. Injections (drug type, dosage).

b. lnfusions (drug or fluid type, infusion flow rate).

c. Fluid loss (blood, urine).

d. Settings of ventilator and other equipment, such as gas composition, minute volume,

halothane fraction.
e. Interventions. An intervention is a willful occurrence of some event. Many interventions

wil! lead to changes or artifacts in signals.

145

f. Artifacts. An artifact is a (sometimes willful and necessary) disappearance or disturbance
of one of the signals, due to blood sampling, flushing of a catheter, electrocautery, cardiac
output deterrnination, transducer disconnection, power line hum, etc.

The time of occurrence of these events is essential as wel!. In DADS [Meijler, 1986] the
system assumed a default time of occurrence coinciding with the time the data were entered,
but a different time could be specified if it deviated significantly from the time the data were
entered.

A practical problem with volunteered data is that, due to the pressures of the task, they
are not always entered into the system, or not entered at the proper time. Therefore, in most
practical cases, the use of volunteered data should be avoided if at all possible.

Volunteered data are useful to the system only if they can be interpreled by the system. If
that is not the case, volunteered data can only be stared as a 'comment' that can be entered
into the patient's report. Such a possibility should, we think, always be available due to the
fact that no protocol can be so perfect that every clinically significant event is anticipated.
Automatic deduction of a meaning from such comrnents by the system would probably

demand a very sophisticated naturallanguage understanding user interface, which is

currently, and in the foreseeable future, unavailable, at least if we demand that it is both fast
and full-proof. Assigning a meaning is best done by having the machine ask the relevant

-questions. This is treated in-the next seciion.

8.1.3. Discontinuons measurements

Non-continuous measurements are usually initiated by the medica! staff and performed
only if required. Examples are blood gas and/or blood electrolyte determination, cardiac
output determination by a thermodilution or dye dilution technique, and manual blood
pressure measurement using an inflatable cuff.

A characteristic of such a measurement is, that the Jonger ago it was performed, the less

its validity as a representation of the present. Old data represent the patient's past, not his

present. Each measurement value of this class should therefore have associated with it a
time period during which the value is still acceptable, or a function, that serves the same
goal, but may take into account other factors, such as the therapeutic state and the
variability in some other signals.

There are two ways to acquire discontinuous data. In the first methad the user is the
initiator. If the machine is to be able to assign a meaning to tbe data, the user may e.g.
invoke a menu, then possibly a sub-menu, which presents him with the name of the variable,

to which its value is then appended. In the second metbod the machine is the initiator; it
asks a question and waits for the answer. From the point of view of the expert system the
difference between the two methods is that in the first case all possible data can be entered
in all possible contexts, while in the second case the context delermines which data are

146

relevant, and therefore which questions wiJl be posed; the expert system can compose a
context sensitive menu. In either case, the expert system must somehow receive the data for
use in its knowledge base.

The SIMPLEXYS ASK rule is unable to acquire this type of information, because the

system would have to wait for the answer befare continuing. In a real Lime system, however,
it should be possible to ask questions without waiting for an answer. SIMPLEXYS does offer

the constructs to solve this problem in several ways, e.g. as follows. Four rules play a role for
each question1. We give an example:

1. rule POSE_ QUESTION presents the question;
2. rule ANSWER will receive the answer;

3. rule GET_ANSWER checks whether the answer has been supplied;
4. rule WITHOR A W _ QUESTION knows that the question is nat relevant anymore and

withdraws it if it has not yet been answered.

POSE_ QUESTION, a rule of any type, knows that the question needs to he asked and
poses it; the question's result (TR, FA or PO) wil! he returned in MEMO rule ANSWER.
The value of ANSWER is set to PO (unknown) pending the answer.

POSE_QUESTION: 'pose the ques tio n'

THEN DO present_question;
THEN PO: ANSWER

Procedure present_ question shows the question on the screen in an appropriate format.

Rule ANSWER will receive the answer; its value wi.ll be PO (unknown) until the question is

answered. As long as the value of rule ANSWER is PO the rule attempts, in every run, to
obtain a value TR or FA through the evaluation of rule GET_ANSWER.

ANSWER: 'the answer to the question'
MEMO
IFPO GOAL: GET_ANSWER

Rule GET_ANSWER is a TEST rule which continually (each run) tests whether the
answer to the question has already been given; it uses the interface function request_reply. lf
the answer is 'yes', rule ANSWER is set to TR, if the answer is 'no', rule ANSWER is set to
FA. As a consequence of either TR or FA, the rule stops its attempts to obtain a value; it

also withdraws the question from the screen. An answer 'unknown' (PO) has no effect in this
example. Note that the history counter of rule ANSWER provides information about the

time the answer was provided.

1 The rule base programmer needs to invent unique narnes for each rule, of course.

147

GET_ANSWER: 'checking for an answer'
TEST TEST := request_reply
THEN TR: ANSWER
THEN DO withdraw_question
ELSE FA: ANSWER
ELSE DO withdraw_question

Rule WITHDRA W _ QUESTION is any rule, but most probably a context switch trigger
rule. Under the appropriate conditions, it ca lis Pascal interface procedure withdraw _ question
which removes the question from the screen if it is still present.

WITHDRAW_QUESTION: 'question irrelevant now'

THEN DO withdraw_question

The above demonstrales that, although the procedures to present and withdraw questions
and the function that requests replies are application-dependentl, such 'real time ASK rules'
are easily implemenled in SIMPLEXYS.

If the user initiales the information transfer, the situation is simpler: the expert system
need not rnaintaio the menu; a normal (keyboard interrupt driven) Pascal procedure can do
so.

The data rate of non-continuous measurements and voluriteered data is normaJtyso low,
that an expert system, which analyzes the data in cycles of some 5 seconds or so, will have
no trouble handling them.

8.1.4. Continuous measurements

In operating rooms and intensive care units many different physiological signals are
monitored and processed in order to assess and quantify the physiological state of the
patient. Most of these signals can be temporarily disturbed or invalidated, e.g. by
movements, actions of the medica! staff or electrocautery. In order to obtain a reliable and

correct diagnosis based on (parameters derived from) such signals, the medica! staff must be
sure that they are valid (not artifactual). This is one of the reasans why the most important

physiological signals, such as ECG and arterial pressure, are continuously displayed on
monitors.

If signals are to be analyzed by data processing equipment without human supervision,
another methad of quality control is necessary [Beneken and van der Aa, 1989]. This section
describes an investigation into the feasibility of validating signals by the data processing
equipment itself, prior to their analysis in a data acquisition and display system. Validation is
especially important if the physiological signa] is used in some kind of automated therapy,

1 SIMPLEXYS offers the knowledge base programmer thus every freedom to design his own
user interface, including where to position questions on the screen, how to accept answers,
etc.

148

that continues for long periods without human supervision, such as computer hased blood

pressure controllers or adaptive ventilators.

More and more patient measurements are continuously availahle and thus must he

observed at all times. The vita! signs are first processed by the front-end equipment

(transducers, amplifiers, filters and such) anti then converted, hy an analog to digital

converter, to numbers that the computer can handle. To faithfully represent the original

pulsatile signals, the conversion rate must he fairly high for some signals; the ECG, for

instance, may need to be sampled at 200 Hz or more. But there is no need for the expert
system to analyze data at this rate: a single sample has no clinical importance; it is the

features of the signa! that are important.

Which signa! features are important depends on the signa!. In the arterial blood pressure

these would be the systolic, diastolic anti mean pressure values, the period or rate, and

possibly others like the systolic slope or the relative position of the dierolie notch. It is the

task of the so-called preprocessing algorithms to extract these features.

There are periods, when the patient's signals are not available: befare the transdoeers are

connected, after they are disconnected, during calihrations, etc. During these times no

features can be extracted, at least not ones with physiological meaning. A few monitoring

devices indicate whether the data that they provide are valid or not; an example is a pulse­

oximeter which internally supervises the quality of the signa l that it derives its saturation

data from. A few other devices indicate that the data that they provide must necessarily he

invalid; an example is an ECG-monitor which continuously measures the electrode

impedance: a too high impedance leads to an invalid signa!, a low enough impedance not

necessarily to a valid one. Such information, if it is available, must of course he used by the

signa! processing a lgorithms.

Some of the the rapeutic equipment mayalso be able to make its status known to the

expert system. A ventilator may have outputs for tit.lal or minute volume, respiration

frequency or even complete flow and pressure curves from which several features can be

computed, and from which a change in setting can easily be reconstructed if it does not

directly offer such data. In the future we may expect more and more equipment that is

remotely controlled from a computer system, with the advantage that not only information

presentation, but also equipment control is centralized and that the system is always fully

aware of the device's status. An example is a computer controlled infusion pump, that

receives its setting as a cammand from the computer and acknowledges receipt and

execution of such a command, in addition to signalling errors (fluid container empty, fluid

line blocked, air in line etc.).

In contrast with patient features, equipment features usually do nol exhibit spontaneous

fluctuations or drift. They are set (and modified) by the medica! staff and remain constant

over relatively long periods.

149

8.2. Feature extraction and data validation

Feature extraction is the process which, if the data contain redundant information,
extracts from the data only the clinically relevant information.

Data validation is the process which attempts to determine the validity of the data that

are entered into the system and that the system needs to derive its conclusions from.
Because the therapy will eventually be based on these data, their validity is extremely
important. It is always better not to know than to assume incorrect knowledge to be correct.
Data validation is usually combined with feature extraction, si nee it is the features that must
be validated.

Two steps can always be discriminated in a data validation process. In the first step,

available knowledge about the data is used to chèck its correctness. For example, the age of
the patient should be between some lower and upper bound, which may depend on the
protocol. In the second step, the mutual consistency of data is checked, i.e. the knowledge of
other data is used to check the current data. For example, a 2-year old patient cannot have a
weight of 80 kg; either the age or the weight is incorrect, possibly even both.

Demograpbic data are somehow entered by the user. The errors can assumed to be data
entry or typing errors. lf the data are entered through the keyboard, they can often be

··validatëd immediately: if detected as incörrect, they can be asked for and entered -again. If
these data are acquired from a different souree such as a hospita! information system,
correction is usually impossible.

Volunteered data are typically entered through the keyboard as well, and thus can be
validated immediately; if detected as incorrect, they can be asked for and entered again.

lt may be possible to correct invalid discontinuous measurements if the device that offers
them (e.g. an inflatable cuff blood pressure monitor that automatically performs a
measurement periodically) can repeat its measurement on a request from the expert system.

Most of the continuously measured signals are periodic by nature; the period is usually
the circulatory or respiratory cycle1• If the signal is not periodic (e.g. the temperature or the
EEG), we can impose an artificial 'period' of a fixed number of seconds to make validation

(and averaging) possible.

1 The period does not have a fixed duration, nor is the shape of the signa] identical from
period to period; small fluctuations are always present. Therefore we prefer to speak of
quasi-periadie signals.

150

To validate a signa!, we use previously acquired knowledge of the typical appearance of
the signa!, its possible variations in shape, and the fact that almost always successive periods
resembie each other closely1•

The proposed general method for validation is based on a period by period (beat by

beat) determination of a set of significant features of the signa! and on a comparison of

these 'actual' features with the features of an 'ideal' signal (see section 8.2.1); for more

details see Goossens [1986]. These latter features are called the 'model features'; the 'ideal'
signa! thus serves as a model. Validation is possible only if we can discriminate between an
acceptable and an artifactual signa!; this presupposes, that we know what an acceptahle
signa! looks like. One must be able to describe it in sufficient detail (by a set of signa!
descriptors or signa! features), but not in so much detail, that an abnormal hut valid signa! is
classified as artifactual.

Thus continuous measu rements offer an extra validation test due to the short-time
stationarity of the properties or features of signals. Dynamic information is available to cross­

check successive segments of the signa! with each other.

The validation process proceeds as follows:

a. acquire one period of the signa!;
b. extract the relevant 'features' from that period; these features depend on the nature of

the signa!;

c. check the feature values with the available knowledge about them; this knowledge is

usually a set of lower and upper bounds (which may be context-dependent);
d. cross-cbeek the feature values with each other;

e. cross-check the features with other available information, such as the features of other
signals.

Whereas step c is a simpte comparison, steps d and e need medica! knowledge. However,
step d may be eliminaled by introducing extra (correlated) features in step b. An example:

Features of the arterial blood pressure signa! are systolic (maximum) and diastolic
(minimum) value. But there is also knowledge about the diJterenee between the maximum

and minimum values (the pulse pressure). This difference can he added as an extra
(correlated) feature.

The choice of the features is determined by standard medica! practice. Because a concept

'systolic arterial pressure' exists, the systolic arterial pressure should be chosen as a feature.

The existence of the concept signifies both the importance and the approximate constancy of

1 Clinicians also need to validate these signals; therefore these signals are continuously
displayed on a monitor. Clinicians, too, use their knowied ge of (1) which appearances of the
signa! are acceptable and (2) that successive periods should look alike.

151

the feature from one period to the next. The choice of the features is thus guided by the
medica! vocabulary.

To achieve a cross-check between successive periods, a signal model is built; this model

represents the set of features of a 'correct', acceptable period. The model is built by
averaging the features over a number of most recent validated periods (figure 8.2). Thus the

model is adaptive: it follows changes in the shape of the signal.

I'
I extract the signal's features I

I

I test their validity I
I

N all y

I

features

I
valid ?

I
signal

I I
update

I artifact model

I I
I

Figure 8.2: Validation· of a quasi-periadie signa!. In the validation tests the_

signal's features are comparedwith bath absolute limits and with the model's
features. Whenever the discrepancies are too large, they indicate an invalid

signa!. If all features are valid, the model is updated.

To make validation a practical procedure, we demand some extra properties of the
validation process:

- The validation process must be Jast. Reai-time processing of the signa!, which is sampled

at a relatively high frequency, must be possible.

- In order to give it the required speed, the validation process must be algorithmic, not

expert system based.
- The validation algorithm must be compact. Since many signals may need to be validated,

determination of the signa! features must not require starage of many samples of the

signa!.

- The signa! model must be adaptive. Signal shapes may change over time.

When the physiological state of the patient is stable, the signa! features must be stabie as

wel!.

A suitable validation methodology can be described as follows:

152

determine the features to be extracted from the signa!; these features will always depend
on the values of data points and possibly on their times of occurrence;

- segment the signa! on the basis of the features;
find or design algodthms that can extract these features without storing samples; each

algorithm will have three functions: initialize the extraction, process each sample, and

output the feature's value.

As an example, we wil! describe the validation of the arterial blood pressure signa!. A
typical period of the signa! is shown in figure 8.3. This figure also shows how the signa! is
segmented by a set of auxiliary lines at 0%, 25%, 50%, 75% and 100% level (0%
approximately corresponds with the previous diastolic pressure, 100% with the previous

systolic pressure). Note that the collection of all the points at 0%, 25%, 50%, 75% and

100% is a model of the period in the sense that a smooth line through these points provides
a fair approximation of the signa!. Other signals may require different thresholds (more,
fewer, at other levels).

~IA - ~ - -- -----~ ., ······. / \

I 04) i
-- I .. - - - -. - - . ,,

Dl (~)i!
- - - - - - - . I-: - - - -

,..-.. ,• I

(r~ i ! ;

- -r~ _---:_;_-i- - - ­
· r 1 1 :
~:· / / :

\ -

- - - - - - - - -:- - - - 1./ 'i

t.

-'i>

' I '·

~----·-···

1·)\1 1,

I
I

. ~- - -

I ,
. ./ . i- - - - ~ ,-_

'
~ f '·.

?\ i._

:.·_; _-_ _ -: _-: _:-."..j _.-

Figure 8.3. A typical period of the arterial blood pressure.

To characterize one period of the arterial pressure, we choose the following features:

- The diastolic pressure MI.
- The systolic pressure MA.
- The upslope pulse pressure Dl.
- The downslope pulse pressure D2.

The systolic pressure slope value Hl between the 25% and 75% levels (a good

approximation of the true maximum dP/dT).

- The pulse period HP (at the 75% level to provide good noise immunity).
The average of the blood pressure over a full period PG.

153

The next step is to represent the feature extraction process as a protocol-like structure
(figure 8.4). The statesof the net represent the signa! segments between the levels, and they
define the way(s) in which each new sample must be processed. The transitions represent the
crossing of the levels; a transition fires as soon as the sample value reaches a certain level.
The net is most often a simple cycle, but this is not necessarily so, because the shape of
some signals can change remarkably.

,EJ~~Er,EJ?,-Er ,EJ~, -EJ~' J
Figure 8.4. A protocol-like representation of the arterial pressure feature
extraction process.

In each of the states the sample must be processed, possibly in several ways. In state F2,
for instance, we have to update the data for the slope, the mean pressure and the pulse
period; each of these updates is done by its own special procedure, which can be executed in
several states. The protocol sequencer thus takes the form 1:

repeat
repeat

get sample;
perfarm state Fl work: update ...

until transition A;
repeat

get sample;
perfarm state F2 work: update slope, mean and period data

until transition B;

repeat
get sample;
perfarm state F6 work; update

until transition F;
until end of data processing;

where 'transition A' Is simply the test 'sample > 25%', etc.

The next step is to conneet procedures to the states and the transitions; these procedures
take care of the basic signa! processing operations. As an example, we consider the
processing of the diastolic pressure. Going down from segrnent FS into F6, we start to look
for the absolute minimum of the signa!, and going up from segrnent F2 to F3 we are sure
that tbe minimum has been found; the hysteresis provides for ample noise immunity. Thus
the transitions between F5 and F6 and between F2 and F3 are important, as well as the
states F6, Fl and F2.

1 This is a slight simplification. Due to sampling, the possibility exists that noteven one
sample wiJl occur in a segment in which the signa! has a very steep slope.

154

Now that the basic feature extraction algorithm has been described, we need to add a few
more details. First, the auxiliary levels can only be determined if we know the systolic and
diastolic values. This is simply done as follows: given the knowledge of the maximum
duration of a period, sample the signa! for that time duration and determine its maximum
and minimum value over that time. This is done in the protacol's added state L (figure 8.5),
which is left, through transition W, as soon as both minimum and maximum are certain to

have been obtained, i.e. after a known fixed time. The only validation that is performed in
this phase is a test on the permissibility of the minimum and maximum. This makes the
initialization a somewhat vulnerable period. lf the initialization is started during a period
with many artifacts, some restarts may occur before proper operation commences.

Second, we need to synchronize, i.e. step into the correct context. This is done by adding
extra states S and FO to the protocol, in the following way:

~]~llSJ>~EJ,f.l

~~ -;~~~~}~I i F~-;~~L-l ~ I J,:; lj~ I ~ F6--~: 'l
~· L _ __ j L.----' -- [__J

- - ··· - - --- ----
Figure 8.5. A protocol representation of tbe arterial pressure feature extraction
process, including start-up and synchronization states.

State S is the first synchronization state. Transition X is taken as soon as a sample >
75% is found. State FO, the second synchronization state, waits for the signa! to go below

25%. We then arrive in state Fl. This completes the synchronization.

Synchronization may be lost again if the signa! is absent for some time, e.g. in case of
artifacts or if the signa! level suddenly shifts. In the latter case it is necessary to relearn
minimum and maximum values; in all cases it is necessary to regain synchronization.
Remaining in a state for too long creates a 'time-out' error. Therefore transitions from state
F1 through state F6 to state L must be added to the net; these transitions are to be taken
after a specified time, if the normal transition has not taken place. A protocol sequencer
step then takes the form:

repeat
get sample;
perfarm state's work

until transition or time-out;
.if time-out then goto L;

155

100 %

:!~: : ::::-:--\ ::::::: ::::::::: :,~%
-- ----- -----~- -t -- ç~ql} -- -- --- - ~ !

@ (® "'" . - - - - - - - - - - - - - - - - • - - , ,...,..:. ... :::....,. ... "-_ - - - - - .?5_ï. _ _:_,. e·--- --"'~.,

Figure 8.7. An extra peak

Clinical tests brought to light, that the validation algorithm was not complete yet. Curves
with a high extra peak, as shown in figure 8.7, were handled incorrectly. A modification to
the protocol, as shown in figure 8.8, corrected this. In the new protocol, it is possible to
return from F3 to F2 and from F2 to F1 on downslope conditions.

IT'J!EJ!EJ'EJ'EJ'Ef'J
Figure 8.8. The corrected protocol.

At some point in the cycle, all feature extraction procedures have delivered their results

for that period. These results can now be validated. The first validation test is against limits,
e.g. is the diastolic pressure greater than 20 and less than 200 mmHg? lf not, the value is
rejected.

For the second test, a model of the feature is necessary. This model takes the form of the

average of the feature over the last few periods. For ease of computation, a tunning average

called model is computed:

model (0) : = feature (0);
model (n) : = (1 - w) * model (n-1) + w * feature (n),

with 0 < w < 1 and n = 1, 2, 3, ...

Index n is a counter, which is incremented each time a new valid feature value becomes
available. The weighting factor w defines a 'time window' for averaging. If w = 0, the new

feature value has no influence on the model, i.e. the model is not adaptive. If w = 1, the old
model value is not used in calculating the new model value; this results in a very adaptive
model, but one without memory. A campromise must be found between these two extremes,
depending upon the maximum possible rate of change of the feature. A value of 0.2
generally works well (Blom et al, 1981], but the value is uncritical: any value between 0.01

156

and 0.25 may perfarm well, depending upon the feature's variability. Same testing is required
to find a suitable value.

Research must also provide the knowledge about how far the feature's value is allowed to

be removed from the model's value for the feature's value to be considered correct.
Hoogendoom [1989) has demonstraled that the difference between feature value and model

value usually has an approximately normal distribution, and that interpreting a difference of
less than 3 or 4 standard deviations as valid generally detects all artifacts, although a few
valid values may be rejected as well [Blom et al, 1981). That the Jimits are uncritical was
also demonstraled by Zwart [1990), whoprovides the data about the differences between
successive pulse periods HP for one patient during an analysis time of 96 minutes that is
shown in table 8.1; assuming that all artifactual values can be found in the two highest
categories, a satisfactory boundary can be placed anywhere between 3 and 10 (* 20 ms).

-ctit:f-'~otal __ l
o 4419 .

1
1 3655
2 221

~ i~ ,~
6 3

~ ~ j· 9 1
10-20 16

) 20 90

Table 8.1. The difference between successive pulse periods HP in 20 ms
units versus the number of occurrences. Analysis of 96 minutes of data.

Initially, as long as no model is available, only the test against limits applies; this initia!
phase is called the learning period. As soon as a reliable model is available, both tests are
invoked in the artifact detection; other changes are, first, that the model is updated only with
validaled values, so that artifacts do not disturb the model, and second, that the auxiliary
levels are determined using the modefs minimum and maximum values, so that all levels
become adaptive as well. In the implementation of the arterial pressure validation algorithm,
the limits for every signa! parameter were chosen experimentally in such a way that good
performance1 resulted; the values that were used are given in table 8.2.

1 This was done by camparing the algorithm's outcome (valid or invalid period) with a
human judgment. In many cases it was very difficult to establish a hard boundary condition,
because small perturbations of the curve do not lead to erroneous feature values. The
qualification 'good performance' results from the observation, that in recordings obtained
during 36 surgical procedures each lasting several hours, no unacceptable feature values
were considered valid by the algorithm, i.e. no false positives occurred.

157

unit mmHg ms mmHg
/S

MA MI Dl D2 PG HP Hl

minimum 40 20 10 10 30 200 50

maximum 270 200 150 150 230 2000 5000

diff 10 10 10 10 10 200 1000

Table 8.2. Acceptability limits for the features (see figure 8.3 for a definition) of

the arterial blood pressure. The table should be read as follows (ref. first

column): a new maximum (systole) is to be accepted as valid if its value is

between 40 and 270 mmHg and if it differs by less than 10 mmHg from the
model (average) value.

A validation method will generally be application-dependent; if more features need to be
validated, it might need expansion. Two examples will be given for the arterial pressure,

neither of whicb is important in the blood pressure controller application. Figure 8.9 shows

that a first minimum can be lower than the diastole; the current algorithm in this case

outputs the minimum rather than the diastolic value. Figure 8.10 shows a curve with an extra

peak higher than the 75% level; the current algorithm wiJl find two periods rather than one,
with quite different feature values. The model will loek onto one of them (rhe one that

occurs most often), and will flag the other one as invalid.

~':~ . (~· : : : · · : · · : :::!_ ::::· :\·: 1::
.. .. J .. \::)\ ---- ·· -- - - ~ '-
~~:J : : :Mr>~: :·· _ : : : : · <:'~

Figure 8.9. A minimum lower than
the diastole.

r:~ : · : - :(A~y :::p_ : : : · _ ·:: · : - ·.~ ~
··f\··· \11!. --- - -! ~.' .~ -- v::_\" ____________) - ~'- '-
.· ' ." - -· --- - - - - - ---- - --- -· - ---- · -- -- ---

Figure 8.10. An extra peak higher
than 75%.

The reason that, in the controller application, the validation performs satisfactorily is that

the blood pressure controller does not need a diastolic value and is quite resistant to missing
periods.

158

The validation algorithm is conservative. Figure 8.11 shows a segment of a trend display

of a patient's mean arterial pressure; invalid values are not plotted. Generally a few valid 1

periods wil! be flagged as invalid, but major artifacts will never be considered valid.

150

100

50

0

Figure 8.11. The mean arterial pressure: display of
invalid values is suppressed.

8.2.1. Classification of invalid periods

The validation algorithm does not know about the cause of an invalid period of the

signal, but in some cases it may be able to provide the necessary information to further

analyze the underlying reason.

In principle, a signa! period can be considered valid if a.ll of its features pass these four

tests:

test la: the value is larger than the absolute low limit;

test lb: the value is smaller than the absolute high limit;

test 2a: the value is larger than the model's low limit;

test 2b: the value is smaller than the model's high limit.

Thus every period has associated with it a status that describes which of the tests it

passed and which it failed . This status can be used to classify abnormal periods.

8.2.2. Limitations of the validation algorithm

The validation algorithm described above is based on the following assumptions:

1 It remains a problem, however, to find an indisputable distinction between valid and
invalid.

159

1. The signa! is quasi-periodic, i.e. all periods of the signa! are approximately identical.

2. Each period of the signa! can be characterized by a number of features that describe it

more or less completely in terms of its clinical information content.

3. Each of these features has known limits, both static (upper and lower value) and dynamic

(allowed difference from its 'average' or model value).

4. Each of these features is easy to compute.

In some cases, these assumptions may be inappropriate.

Assumption 1 is necessary in order to be able to build a model. This assumption is
violated if each period of the signa! is very different from its neighbors, such as when the

patient has a severe dysrhythmia or when a balloon pump supports on every second beat

only. Artifact classification may be able to detect dysrhythmic beats, if they do not occur

too often. An alternative approach would be to implement several different signa! models

that operate in parallel and to use the best fitting model for each period.

- Assumption 2 may not be satisfied if the signa! has a great number of features, all of

which are important. We do not expect this to be tbe case with the standard range of

currently monitored signals except possibly for the spontaneous EEG, where it may be

difficult to define 'features'.

Assumption 3 may be violated in 'uncalibratable' signals, such as the fingertip

plethysmogram.

Assuinption 4 may offer a practicill limitation. Models for sÖme signals, e.g. the

respiratory oxygen concentration [Abkoude, 1981; Coolegem, 1981], are simpte. Good

models for the capnogram [Rademakers and Schelle, 1983] and the ECG are more

complicated than the simple arterial pressure model that is presented here (a more

complex arterial pressure model has been reported by Plasman [1981]). For none of the

presently monitored physiological signals the computational effort would probably be
overwhelming, however.

Some artifacts cannot be detected by the algorithm, even if a perfect model were chosen.

A slowly clotting arterial catheter wilt result in a slowly decreasing systolic-diastolic

difference. The same decrease could have a physiological origin, however, in which case it

would not be an artifact. More advanced algorithms exist to detect such trends (see section

8.4); moreover, more than one signa! may need to be analyzed to uniquely delermine the

origin of such an occurrence.

8.3. Analysis of features

Frequently an expert system wiii use a symbolic rather than a numeric value of a feature.
Static feature analysis attaches symbolic values to the features, such as normal, high or very

low [Beneken and Gravenstein, 1987]. For each feature, the values shown in figure 8.11 need

to be specified, either by the user when limits can somehow be set, by the system from its

160

knowledge of the patient's state and the protocol of the operation, or from independent

(demographic, statistica!) information. These limit values may be context-dependent

± impossibly high region
TOP LIMIT
very high region

VERY HIGH LIMIT
high region

HIGH LIMIT t normal region

~. ~~:~~:~~:~;0,
BOTTOM LIMIT

impossibly low region
Figure 8.11. Segmentation of feature values into ranges.

The values TOP LIMIT and BOTTOM LIMIT will usually coincide with the absolute
limits employed by the validation algorithm, implying that 'impossible' non-physiological

values are never offered to the expert system; instead, a 'data invalid' flag will then be

available.

If the expert system needs information about the s/ope or trend of a signa! [Beneken and

Gravenstein, 1987], the trend analysis algorithm [de Ruyter, 1982; Peters, 1984; Schoor,

1986; Meijler and Beneken, 1987} is available. It uses a Kalman filter to estimate the slope

of a noisy signa!; in actdition it provides the accuracy of the estimated value of the slope.

A new trend is detected as soon as the slope of the signa! significantly deviates from the

previous slope; this is indicated by divergence of the Kalman filter. As soon as possible the

new slope value will be calculated as wel! as the time when it started. Th is time can only be

estimated; thus a start time interval is given rather than a start time.

A steep slope, a fast rise or fall, is analyzed further: as soon as possible, it is given a

status of either step or impulse, depending upon the signa! behavior after the rise or fall. If
the signa! stahilizes at a new value, a step is recognized. If the signa! returns to the value it

had before the fast rise or fall, it is considered an impulse.

8.4. The signa! data base

To enable the expert system to provide the best support for the anesthetist, it must be

provided with the same information as an anesthetist uses in his management of the patient.

In genera!, this is impossible: the anesthetist derives quite a lot of information from

observation of the patient, the equipment and the actions of the personnel, himself included;

much of this information is not available to the system because it cannot be acquired

automatically and it would take too much time to enter it manually into the system. Besides,

algorithms cannot consider the signals in the same ways as the clinician. The signa! data base

thus has a necessarily restricted character; expert systems can therefore only offer support,

not replacement of the anesthetist.

161

8.4.1. Representation of data in the data base

At the moment, it is not yet clear in which way the data are to be represented in the
expert system's data base, although some steps to solve this problem have been taken [van
der Aa, 1990). The implementation of a device-independent expert system will be much
easier if data are stored in a uniform manner.

On one hand, we would like to have a data base, that is as general as possible. This has
the advantage that it is not necessary to create, for each type of operation and each set of
equipment, a new data base format. However, such a general data base would contain many
entries that never will become valid during an actual operation, either because some
equipment is not ävailable in a particular operating room or because some measurements
will never (need to) be done. This would not only create a storage problem, but the expert
system would continuously need to consider all those dispensabie facts and rul es, which
could prove disastrous in a reai-time system.

On the other hand, we could have a data base that is as relevant as possible for the
equipment and measurements actually used. This eliminales storage of data that will always
be invalid; it eliminales storage of rules that will never return a meaningful result; and it
eliminales the time necessary for testing all those superfluous data and rules. But such a
data base, optimized for one particular situation, would prevent the construction of a more
generally applicable expert system.

The availability of FA Cf rul es offers a partial solution, using the following approach:

the 'virtual' data base will have some general format; it will contain all measurements
and equipment that is or could be normally used;

the actual data base will, based on knowledge of the actual operating room equipment,
the drugs to be used, the measurement devices available in the operating room and such,
be composed out of the conceptual data base in such a way, that it reserves no storage
locations for data that are known to be unavailable;

- similarly, the 'virtual' expert system rule base wiJl contain all rules that might be needed
in any of the operating rooms and types of surgery we consider;

the 'virtual' rule base will, for each individual case, be compacted in such a way, that tests
on data that wiJl never become available during this specific operation in this specific
operating room, are eliminated.

In practice, this can be realized by a compilation scan of the expert system rule base,
performed before the start of the operation, when the above mentioned facts are known.
Even. if the compilation scan takes a very long time, it needs never be done on-line. Several

162

compiled rule bases could co-exist, and only the relevant one could be loaded into the
system when it was needed.

8.4.2. Necessary future research

Although data processing seems such an application dependent problem that it cannot be
approached in a uniform manner, a more uniform approach may evolve more easily at the
level of the representation of the features. In that case, a 'library' of signa! processing
algorithms could be made available, where each algorithm delivers its output in some
uniform manner. But even then, some remaining problems to be solved are:

Many signals can be measured either continuously or discontinuously, depending on the
equipment available, the severity of the patient's condition and the need of the
anesthetist. An example is the arterial pressure. Usually continuous measurements can
provide more features, and their analysis can be more complete. It would make the
expert system much simpler if continuous and non-continuous features had a similar data
representation and storage. How to choose a good 'high level' data representation is as
yet an unsolved problem.

In some cases equivalent features can be obtained from several signals. The heart rate,
for example, can be derived from the ECG, the arterial pressure waveform or various
other sources. In these cases it would be useful to compact all equivalent features into
one, with the advantages of simpler expert system software, better artifact elimination
and possibly reduced data storage. lt would be necessary, however, to check the mutual
consistency of the data. lnconsistency could provide extra information about measurement

errors and device failure.

163

9. An intelligent blood pressure controller

During some types of surgical procedure the patient's blood pressure needs to be
controlled at a lower than normal value. Usually the drug Sodium NitroPrusside (SNP) is
infused to lower the blood pressure. An earlier study [Blom and de Bruijn, 1982] into the
dynamic and static characteristics of this drug shows that application of the drug is often
difficult due to little a priori knowledge of the patient's sensitivity, the change of the patient's
sensitivity in time, a pronounced non-linearity, a significant and possibly changing delay time
in the control loop and a frequently bad quality of the measured blood pressure signa!.
Manual control is often difficult and requires close attention to the patient's response.
Existing clösed loop controllers do not cope well with non-average patients. An automatic
controller thus far is not a good alternative for manual control, since those cases which are
the most difficult to treat rnanually are as yet impossible to control autornatically. The goal
of this research was to realize a robust, unconditionally stabie autornatic controller.

In rnany hospitals, the use of SNP infusion for the control of arterial pressure during
surgical procedures is common. In most cases, the pressure needs to be reduced from the
control value to about 70 mrnHg and maintained there typically for 20 to 30 minutes; in
cardiac surgery the hypotensive period can last for several hours. After the need for the
induced hypolension passes (for instanee after clipping an aneurysm), the pressure is allowed
to return to control values without overshoot

The justification for this research is threefold. First, the clinical problern, controlled
hypotension, is worth solving, and preliminary investigations have demonstraled the
likelihood that this can be done [den Brok, 1986; den Brok and Blom, 1987; Bierens, 1987;
Hoogendoorn, 1989]. Second, the incorporation of a realtime expert system to embody the
knowledge and expertise of the clinician gives us the opportunity to gain more experience in
how to use SIMPLEXYS real time expert systerns in complex patient monitoring tasks.
Third, this study could result in a marketabie product, either as a stand-alone system or
integrated in an infusion pump, a liquid management systern or a work station.

This chapter first describes the basic necessary knowledge about SNP and SNP
controllers (section 9.1); more details can be found in Hoogendoom [1988]. Section 9.2 then
describes which knowledge is implemenled in the new expert system SNP controller, while
section 9.3 gives sorne irnplementation details; a complete documentation of the knowledge
base can be found in Lamroers [1990b]. Section 9.4 describes the major results of the clinical
tests; these are more fully described in Zwart [1990]. Section 9.5, finally, formulates some
conclusions and gives some recomrnendations for future research.

164

9.1. Knowledge acquisition

9.1.1. Controlled hypolension and sodium nitroprusside

Controlled hypotension, also known as induced or deliberate hypotension, is frequently
applied during or (shortly) after surgery. Hypotension is a state in which a person's arterial

blood pressure is below its normal level, in comparison with hyperlension (blood pressure
above normal level) and normolension (blood pressure at normal level). Controlled
hypolension often facilitates surgery by reducing bleeding but, when practiced erroneously,
can cause irreversible damage, including death.

For over 40 years attempts have been made to reduce blood loss by controlled
hypotension. Controlled hypolension reduces bleeding into a wound, thereby providing the
surgeon with both better visibility and technica! freedom for a more definite dissection; this
is especially important in excision of malignancies. With less bleeding, the extent of ligated
or cauterized tissue is reduced, the chance of infection is minimized and wounds heal better,
a prime concern of plastic surgeons. This technique is also used to facilitate delicate surgery

of the middle ear and remaval of highly vascular tumors, as well as for eertaio gynecological,

urological, orthopaedic, neurological and cardiac operations. Controlled hypolension
decreases surgical hemorrhage, permitting a drier field and, should rupture occur,
hemorrhage is more easily controlled than under normotensive conditions. Also, by reducing
bleeding, the need for blood transfusion during and after surgery is reduced.

Controlled hypolension also has its hazards [Hoogendoorn, 1988]. These potential
hazards can generally be avoided by careful monitoring and attention to detail. Most hazards

of controlled hypolension arise from Jack of experience by the anesthetist and poor
communication with the surgeon. Complications also arise when the technique is used on the
wrong type of patient (a patient with contra-indications) or in the wrong type of surgical
procedure (where other techniques ensure less danger).

Paralyzed patients are unable to respond to pain by movement or phonation; the only
signs suggestive of insufficient anesthesia are sweating (often marked following omission of
atropine premedication), secrelion of tears and a rise in systolic blood pressure. Some blood
pressure controllers have reportedly become unstable if during controlled hypolension
anesthesia is insufficient.

There is no arbitrary level at which the blood pressure level is optima!. In the young and
healthy, the usuallevel is 60-70 mmHg systolic, whereas in older individuals satisfactory
conditions are attained at higher levels. Little is gained by depressing blood pressure more
than necessary. Nor is there an absolute limit to the duration of hypoteosive anesthesia. The

pressure is nol kept at a fixed level but is allowed to fluctuate within reason, depending on
surgical needs.

165

Although hypolension can also be caused by other factors such as general anesthesia,
body tilt and positive aÎiway pressure, controlled hypolension is best achieved by specialized
drugs. Ganglionic blockers like hexamethonium, trimethaphan and pentolinium were once
commonly used but now are largely replaced by a vascular smooth muscle relaxant, sodium
nitroprusside. This is because ganglionic blockade effects both sympathetic and parasympa­
thetic ganglia, and so additional effects include dilation of the pupils, relention of urine and
tachycardia. Sodium nitroprusside increases the internat diameters of the third and fourth
order arterioles (15 - 42 l!ffi) while the venules are not affected. The hypotensive effect is
due to this increase in the diameters of the arterioles, which corresponds with a decrease of
the left ventricle's afterload, the peripheral resistance. For a description of the
pharmacology, pharmacokinetics, toxicology and therapeutic indications of SNP see e.g. Pace
and Westenskow [1983].

The action of SNP is rapid in onset and of short duration, and therefore is given as a
continuous infusion; the effect disappears soon after the infusion is stopped. The body shows
a fast reaction (15 to 60 sec) to the infusion, while the full effect takes about 5 minutes to
develop. The response time when sodium nitroprusside infusion is stopped is of the same
order. Wood et al [1987] have performed clinical studies of the sensitivities tosodium
nitroprusside in young and elderly patients to investigate the correlation between age and
dose requirements. They found that the sensitivity to sodium nitroprusside increases with
advancing years. This increased sensitivity may result from 1) diminished bamreflex activity,
or 2) resistance of cardiac adrenergic receptars to ca teehol amine. stimulation, or 3) alleration
of direct vasodilation effects. The average patient response observed to sodium nitroprusside
is a steady state gain of approximately- 0.3 mmHg/(mg/hr).

To gain a better understanding of the variability of the response to SNP, experiments
with 19 Yorkshire pigs were done [Blom and de Bruijn, 1982]. Surgical and anesthetic
procedures were standard. The arterial blood pressure was measured in the abdominal aorta
and SNP was administered by means of an IMED 929 computer controlled isovolumetrie
infusion pump. Data were acquired and processed by a PDP11/03 based data acquisition
system [Blom et al, 1981a], which also controlled the pump.

Static characteristics were obtained from dose-response measurements. Infusion rates of
0, 1, 2, 4, 6, 8, 10 and 14 ~o~g/kg/min of a standard solution of 100 mg SNP in 400 cc glucose
5% were administered until a new steady state was reached, which usually took 5 to 10
minutes. This procedure was performed both at the beginning and at the end of the
experiments, which lasted from 5 to 8 hours. In these experiments, a prototype adaptive
blood pressure controller was tested. The condusion of the tests was that the controller was
not sufficientJy reliable; the controller attempted to establish the patient's sensitivity from a
Kalman filter based correlation between input (SNP flow rate) and output (mean arterial
blood pressure), but although frequently a sufficiently accurate sensitivity estimate was
obtained, the estimate often proved to be unreliable due to the bad signal-to-noise ratio: the

166

arterial pressure was aften much more influenced by a multitude of other events than by a
change of SNP flow rate.

110

!GO !GO

150 ISO

\40 140

\30 \JO

120 120

110 ll
i OO

1\0

!00

qo

80

10

GO

60

•o

JO

20

\0

90

80

10

60

50

•o

30

20

\0

~~--~~--~~--~.--~,~-8~-.~~,~0--1~1--~12--~13~~"~' 5°
SNP (MI CROOR/1\0/M I~ l

Figure 9.1. Average normalized static characteristic of SNP in pigs.
The lower curve was obtained at the beginning of the experiment, the
upper curve approximately six hours later.

Dynamic characteristîcs were obtained continuously by correlating the mean arterial
pressure measurements with the SNP infusion flow rate while either of three controllers was
in effect: manual control (i.e. the anesthetist specifîed the infusion rate), an automatic
controller designed by Sheppard [1975] and the new adaptive controller prototype. In a
clinical environment, estimation of the patient's characteristics is only possible using normal
peroperalive measurements; no additional tests are allowed to obtain additional information.
Assuming a stahilizing controller operating around a given setpoint, a procedure is
necesssary to estimate the patient's characteristics from measurements of blood pressure and
infusion rate alone. Sheppard [1976] used a pseudo-random binary sequence disturbance of a
fixed SNP infusion rate to estimate the patient's impulse response. We decided likewise to
estimate the impulse response, but simply used the SNP input as given by the anesthetist or
the automatic controller. It was assumed, and shown correct, that normal infusion rate
changes by an automatic controller or an observant anesthetist are so frequent that a

167

'suffié~e~-~l~ éxciting input' is presented to the systern so that the patient's response can be
identified (although not so reliably that it can be used in an adaptive controller). The
Extended Kalman Filter [Jazwinski,l970] was used to continuously estirnate 30 irnpulse
response !>joints at 15 second intervals, representing a total irnpulse response time of 7.5
rninutes. -rpe estirnation procedure was made adaptive, so that changes could be tracked.

i

3 4
--tinoe(mlnu\ee)

Figure 9.2. Typical dynarnic (irnpulse)
characteristic of SNP in pigs. Both curves were
obtained at the sarne rnean arterial blood pressure,
the upper curve about 90 rninutes later than the
lower one.

These experirnents led to an SNP model consisting of two parts: the static and the

dynarnic drug characteristics. The static characteristic describes the steady state effect of the
drug at different infusion flow rates. The dynarnic characteristic describes the time course of
the effect when a bolus of one unit is applied (the irnpulse response). Figures 9.1 and 9.2
show the static and dynarnic responses to sodiurn nitroprusside as deterrnined in the animal
experirnents.

These characteristics are not constant: at later tirnes different curves were obtained, as
shown in the figures. In sorne of the animals the curves were yet different. Still, those
differences were not large when the curves were rescaled : qualitatively all curves were
sirnilar. In particular, changes occurred slowly in each individual.

Together, the two curves provide a model. They fully describe the effect of the drug, no
matter how the drug is applied. The assurnption is, that the sarne model, possibly with

different parameters, is valid for hurnans as well.

168

The static curve, shown in figure 9.1, was generally non-linear. In only 11% of the
dose-response curves a straight line was a fair approximation, while all curves could be fitted
well with an exponential, as follows:

x = a + b • exp (-c • u)

where x is the mean arterial pressure, u is the SNP flow rate and a, b, and c are regression
coefficients. The three regression coefficients a, b and c that describe each individual curve
showed a large variation, however, and could not be related to any of the observed
physiological variables (other measured variables, body weight, etc.). The characteristics
were not stationary either. In the course of the 5 to 8 hours of the experiments, in 83% of
the animals the curve shifted upward significantly. This upward shift showed a large
variation, between 8 and 58% of the initia! pressure, and could not be related to any of the
observed physiological variables.

The dynamic (impulse response) characteristic, shown in figure 9.2, was found to be
composed of a delay time of between 15 and 60 seconds foliowed by a second order
response, reaching an extremum after about two minutes foliowed by a fast decay (see also
Slate and Sheppard (1982]). The impulse response never lasted more than 6 minutes. In
genera!, the amplitude of the extremum decreased at lower pressures (which can be
explained by the nonlinearity of the static curve) and towards the end of the experiments
(which may be due to increasing baroreceptor reflex action). Inter- and intra-animal
amplitude (sensitivity) variations of upto a factor of 80 were observed.

K

()(>
T 'l

pressure

tiMe

"ïlil flow

tiMe

Figure 9.3. The step response.

Important for control purposes is the inlegral of the impulse response, the step response,
which shows the response of the pressure due to a unitary change of the infusion flow ra te,
as shown in figure 9.3. The complex frequency or s-domain transfer function of the step
response can be modelled as:

x (s) I u (s) = K • exp (-s • T) I (1 + s • •)

169

where x is the mean arterial pressure, u the SNP infusion flow rate, K the sensitivity
parameter (K is negative, indicating that the pressure decreases at higher flow rates), T the
delay time and • the dominant time constant (the time it takes, after the delay time, before
the pressure bas changed 63% of its total response).

Conclusions from this study [Blom and de Bruijn, 1982] were:

1. the dynamic cbaracteristics curve was relatively constant for all subjects at all times; the
sensitivity was the only parameter with a broad range: a factor of 80;

2. the static characteristics curve was relatively constant for all subjects at all times; the
sensitivity decrease (either as a function of the applied dose or of the pressure) was the
only parameter with a broad range;

3. the static characteristics curve showed an upward shift at later times1•

9.1.2. Sodium Nitroprusside control systems

Although sodium nitroprusside is the most frequently used drug when the arterial blood
pressure needs to be temporarily lowered, the use of the drug has its problems. In some
patients manual infusion is laborious because the flow rate has to be adjusted frequently; in
all patients the infusion's effect must be carefully monitored. Currently and in the past, many
research_ers [e.g_. Slate, 1980; Andre et al, 1985; He et al, 1986; Martin et al, 1987; Mclnnis
and Deng, 1985; MilJard et al, 1987; Reid and Kenny, 1987; Rosenfeldt et al, 1986; Stern et
al, 1985; Voss et al, 1986; Meline et al, 1986; Westenskow et al, 1987] have designed
automatic closed loop controllers. Such a controller bas as its task to compute and deliver an
appropriate infusion flow rate, so that the measured blood pressure is maintained at some
desired lower than normal level (the setpoint). Usually the mean arterial pressure (MAP) is
the quantity to be controlled.

This control problem is difficult. The problems are several: frequent artifacts in the blood
pressure signa! [Rampil, 1987], a large delay time, a pronounced non-linearity of the
response, reflexes that try to increase the pressure and that come into action after some time
(the combination of the two latter factors results in a system which is not identifiable [Cobelli
and Romanin-Jacur, 1976; van Genderingen, 1984]), and in general a huge variability of the
patient's characteristics, both between patients and for the same patient at different times
[Wood et al, 1987; van der Woord, 1981; Blom and de Bruijn, 1982]. The exact
pharmacology of SNP is unknown [Coad, 1987; Hutchinson and Hollway, 1985]. SNP is also
toxic [Patel et al, 1986; Butler, 1987]; overdosage bas to be avoided at all costs. Due to these
problems, classica! and modern control theory are not good enough [van Genderingen,
1984]. Although not always clearly stated, even modern adaptive controllers won't work
correctly all the time [Chizeck, 1986; He et al, 1986; Martin et al, 1987; Millard et al, 1987;

1 This upward shift is assumed to be so slow that no controller wiJl have trouble with
compensating for it. From now on, it will therefore be disregarded.

170

Meline et al, 1986). Oinical knowledge and experience seem to be necessary for a good

controL Many physicians do as well as or better than automatic control systems, at least if

they are constantly paying close attention. But that is exactly the problem: they do not; they

have more and aften more important things to do than adjusting infusion flow rates. Besides,

they are prone to errors [Hopking, 1980]. The advantage of computer control may not

necessarily be in improved control but rather in the convenience and lack of susceptibility to

distraction and fatigue that it provides (computer aided support).

An autornaled sodium nitroprusside infusion system for blood-pressure control should
have certain performance characteristics; some of these have been established by consensus.
These include, after a step change in setpoint, a 20 percent settling time1 of less than

10 minutes, a maximum oversboot of less than 10 mmHg, and a steady-state error within

+ 5 mmHg. Along with these performance characteristics, the controller also has some

clinical constraints. The first of these is a maximum allowable infusion rate, a function of

patient weight and drug concentration, to prevent cyanide toxicity. Another constraint is that
incremental increases in infusion rate should be limited to prevent rapid decreases in

pressure which can cause diminished blood flow or circulatory collapse.

The controller must also be able to handle a wide variety of patient types and a wide

range of patient characteristics; the largest number found in the literature concerning the

patient's sensitivity variability, for instance, is 48-fold [McNally et al, 1977], while we found a
factor of 80 in animals (section 9.1.1}. Furthermore, the patienl's characteristics can change
during the course of the operation. Thus, the controller must be able to identify the type of

patient it is controlling and then adapt to any changes that might occur. The performance of

the controller must be guaranteed, even during episodes in which no valid measurements are

available.

Another complication is that large 'noise' levels may occur in the blood pressure signa!.

Especially in the ICU, this noise may be due to sudden changes in the patient's emotional
state or level of activity in which case the controller must take appropriate steps to regulate

the blood pressure. Blood pressure is not always stabie in the operating room either. Surgical

stimulation during light anesthesia, bleeding, rapid fluid infusion, administration of other

vasoactive drugs, and respiration maneuvers can dramatically influence blood flow and

arterial blood pressure. However, routine procedures such as the taking of blood samples or
the flushing of a catheter give readings which are not real and must be disregarded.

In view of the problems of conventional rnadeling and estimation methods for this

particular problem, we decided to have a better look at the (rather successful) clinical

practice of ad hoc adjusting the infusion flow and to investigate the use of a simple but

1 The time required to bring the pressure toward the setpoint, within a margin of 20% of the
setpoint change.

171

robust controller combined with an expert system to monitor the contralier's behavior and
adjust its parameters if necessary. Robustness is the key issue.

The patient's behavior can be modelled in several ways: Sheppard [1976] gives a Laplace­
domain transfer function; several authors [Arnsparger, 1983; Stern et al, 1985] use an
ARMAX model. These authors have the following in common:

They use a model with a fixed structure representing the patient, with parameters tuned
for an average patient. By making the controller adaptive (usually the patient's
characteristics are estimated by some kind of least squares method) the controller is
adjusted for non-average patients and the time varianee is taken care of.

The controllers generally work acceptably for average patients, but for patients who are
exceptionally sensitive or insensitive the controllers experience problems with their
stability and accuracy.

Our own experience shows that the blood pressure signal is contaminated with mm:h

'noise' due to spontaneous fluctuations and transient disturbances, making it unlikely that a

parameter estimation method will consistently produce reliable estimates. Moreover, the
characteristics of the system (specifically its time-varying non-linearity and the reflex
mechanisms that elevate the 'z(!TO flow' pressure) result in the fact that the system is not (or ·
badly) observable [van Genderingen, 1984], making attempts to accurately estimate the
system's parameters almost hopeless.

9.1.3. Proportional Inlegral Derivative controllers

The basic formula for a PID controller is:

where

k = 1, 2, 3, ... is the sample moment;
uk is the newly computed output of the controller;
ek = xk - rk is the offset, the difference between the controlled system's output xk and

setpoint or reference r k;

fk = fk·l + ek is the inlegral of the difference;
gk = ek-I - ek is the derivative of the difference

and P, I and D are constant or variabie gain factors. The P-term's function is to bring the
measured output to the setpoint. Because P must be finite, the P-term alone cannot achieve
this; a constant non-zero offset would be the result. The I-term provides a memory function
which takes care that on average this offset is zero. The function of the D-term is to prevent

172

too large in- or decreases of u.; it thus acts as a safety mechanism. The D-term is often

eliminated, however, because of its adverse influence on stability due to non-specific
transients of xk ('noise' due to a variety of sources). This results in a slightly lower quality of
control, but this is compensated by a greater robustness.

The traditional approach in biomedical applications has been to use a fixed-design PID
controller to adjust the rate of drug infusion to the controlled system. These contro.llers are
relatively robust, simple to implement, they do not require an elaborate model of the system,

they produce zero steady-state error and when combined with logica! rules to avoid
overdosage, they can be successfully used for clinical therapy. But these controllers also

possess several disadvantages. These include their tendency toward instability (for large J)

and excessive noise sensitivity (when a large D is used in a noisy environment). There is also
no systematic way to alter the controller if the system changes in a reai-time environment.

Fixed PID controllers are thus too simple to adequately control such a complex variabie
as the human blood pressure, because no general methad exists to select the relative weights
of the three terms.when the system description is unknown. Since physiological systems are
often poorly characterized and may change with time, it is desirabie to use controllers that

automatically adapt their operation to changes in the system characteristics. PID controllers

can be tuned to the system they control if (some of) the system's characteristics are known.

Tuning rules for PID-eontroliers are well known [e.g. Krijgsman et al, 1989]. In particular,
it is recommended to use a sampling interval which is at least a factor 4 to 15 times smaller
than the system's settling time1• Tuning can be based on the system's performance after a
step input or on induced oscillations. Large enough step changes of the input are sometimes

available and may lead to an estimate of the system's delay time, gain and integration time

constant. Errors in these estimates are likely, due to the bad signa] quality of the pressure

signa!. Moreover, these parameters may change in time, and the estimates may therefore
only be useful for a short time. lnducing oscillations cannot be used clinically; unwanted
oscillations which should not normally occur might be used, however.

During cardiac surgery so many other factors besides SNP influence the blood pressure

that even a posteriori estimation of the system's parameters from recordings is quite difficult,

even by an attentive and resourcefut human observer [Zwart, 1990].

9.2. Knowledge implementation

This section describes the requirements that we determined to be the basis for the new
expert system based SNP blood pressure controller, which was to be employed during

cardiac surgery. Tbis section stales the assumptions from which the contralier's knowledge

base is derived, as well as some design criteria.

1 The settling time is the time it takes, after an input change, until 90% of the total output
change is observed.

173

9.2.1. The arterial pressure signa!

The blood pressure signa!, that is output by the monitor, can vary between 0 and 300
mmHg; the normal physiological range is more limited. The measurement noise, the
variability in the blood pressure samples due to the measurement process (transducer and
amplifier) is small (smaller than 1 mmHg) and assumed to be negligible. Transducer drift is
assumed to be negligible. In practice, the transducer is zeroed once in a while. During this
process the signal is invalid (and needs to be detected as such).

The blood pressure is influenced by a multitude of other physiological processes; an
example is breathing. This causes multi-frequency, more or less random, fluctuations, whose
amplitude is assumed to be small (less than 10 mmHg peak-to-peak). These 'normal'
variations must not disturb the controllers actions.

Once in a while a large transient can be observed in the mean arterial pressure. A
transient is a sudden large in- or decrease of the pressure which, even if not acted upon,
disappears after a short time. However, when a sudden large in- or decrease of the pressure
appears, the control system has no way to 'look ahead' to establish whether it will be a
transient or not. It is most prudent to temporarily assume the worst case situation.

Positive transients can be toleraled if they do not last toe;> long, These positive transients
arè oftéri caused by pain stimuli. Insufficient pain suppression may cause large increases in
blood pressure that last as long as the pain stimulus occurs and subside when the pain
stimulus is over or when pain suppression medication is increased. Such a blood pressure

increase should not be suppressed by SNP, because SNP is not a pain killer. If it were
suppressed by SNP, a large pressure undershoot might occur after the pain ends. Since too
low a pressure is more dangerous than too high a pressure, a control strategy of, at least
temporarily, not responding to a large sudden pressure increase seems best.

Negative transients are dangerous; they can indicate a state of shock1• SNP infusion
should stop immediately and should only be resumed when the blood pressure is
approximately at the setpoint again. However, if the negative transient was due to an artifact
of some sort, the expected after-effect of temporarily stopping the SNP infusion wiJl often be
a pressure overshoot.

The above mentioned interpretations of what causes transients, i.e. pain and shock, will
often be incorrect, as transients may have other causes. The control strategy that is foliowed
after such transients was chosen for the sake of patient safety and appears reasonable also if
the cause should be different. Anesthesiologists act in a similar manner.

1 This interpretation is probably more appropriate in the intensive care unit than during
bypass surgery. Yet the appropriate control decision is the same.

174

Transients needs to be detected for more reasons. The controller simply cannot
compensate for transients: they are too fast and too large. Moreover, an attempt to
compcnsate for a transient would cause a large change of flow, but without much effect. And
when the transient is over, the controller must reeover and bring the flow back to the pre­
transient level. It is therefore better to detect transients and select a different control regime
until the transient is over. It may also be undesirable to compensate for transients; rapidly

changing blood pressures are a diagnostic aid for the anaesthetist and should not be
obscured.

Many disturbances can cause the signal not to reflect the true blood pressure: blood
clotting, air bubbles in the line, flushing the arterial line, sampling of blood, electrocautery
etc. lf these disturbances can cause an incorrect computation of the mean pressure, they
should be detected by the validation algorithm, as well as transducer, catheter and amplifier
failure. Other disturbances reflect the real blood pressure, but are due to instahilities due to
e.g. surgical events or administration of other drugs with a vasoactive effect.

The signa] validation algorithm (section 8.2) computes, for each heart period, the mean
arterial blood pressure value and sets a validity flag, which indicates whether this value

reflects the real mean pressure or not. If not, the value cannot be used. The signal validation
algoritbm is based on the assumption that almost identical blood pressure periods follow
each other; this excludes use of the controller during certain therapeutic procedures (e.g.
when employing a balloon pump that supports only one beat out of every two or three) and
forsome patients (e.g. when the patient's heart rhythm shows persistent bigemini).

The controller has a cycle time of 5 seconds. An algorithm averages the output of the

validation algorithm over a 5 second interval; values which are flagged as invalid are, of
course, not included in the average. The number of periods included in the average also
depends on the heart rate. If in the 5 second interval novalid beats were found, a 'pressure
not valid' flag is set by the algorithm. Thus the expert system controller is provided with a
new input every 5 seconds, consisting of a MAP value and a validity flag.

9.2.2. The controller

A diagram of the blood pressure control system is shown in figure 9.4. The system
communieales with the outside world in three ways: it acquires the analog arterial blood

pressure signal from the AD-converter, it communicates with the infusion pump through an
RS-232 interface, and it communieales with the user through the computer's keyboard and

display.

175

Lob Moster ... -··-··--·------·--- i

IBM PC/AT
.---""----------.--·--··--·-- --·-~

i
!

,----L--L---,!

expert systeM

l·-----·-----·---·-J

Figure 9.4. The blood pressure control
system.

i

The controUer bas two control modes: manual and automatic. The controller starts up in
manual mode with a zero flow rate and a setpoint equal to the MAP at this time. Through
the keyboard, the setpoint can be increased or decreased at all times, in steps .of 1 mmHg,
between limits. Tbe nèw setpoint depends on the number of times the setpoint up/down
keys are pressed (the keys have auto-repeat); the new setpoint is, in order to be able to
detect large setpoint changes, effectuated after waiting for a fixed time (8 seconds) after
either of these keys was last pressed. In manual mode, the infusion flow rate can be
increased (up to the maximum value allowed) or decreased (down to zero flow) in steps of
0.1 ml/hr (approximately 0.02 llg/kg/min for an 80 kg patient); the new flow rate takes
effect immediately (in the next run, i.e. within at most 5 seconds). If tbe system is in manual
mode, it can be switched to automatic. Automatic mode starts up with the flow rate that was
set in manual controL

A safety key allows stopping the infusion immediately (i.e. within 5 seconds). When in
manual mode, the flowrateis set to zero. When in automatic mode, manual mode is
entered with a zero flow rate.

Under certain conditions (air in line; occlusion; low fluid; malfunction), the infusion
pump will stop delivering fluid, give an alarm, and will not obey further commands till the
problem is resolved. The cantrolling system needs to know these facts and act appropriately.
Handling pump errors is done as follows: if in automatic mode, the system first switches to
manual mode; next, the fact that the actually delivered flow rate is zero and not any more
under control of the system is recognized, and lastly the appropriate alarm message is
displayed. After repair of the alarm condition, which may take any time interval, control can
be resumed.

176

Due to instahilities in the blood pressure signa! caused by all kinds of artifacts, the signa!
can be invalid for periods (much) Jonger than 5 seconds. Feedback control is theo impossible
and fèedforward (open loop) control is, for safety reasons, allowed for only a short time. The
following 'hold mode' solution is chosen for the controller:

control continues using a MAP equal to the last valid value if the signa! is lost during at
most 30 seconds;

- if the last valid pressure measurement was less than 20 mmHg from the setpoint, then
control continues using a MAP equal to the last valid value during a signa] loss of at
most 60 seconds;
if the signa! is lost for a Jonger time, the system gives an audible alarm and control
returns to manual mode with a flow rate identical to the Jast valid flow rate given.

To resume automatic mode, the signa! must be valid again; one key-press is then
sufficient.

9.2.3. The SNP charaderistics

Sensitivity varies widely, both between patients and in an individual patient over time. To
ensure safety, the worst case sensitivity range is assumed to be a factor 81, consistent with
our findings in animals and higher than the largest factor the literature mentions for humans
(section 9.1.3). No simple controller can handle this wide range. In the animals (Yorkshire
pigs, see section 9.1.1), normal infusion flow rates varied from 0.1 to 10 micrograms per kg

body weight per minute; in humans 0.5 to 5.0 tJ.g/kg/min is usually adequate, with the lowest

doses required in the presence of powerfut inhalation anesthetics.

As blood pressure decreases, the renin-angiotensin reflex comes into action to fight the
lower pressure. Thus, at lower pressures, the patient's sensitivity is decreased. In some
patients this effect does not occur. In others, the effect is so strong, that almost no SNP dose
can force the blood pressure lower than a certain limit. Reflex action also increases the zero­
flow-pressure, i.e. the pressure that wou ld develop af ter the in fusion stops.

9.2.4. The PID controller

Because a PID-eontrolier is simple and robust, it was chosen as the basic controller.

Initia! tests during 33 cases provided a verification of the animal data about the dynamic
SNP response in patients; these are given in table 9.1, together with the ranges that the
controller was designed to handle. The controller's nomina! gainis - 0.2 mmHg/(mg/hr),
approximately equivalent to- 0.04 mmHg/(tJ.g/kg/min); the relative gain varies between 1/9
to 9 in steps of a factor 3, and the control gain is equal to nomina! gain times relative gain.

Simulations were then performed to estab!ish the best (most robust) values for the
control parameters. This is a partly intuitive process called 'tuning', in which many

177

qualitative and quantitative campromises have to be made, e.g. how to obtain as fast a
settling time as possible while still ensuring a minimal overshooi for a worst case
combination of patient parameters. For numerical data on what is meant by terms like
'good' and 'reasonable' see Lammers [1990b].

minimum i maximum de~ign) design
found found opt~mum range

relative gain 0.6 4.0 1 .1-9.0
time delay

I
15 75 50 25-100 seconds

time constant 30 100 60 30-120 seconds

Table 9.1. Dynamic SNP parameters. Extremes from 33 cases and the ranges that the

controller was designed to handle.

Simuiatiens showed that the derivative term should be set to zero, and that a constant
integrative term could be chosen without a significant degradation of performance. The
resulting controller is, however, not yet robust enough to handle a sensitivity range of an
assumed factor of 81. Simulations established that the controller's parameters could be

chosen in such a way that if any single control parameter was a factor 2 off from the

counterpart patient parameter, control would still give good performance, while a factor 3

off would still give reasonable performance. The controllers pelformanee wou_ld alsobe still_
acceptable if the estimates of two cóntrol parameters were both a factor 2 off
simultaneously. Tuning is made difficult by the fact that the performance ranges are not
symmetrie; if the patient's time delay is too small and his time constant too large compared

to the controller's assumptions, this has modest consequences for the contralier's
performance, whereas too large a time delay and too small a time constant have serious
consequences.

Table 9.1 shows that the contralier's time constant and time delay can be fixed at an

optimum value, but also that its gain needs to be adapted. As a basis for this adaptation, the

patient's sensitivity as well as the contralier's relative gain are classified into one of five

categories, as shown in table 9.2, and a number of 'gain up' and 'gain down' mechanisms is

introduced which monitor the controller's performance in various ways and can adjust the
control gain in steps of a factor 3.

lpatient's sensitivity relative control gain

very insensitive
insensitive

normal
sensitive

very sensiti ve

Table 9.2. Sensitivity and gain ranges.

178

9
3
1

1/3
1/9

For safety reasons, the system starts to control at a very low gain (1/9), as it initially
assumes a very sensitive patient. In many cases, however, this control gain will he too low.
Optimally, the controller's gain should he inversely related to the patient's sensitivity.

A PID-controller's performance can he established from observations in two ways (for
details on how the qualifications are quantified for the SNP controller see Lammers
(1990h)):

1. In a steady state condition (the mean pressure is or should he approximately constant),
the controllers gain is too low if the offset (the difference between the actually measured
pressure and the pressure setpoint) is, on average, significantly different from zero for too
long a time; and the controller's gain is too high if the offset is, on average, zero, but

shows oscil.latory behavior.

2. Under dynamic conditions (the mean pressure changes or should change, e.g. due to a
setpoint modification), the controller's gain is too low if the pressure changes too slowly;
and the controller's gain is too high if the pressure changes too rapidly.

Region
0

1 ~AP
55

35
2 "' 20
3
4 ..._ 10

5 - 5

6
- 5

7
- 10

Setpoint

8
-20

...J5
9

10
-55

i>
I tiMe [Min]

5 10

Figure 9.5. Offset regions around the setpoint.

A measure of the MAP progress after a change of the setpoint is thus necessary. lf the
gain is correct, the progress will he within certain known limits; if the gain is too low, the
progress is slower than a limit value and if the gain is too high it is faster than another limit
value. The progress of the pressure is monitored by constructing a number of levels around
the setpoint (figure 9.5) and observing how long the actually measured pressure stays within

179

a region between two adjacent levels. After a setpoint change, the MAP moves to one of the
regions, and control actions wil! attempt to move it back to region 5.

The width of the different regions is chosen in such a way that if the control gain is
correct, the MAP stays in each region for about 2 minutes. If the MAP stays in a region for
Jonger than 4 minutes, the progress is too slow and the relative control gain is tripled, i.e.
the patient's sensitivity is assumed to be one class lower (see table 9.2); if it stays in that
region for an additional 3 minutes, the control gain is tripled again. On the other hand, if
tbe MAP moves through a region witbin a period of one minute, the gain is too high and is
divided by 3. Progress is thus determined by the time the MAP stays in a region, or rather

by a slope (MAP change per time period). Direct computation of a slope in a noisy signa! is
not reliable; to reduce noise influences, the slope shoul.d be computed either over a certain

time or over a certain MAP change. The adaptation mechanism uses bath: if the MAP
changes slowly, the gain wiJl be increased when after a certain time the MAP is still found to
be in the same region; if the MAP changes quickly, the gain will be decreased as soon as a
border is crossed.

To prevent the MAP from asciilating back and forth between regions due to small
spontaneous pressure variations, the region borders have hysteresis: the MAP is not
considered to have left a region befare it is already 2 mmHg beyond the region's border.

Figure 9.5 shows, for example, that the border between regions 5 and 4 is at 5 mmHg. The
MAP musnhen be 7 mmHg from the setpoint befare region 5 is left and region 4 entered, .
and the offset must decrease to 3 mmHg again befare region 5 is returned to.

Simulations demonstrated, however, that the region-based gain down mechanism alone is

not always adequate. Due tö the SNP characteristics it takes about 2 minutes befare the
MAP shows a significant change after a setpoint change, then it takes about one minute
befare a region is traversed; only then is the control gain decreased, and a significant effect
of the latter takes another 2 minutes. In all those 5 minutes, the MAP has moved towards
tbe setpoint and may already have passed it. A faster gain down mechanism, activated by a
persistent large relative flow change, is added to prevent such an overshoot. Th is is done as

follows. One of the system's safety features is that in each 5 second sample/control period
the SNP flow in- or decrement is limited to 7% of the current value (or to 0.07 ml/hr if the
flow becomes lower than 1 ml/hr). This means that it takes about one minute to double (or
halve) a significant control signa!. Because the most effective methad to limit tbe change of
flow is to decrease the gain, the gain is decreased if the flow change remains at its
maximally allowed value for langer than 15 seconds. This gain down procedure is disabled,
however, during the first 30 seconds after a gain up procedure and during the first 15
seconds following a setpoint change.

A third gain down mechanism is active when oscillation is detected. This mechanism is
slow, since it must detect several consecutive border crossings; it takes approximately 10

minutes befare asciilation is detected. By definition, this is too late: oscillation should be

180

prevented, not detected. In practice, this oscillation detection gain down mechanism is
expected to come into action only rarely; it exists for safety reasons. Some patients are
înherently unstable, however; they spontaneously show large MAP fluctuations comparable
to oscillations. The best a controller can do in such cases is to decrease the gaîn, thus
stahilizing the control signa!, the same action as is required after the detection of oscillation.

In case of oscillation, we expect the average MAP to be near the setpoint, in region 5. To
detect oscillation, the number of crossings from region 5 to region 4 and from region 5 to

region 6 is counted; an oscillation is detected as soon as the counter reaches a value of 4. To
prevent a few crossings over a Jonger time from resulting in an erroneous detection of
oscillation, the counter is decremented every 4 minutes (but not below 0). Simulations have
shown this to be an effective procedure.

Due to the non-linearity of the SNP dose-response curve, a gaîn decrease is necessary to
ensure safety if a large setpoint increase is ordered, since this might mean a move to a
region of higher sensitivity. This mechanism acts as soon as a setpoint increase of at least 40
mmHg is ordered within a short time (but only if the flow is currently less than half its

maximally allowed. value). It anticipates: it becomes active before the MAP shows any effects
due to the setpoint change. In some cases the gain down action will be inappropriate, and
then a gain up action may reverse its effect after some time.

The control formula which is used in the basic controller is written in such a way, that a
flow increment is computed:

where

y
r
u
G
I
p

mean arterial pressure
setpoint pressure
flow rate
adaptive control gain
I-parameter , 0.0960 to 0.0720
P-parameter, 0.0056 to 0.0036

[mmHg]
[mmHg]
[ml/hr] = (mg/hr]
(1/9, 1/3, 1, 3, 9)
((mljhr)/mmHg]
((ml/hr) /mmHg)

Moreover, the flow increment uk - uk-I is limited to 7% of uk·I• as mentioned above. In
the formula, uk and Yk are the currenl, uk·I and Yk·I the previous SNP flow and pressure
respectively, while the sample interval is 5 seconds.

The P- and I-parameters are allowed to vary, because simulations demonstrated that in
regulation different values were appropriate than in stabilization (a phase plane approach is
described in Krijgsman et al [1989] to realize a similar strategy). If the offset is 100 mmHg
or more, the lowest values are used; at smaller offsets, the parameters proportionally grow to
their highest values. For instance, if the offset is 50 mmHg, the actual P- and I-parameters
are halfway between the two values given above. This makes the controller non-linear; since
the offset will generally be less than 50 mmHg, the non-linearity is usually smal I.

181

9.2.5. Safety features

Cyanide is produced when SNP is metabolized [Patel et al, 1986). Blood thiocyanate is an
intermediate product; thiocyanate levels above 150-200 mg/1 exceed the detoxifying powers
of the body, and acute anoxia may result. This action is reversible, but only if recognized
early. Cyanide taxicity should be suspected in any patient who requires a flow rate greater
than 10 1-1g/kgjmin; recommended 'safe' infusion rates are less than 2.0 1-1g/kgjmin. This sets
an upper limit to the average SNP flow rate. Another reason to limit the flow rate is that if,
due to some unexpected occurrence, the infusion flow rate ever reaches a very high value,
the controller will not be able to immediately reduce it to the correct level. For both reasans
an upper limit must be set for the flow rate.

Cyanide may also accumulate; taxie blood levels may occur if more than 1 mg/kg is given
over a period of two or three hours (rates greater than 4 1-1g/kgjmin for more than 2 or 3
hours may be unsafe). The 'safe' maximum dosage has been reported by others to lie
between 3.0 and 3.5 mg/kg. This sets an upper limit to the total SNP dose allowed. The
metbod is sametimes abandoned because the patient is considered resistant, if a satisfactory
low pressure does not follow infusion of 50 mg over 30 minutes; this occurs mainly in young

patients.

There are two types of insufficient respons~. or non-response. in which the controller
cännot cope anymore: a low setpoint cannot be reached despite the maximum infusion flow
rate, and a high setpoint cannot be reached despite a zero flow. Non-response can be
detected in several situations: the pressure stays outside region 5 fora very long time; the

maximum or minimum flow rate bas been infused for an extended period of time; or the
system requests a gain up when the gain is already at its maximum value.

In the first situation the MAP approaches the setpoint very slowly or not at all. If the
setpoint is below the present MAP, such a low MAP may not be reaebabie for this particular
patient. If the setpoint is above the current MAP, and the flow is smal! or zero, the MAP
will not rise toward the setpoint. As soon as the MAP is in any region but region 5 for 250

seconds, the gain is tripled. lf it stays in that region for another 180 seconds, the gain is

tripled again. If the MAP still stays in that region after the second gain adaptation, this is
evidence of non-response. This is not certain, however; for less sensitive patients (1/3 and
1/9 class) the gain must be adapted 3 or 4 times befare it is correct. Thus non-response is
considered to exist only if the pressure remains in a region (any region but 5) fora very long

time and if the gain has already been enlarged to at least 3.
The second situation that gives evidence for non-response is that more than 95% or less

than 2% of the maximum flow rate is used for a continuous period of more than one
minute. To allow the flow rate to temporarily be at its maximum or minimum value after a
setpoint change befare gain adaptation occurs, we also require the setpoint to be constant
for one minute; further setpoint changes will be serviced after this period is over.

The third situation for non-response is a gain up request while the gain is already at its

maximum.

182

If non-response is detected, further gain increases are disabled and the flow rate is
limited to its maximum or minimum value. A message is issued only if the non-response is

caused by a flow rate larger than 95% of its maximally aJJowed value.

In the experimental stage of the blood pressure controller it was decided to limit the

infusion flow rate to a 'safe' 2 ~g/kg/min, a factor 2.5 to 4 lower than the maximum rate

mentioned by others [Hammond et al, 1979; Slate, 1980; Packer et al, 1987], but in

agreement with standard practice (much used manual settings of the SNP flow rate that we

observed were 0.2, 0.4, 0.8, 1.6 and only occasionally 3.2 11-g/kgjmin; intermediale values

were seldomly used). It is therefore to be expected that the controller will not be able to

sufficiently depress the pressure in less sensitive patients.

9.3. Design of an expert system based SNP controller

Conceptually, the new SNP blood pressure control system consists of the following sub­
systems, that will be described in this section:

1. A data acquisition and validation module (section 9.3.1).

2. A controller module (section 9.3.2).

3. A supervisor module (section 9.3.3).

4. A user interface module (section 9.3.4).

Section 9.3.5 describes some of the knowledge engineering properties of the system which

make the system's performance accessible for later evaluation, but which are essentially

'bidden' for the clinicians.

9.3.1. Data acquisition and validation

All timing in the system (Ream et al, 1987] is derived from the sampling process.

Interrupt routine readADbuffer, installed by the expert system when it starts up, samples the

arterial pressure signa] at 50Hz and buffers it (figure 9.6). After calibration of the signa!

[Nelson and Ream, 1987] is performed, the validation algorithm acquires its data from this
buffer, validales the signa! and derives the 5 second mean. The inference engine waits til!

the 5 second mean is available and then processes it. The expert system thus has a cycle

time of 5 seconds: after the acquisition and processing of 250 samples the knowledge base is

re-evaluated and the SNP flow rate, if necessary, readjusted.

Data acquisition and validation of continuous signals has been described in section 8.2,

where the arterial blood pressure signa! was used as an example. Although many clinicians

are used to cantrolling the systolic arterial pressure, the controller uses the m ean arterial
pressure because it is less influenced by measurement problems, such as blood clots or air

bubbles in the catheter, the measurement site, and spontaneous fluctuations.

183

~AP Qnnlog

50Hz

Figure 9.6. Analog to digital conversion
processing.

During perfusion, theperiod ïn which .the circulation of the blood is reälized by a heart­

lung machine, the pressure signa! is almast flat. No cycle period can be detected, but an

artificial cycle period of one second is imposed. During perfusion, a different validation

algorithm therefore checks only 1) the signal's mean value (the MAP), and 2) the difference

between the signal's minimum and maximum over a cycle.

9.3.2. The adaptive PID-eontrolier

The controller module, the function of which is described in section 9.2.4, is activaled

once every 5 seconds; it receives as its input the validated 5-second-mean arterial pressure,

and generates as its output a new infusion flow rate, which is then communicated to the

computer controlled infusion pump by buffering a 'new flow rate' message and activating the

pump's interrupt routine.

> 1 ~no~J I - in.~n.i- >I- in:=~~i-
1 <· J l < t~ve r-- 1 < tive

Figure 9.7. The patient's sensitivity sub-protocol.

The knowledge about the patient's sensitivity resp. the control gain is maintained in a

sub-protocol (figure 9.7). The nomina! sensitivity is assumed to be - 0.2 mmHg/(mg/hr).

184

lnitially, to eosure safety, the patient is assumed to be very sensitive. The patient's sensitivity

is decreased or increased according to rules that monitor the offset according to the

knowlcdge set forth in section 9.2.4. A sensitivity increasing rule thus looks like:

Gain Up Region 0: 'Gain must be increased while in region 0'
Region 0 > 260-and Gain Const > 180 and Setp_Const > 120
Then True: Gain_up_Requested

This rule also shows some gain adaptation constraints. Not only must the pressure have

been in region 0 for at least 260 seconds (the MAP always leaves this region within 260

seconds if the control gain is high enough), but the gain must a lso have been constant for at

least 180 seconds (it takes approximately this time before the previous gain up procedure

has fully taken effect) and the setpoint must have been unchanged during the last 120

seconds. The last constraint is needed in order not to confuse the region-based adaptation

mechanism. Suppose that the user repeatedly changes the setpoint in such a way that the

offset remains constant. This action forces a varying MAP to stay in one region for a long

time, whereas a long stay in a region is meant to be interpreted as a long period of (almost)

constant MAP at a certain distance from a constant setpoint.

Moreover, this rule requests a gain change only; some conditions (non-response situation,

the gain is already at its maximum value, a transient is going on) prevent the request from

being honored.

9.3.3. The supervisor module

The supervisor module has several tasks in controlling the overall behavior of the control
system.

It controls the controller's mode: manual or automatic. The controller's mode is

maintained in a sub-protocol, as shown in figure 9.8.

nuaO=- > 1 ~ut;~-:~i~~~~
ode - 1 < mode

- ----'

Figure 9.8. The manual vs. automatic sub-protocol.

fnitially, the system is in manual mode. A switch from manual to automatic mode or back

is performed when the appropriate key-press is detected.

The supervisor module must also warn if the controller cannot cope anymore, e.g.

because the patient is resistant or the maximum cumulative dose has been reached. The

implemenLed knowledge has been detailed in section 9.2.5.

ft must warn the user if a pump error is detected. In case of a pump error, the system

gives an auditory signa!, and starts interrogating the pump at 5 second intervals in order to

185

detect if the problem has been solv.ed. As soon as the pump error has been resolved, the
SNP flow rate is restored to its pre-error value, and control can be resumed.

It warns when unexpected pressure transients are detected. During a positive transient,
the SNP flow is kept constant at the pre-transient value. The positive transient ends when
the MAP is near the setpoint again or after a certain time has passed; in the latter case the
positive excursion was not a transieot, and control action must be initiated to eliminate the
too high MAP. During a negative transient the SNP flow is shut off. The SNP flow returns to
its pre-transient valUe when the pressure is near the setpoint again. The zero flow period
often causes a pressure overshoot. While such an overshooi occurs, the SNP flow is kept at
its pre-transient value as well. The occurrence of transients is maintained in the sub-protocol
of figure 9.9.

, I > 11 overshoot I
i I

1< ------------------~
~--------1<------------------------------

I
Figure 9.9. The transients sub-protocol.

lnitially, the state is 'no transient'. A positive transient is detected if the MAP rises more
than 20 mmHg in less than 15 seconds, or more than 25 mmHg in 30 seconds, or more than
33 mmHg in 60 seconds or more than 40 mmHg in 150 seconds; a trigger rul~ be~mes t~e,
the pre-transient pressure is stored, and state 'positive transient' becomes active. During a
positive transient,the flow is frozen at 95% of its pre-transient value if the system is in
automatic mode. If the system is in manual mode, the flow is not changed and can be
adjusted manually as normaL Switching to automatic during a positive transient will freeze
the flow at the level it had in manual mode. The positive transient is considered to be over
as soon as the MAP is near the setpoint again or after 5 minutes have passed, whichever
comes first; in the latter case the positive excursion was not a transient but lasted Jonger.

A negative transient is detected if the MAP falls more than 23 mmHg in less then 15
seconds, or more than 30 mmHg in 30 seconds, or more than 33 mmHg in 60 seconds. This
downslope marks the start of a transient; the flow is shut off, and a reference value for the
MAP, halfway between the current MAP and the pre-transient MAP, is stored. State
'negative transient' becomes active. The transition to state 'back to setpoint' is made when
the MAP rises above the reference MAP; the transient is then almast ended. The flow is
restored, but frozen at its pre-transient value. Now an overshaat is expected due to the zero
flow period, but this oversboot does not always appear; state 'overshoot' handles the
overshoot. When the MAP approaches the pre-transient MAP value again, the overshaat has
ended and normal control is resumed.

In many cases the complete sequence will not happen, for instanee if no oversboot occurs.
In such cases, time-outs occur, which are not shown in the sub-protocol of figure 9.9. If state
'back to setpoint' or 'overshoot' is active for more than 90 seconds, no oversboot is detected

186

and state 'no transient' becomes active again. Similarly, if the MAP does not rise in state
'negative transient', state 'no transient' becomes active again after a 4 minute delay.

The transients sub-protocol is thus a (partial) description of what can happen in the signal
(states the signa! can be in), what must be detected to track the signal's progress through the

transients (triggers to be evaluated), and whiclz actions must be perfonned meanwhile.

9.3.4. The user interface

Auto

To a large degree the functionality of a device or system is determined by its user
interface [Coolen, 1985; Mitchell, 1987]. Since the new blood pressure controller system is
both a research vehicle designed to test a knowledge base and a clinical instrument designed
to stabilize the blood pressure, there are also two different classes of users: knowledge
engineers and clinicians. These users have very different requirements. But if the system is to
be clinically acceptable, its user interface is to be designed for clinicians; the knowledge
engineering features should nat interfere.

The user interface module accepts commands from the user, and it displays the

contralier's performance. Displayed are: the MAP and its setpoint, and the SNP flow rate,

187

both as trend curves over the Jast 30 minutes and as numbers giving the current value;

warning and error messages; and the functions of the currently active keys.

The layout of the screen is globally shown in figure 9.10. The lower boxes of the screen

correspond with function keys. In this figure all function keys are shown, but in practice only

keys which are functional in the context of that moment are shown. The displays are almost

the same in manual and automatic mode; the major difference is that the user can

manipulate the flow rate only in manual mode (as a consequence, the 'flow up ' and 'flow

down' keys are inactive and thus not presenled on the screen in automatic mode). The blood

pressure and flow rate trend displays have the same time scale. The current values are

shown numerically at the right hand side of the plots. Messages and warnings can be

displayed in the lower screen window; they carry a time stamp.

In manual mode, both setpoint and flow rate, in automatic mode only the setpoint can be

manipulated 'up' or 'down'; in automatic mode the flow rate is computed. The 'flow zero'

key switches the infusion flow rate to zero immediately (within 5 seconds). The 'to auto' and

the 'to manual' keys switch from manual to automatic mode and back. Key F5 selects the

'perfusion validation', key F9 the normal (pulsatile pressure) validation algorithm. Key 10

halts the system but, to prevent errors, can do this only if in manual mode with a zero flow

ra te.

The keyboard has its own interrupt routine; this is set up similarly to the AD-converter

interrupt routine. This w~ ne~ssary to keep the displayed setpoint and flow rate up to date,

so that immediate visual feedback is possible. The interrupt ·routine also buffers the keys

and/or the number of key-presses for use by the expert system; the expert system consults

these buffers and takes action within at most 5 seconds.

9.3.5. Knowledge engineering properties of the system

The knowledge engineering properties of the control system must allow a complete

reconstruction of the system's internal (inferencing) and external (control) performance

during the surgical procedure. This necessitates storage of several types of information.

- Samples. The arterial pressure signa! is sampled at 50 Hz, and the total system's

operation finally depends on these samples. Preliminary tests have provided much

knowledge about the signa! but exceptional signals may still occur, whose detailed

analysis is required. The 50 Hz samples can thus be written to disk, but since the disk's

capacity is limited this storage must be selective. We have chosen to use two of the

keyboard's keys to initiale and stop the storage to disk of raw samples.

- Features. If samples are stored, the performance of the feature extraction and validation

algorithm can be reconstructed because after every pulse period all feature values and

their statuses are stored to disk. lf no valid period is found, a time-out mechanism still

generates an artificial 'period'; some of the features of such an artificial period offer

188

insight into the nature of the signa!, in particular the signal's maximum and minimum
val u es.

- MAP values. The input to the expert system is a sequence of 5 second averaged MAP

values and their statuses. These are stored to disk. These data allow a complete

reconstruction of the expert system's operation.

- Conclusions. The 'debug' output of the expert system, consisting of the conclusions after

every run, has been described in section 5.6.4. This output makes it easy to analyze any
particular inferencing detail using the Debugger /Tracer tooi.

In addition, a knowledgeable student who attended the tests and supervised the

equipment made notes of all surgical and anesthesiological maneuvers that influenced or
could influence the blood pressure.

9.4. Clinical tests

The control system was tested during cardiac surgery procedures, mainly bypass cases,

after approval by the Medica) Ethics Committee and with informed consent of the patients.

Clinical tests proceded in three phases. During the first phase all signa) processing and
display functions were tested, including the data validation. During the second phase (33
cases) the system was tested under 'open loop' conditions; although control was still manual,
an SNP flow rate was computed by the expert system. The first and second phases also

provided extra information on the ways in which clinicians controlled the SNP flow rate. The

second phase was mainly used to debug the system, to correct the knowledge base where

necessary, to gain sufficient confidence in the system's performance, and to familiarize the

clinicians with the system. The third phase (30 cases), closed loop control, was started when
we thought the system could be trusted under all conditions; during this phase the
knowledge base remained unchanged.

Bypass surgery has three stages. During the first stage access to the heart is made, and
blood v~ssels are resected .from a leg. During the second stage, these vessels are used to
replace defective coronary arteries. The heart is inoperative and blood circulation and

oxygenation is provided by a heart-lung machine (perfusion); the resulting blood pressure
signa! is almost flat. The MAP is mainly controlled by the heart-lung machine and is at an

exceptionally low level (around 40 mmHg). During the third stage the heart is reactivated,
the chest is closed and the MAP is allowed to rise again to its pre-perfusion level.

The clinical procedure foliowed during the closed loop control tests was as follows:

Prepare the infusion fluid. During the clinical tests, standard procedures were imitated as

much as possible, so that a t least manual control would be familiar. One consequence

was to use an SNP concentration of 100 mg/1, 10 times lower than normaL This was due

189

to a limitation of the IMED 929 pump that was used in the tests; it can only provide a

flow in increments of 1 ml/hr, whereas the pump that was normally used could deliver

the flow in increments of 0.1 ml/hr. The extra dilution made the differences between the
pump settings invisible to the clinicians.

Prepare the infusion pump, flush the line and conneet it to the fluid infusion line.

Perform the calibration procedure by offering a zero pressure to the pressure transducer,

start the calibration algorithm and press the calibration button on the pressure monitor.
The control system is now in manual mode.

- As soon as a reliable arterial blood pressure is available, the system's automatic mode
can be entered after specifying a setpoint.

While in automatic mode, the clinician must keep the system's setpoint up to date, i.e. in

agreement witb the desired MAP pressure.

While testing in automatic mode, the clinician must supervise the control system's

performance; he has the options to 1) immediately switch the flow to zero and 2) to
return to manual controL

When perfusion starts, the perfusion validation algoritm must be activated; when

perfusion ends, the normal (pulsatile) validation algoritm must be reactivated.

At the end of the procedure the system must be halted.

9.4.1. Data acquisition and validation performance

The validation algorithm (see-section 8.2) was tested separately. It was shown to perform

adequately: all significant artifacts were detected. A small percentage of acceptable periods

was flagged as invalid, but not enough to significantly influence control actions. This is due

to both the 5 second averaging algorithm which delivers a valid MAP as long as at least one

period within the 5 second interval is valid, and to the fact that missing upto twelve

successive 5 second average values has an negligible impact on the controller's performance
(see section 9.3.2). For details see Zwart [1990].

9.4.2. The control performance

The controller was generally switched to automatic soon after the arterial pressure

measurement became available, and remained in control before, during and after perfusion.

Occasionally the clinician considered the controller's response to be too slow; manual

control was then selected, the correct flow rate was set, and automatic mode was returned

to.

A major aspect of the controller's performance can be assessed by measuring the offset,

the difference between MAP and setpoint, over time. Table 9.3 gives such an assessment for

manual control duringa total of 33 cases (85889 5 second MAP averages), and table 9.4 for
automatic control during 30 cases (60970 5 second MAP averages; manual control episodes

are not included) [Zwart, 1990]. The offsets are divided into 5 mmHg ranges, and the total

offset counts within each range are given. In the interpretation of these results, several

190

factors are important to consider. In the first place is it, both for the clinician and for the
controller, impossible to control the pressure if the setpoint is above the MAP (no negative
flows can be given), or when the imposed maximum value limits the flow rate. In the second
place, during manual control clinicians were sametimes too preoccupied with other matters
to promptly mention the new setpoint that they considered appropriate in a new situation.
Third, it is not always the control system's highest priority to keep the MAP close to the

setpoint, e.g. when transients occur; the same is undoubtedly true for the clinician. Fourth,
manual control episodes during an automatic control regime were disregarded. On average,
one such episode occurred during a case; generally it lasted less than 20 seconds but its
influence on the pressure was of course over a longer period. Fifth, the numbers of cases
compared are too small to allow definitive pronouncements.

--
MAP - s e tpt

(-25
-25 ' -20
-20 -15
-15 -10
-10 -5
-5 0

0 5
5 10

1 0 15
15 20
20 25

) 25

- - -- ,-·
count

6065
3505
5975
7429

11403
13834
11662
10126

I
5503
4034
2459
3903

8

*
*
*
*
*
*
*
*
*
*
*
*

5889 MAP values

********** *
*** * *****
*** **

*

Table 9.3. Assessment of manual control during a total of 33 cases; number of 5

second offsets within 5 mmHg ranges.

MAP - setpt

(-25
-25 -20
-20 -15
-15 -10
-10 - 5

- 5 0
0 5
5 10

10 15
15 20
20 25

) 25
- ·

c ount

2150
2138
3703
6052
9531

10606
9494
7434
4608
2472

I
1386
1396

-

60970
-·-·---

**** * *

**** **

* *****

**
**

** * * * * *
*** ******

Table 9.4. Assessment of automatic control during a total of 30 cases; number
of 5 second offsets within 5 mmHg ranges.

191

Another way to present these results is by noting how aften the offset stayed within a
zero-centered band (table 9.5). We notice from table 9.5 that automatic control is
consistently better.

~~ffset band manual auto

! ± 5 mmHg 30% 33%

I ± 10 mmHg 55% 61%

I
± 15 mmHg 70% 78%
± 20 mmHg 81% 88%

Table 9.5. Percentages of the offset in zero-centered bands in
manual control and automatic controL

Averages and standard deviations of the distributions that were shown in the histograms
of tables 9.3 and 9.4 are presenled in table 9.6. On average, both clinicians and controller
keep the MAP close to the setpoint. The contralier's standard deviation is smaller, however,
indicating that in automatic control the MAP is less aften far from the setpoint.

manual automatic
--

verage offset - 0.8 - 1.1 mmHg
..

tandard deviation 18.1 12.6 mmHg

Table 9.6. Evaluation of control regimes during manual and automatic
controL

The results suggest that automatic control is slightly better than manual control in
keeping the MAP close to the setpoint.

9.4.3. The perfonnance of the complete system

The implemenled knowledge proved to be correct. The controller proved to be safe and
could handle most cases well, except when its maximum flow rate needed to have been
exceeded. Transients, both positive and negative, were recognized and processed correctly
(on average, two per case). The gain adaptation worked correctly as well but was overly
cautious in some cases: when the flow rate had been (almost) zero for some time, the gain

was decreased, assuming a possible increase of the patient's sensitivity. This is probably

unnecessary in most, maybe in all, cases.

Switching back to manual control with an audible signa! after a one minute signa! loss
worked correctly. Usually the clinician just activated automatic mode again when the signa!

was restored.

192

The controller was almost never confronted with a steady state situation. So many other
factors influence the blood pressure dut·ing cardiac surgery that the controller is only one
more factor, and a slow one compared to e.g. the heart-lung machine's flow setting. Yet, it
was an unproblematic one, accepted and trusted by the clinicians.

The system's user interface was appreciated for its simplicity of control and for the extra
information that it provided.

The only criticism by the clinicians was that in some cases the system reacted too slowly.
The clinicians considered its safe and cautious behavior, a design criterium, to be more
approriate in an intensive care environment than in cardiac surgery. Future research is

needed to adapt the knowledge base to the conditions that apply during this type of surgery.

9.4.4. Some rule base stalistics

l~~t-l----;;- -i
ask 0 ;
test I 46 • I eval . 88 ;

1 memo I 3 1

I state . 41 :

t------~--------·---- ·
total 178 I

---- ----- --- ... J
Table 9.5. Number of rules of each type in the controller's
knowledge base.

The blood pressure controller knowledge base is large. It is a SIMPLEXYS language text
file of 1499 lines (excluding Pascal code in libraries) containing 178 rules (for only 4 of
which an initia! value is specified), 100 ON statements, and 516 lines of Pascal code for the
INIT and EXIT sections. The number of rules of each type is given in table 9.5. There are
also 225llines of Pascal code in several libraries. The number of Pascal code lines in the

Inference Engine and each of the libraries is given in table 9.6.

------------·--· ---- .. --- ----- --~-----
Inference Engi ne I 1382
global variables 58
control parameter initializations 1 152
keyboard input routines I 61 I
text mode display routines 65 I
grapbics mode display routines 1 689
blood pressure validation routines J 526
analog to digital converter routines 258
infusion pump communication routines 442

----------~------------------
tot al ___________________ .. __ ___ - -=-~~!J

Table 9.6. Number of lines of Pascal code of Inference Engine and libraries.

193

The output of the SIMPLEXYS Rule Compiler is a set of files containing Pascal code.
The length, in number of Pascal lines, of each of these files is given in table 9.7. Table 9.8
gives the times that the Rule Compiler and its extensions need to translate and check the
knowledge base on a PC-AT type computer.

run time debug options 2
specificatien of libraries 2
DECLS, INIT and EXIT sections 516
inference engine tables (arrays) 685
code of TEST rules 54
code of DO's 216
code of history comparisons 123

total 1598
~-------------------------------------~----~

Table 9.7. Number of lines of Pascal code of the Rule Compilers output.

Rule Compiler
Semantics Checker
Protocol Checker

. 47 sec
min 16 sec
min 6 sec

------------- -------
l-_c_o_m_p_l._· _l _a _t _i _o_n ___ t_i_m_e _____________ _j ___ 7 min 9 sec

Table 9.8. Timing of the Rule Compiler and its extensions.

The internal (Pascal) format of the knowledge base plus lnference Engine tagether
therefore forma Pascal program with a total lengthof 5231 lines of Pascal code. The Pascal

compiler compiles this to an MS-DOS executable file with a size of 111520 bytes, and it
estimates a run time memory requirement of 122624 bytes (81344 bytes code, 41280 bytes
data).

Initially, the expert system's average execution time for a run was approximately 5

seconds, of which about 4 seconds was taken in scrolling the MAP and SNP trend displays.

Because the time allowed for a run was only 5 seconds, this long average processing time
threatened to exhaust the processor's capacity, and might even exceed it in worst case
situations. To avoid this, and also to limit the percentage of the time during which scrolling
takes place, we decided to serall the MAP and SNP displays not every sample but once
every 5 minutes, Jeading to an estimated average 20% use of the processor's (8 MHz PC­
AT) capacity.

9.4.5. SIMPLEXYS as a knowledge engineering tooi

In this section the appropriateness and convenience of SIMPLEXYS as a knowledge

engineering tooi in the design of the blood pressure controller are discussed. Most findings
are based on interviews and discussions with the system's knowledge engineer, Lammers.
Quoted texts are his.

194

Language aspects. Rules are self-documenting; as a knowledge chunk, it is 'a good
compromise', neither too large nor too smal!. The same is true for the rule base as a whole.

'Looking at the rule base, after working on other projects for some time, is sufficient to he
immediately aware again of the implemenled knowledge.' However, 'enumerated types
would be nice' because in several cases they could simplify the knowledge base.

ON statements appear to have a too simple syntax. In many cases, a more complex ON
statement syntax would simplify the protocol part of the knowledge base. The major problem

is that the FROM list currently cannot specify an arbitrary expression (of STATE rules). A
syntax like

ON X FROM A or B or C or D TO E

where A, B, C, D and E are STATE rule lists, would allowoneON statement to replace
four. Another observation is that frequently, when a trigger fires, one or more other tokens
become irrelevant and should disappear. A syntax like

ON X FROM A TO B; RESET C

where A, B and Care lists, would again decrease the number of ON statements significantly.

Neither ON statement syntax change would have semantic consequences except better

readability of the protocol.

'lt is fortunate that rule histories can be freely used in expressions.' But in some cases,
manipulating the rule history in more complex ways might be helpful. Resetting the history

counter without changing the rule's value could sometimes help in answering questions like

'how long ago did X happen last?' where currently an extra dummy STATE rule is necessary
to achieve this. It is also impossible to directly inquire how long a certain conclusion has
been false . Another problem is that a history counter is unexpectedly reset when its rule is

not evaluated. It is also difficult to program sarnething like 'if rule P has been true for 0

seconds, then do R every S seconds', except at a low level, where it is clumsy and unsafe.

Rapid prototyping aspects. Initially, design was bottom-up. 'I starled with a bare rule base.
Most of its Pascal code was available, as well as a set of graphics, filing, keyboard and

simulation routines.' These had been separately developed and tested by others. 'lt was
surprising how fast a first prototype was built, and at least as surprising that it worked
immediately. Converting an idea or concept into SIMPLEXYS rules is easy and error-free. lt
is also easy to add knowledge chunks and to temporarily disable some chunks to test others.
The tracer /debugger is not needed to do this. In the early phases of the project, rule hase

changes were always additions of missing or incomplete knowledge, nol repair of erroneous

knowledge. After the first clinical tests, some partial repair became necessary.' This repair

was easy, however, because the sirneture of the knowledge base did not change much.

195

Modularity aspects. The program as a whole is constructed in a number of ever more
'symbolic' layers:

interrupt routines for the AD conversion, keyboard handling and pump communication;

- the validation routine tbat delivers tbe MAP;

- simple MAP-based calculations such as MAP filtering, MAP slope determination and

calculation of the SNP flow rate;

- basic rules that test (possibly filtered) data, parameters, flags and key presses;

evaluation rules that combine basic rules and/or other evaluation rules;
- the protocol.

Higher layers always refer to lower ones, except the highest two, which refer to each
other. STATE rules and their goals and trigger rules represent the system at its highest level

of abstraction, and it is aften unclear (and unimportant) at this level of abstraction which
lower layer rules wiJl need to be evaluated.

In later phases the design had more of a top-down nature in which changes mostly took

place in the two highest layers, with an occasional excursion to lower ones.

Tracing/debugging aspects. 'For complex problems the tracer/debugger is indispensable.
Not so much to discover what happened and why, but to see what did not happen, or rather,

what exactly was the cause that a certain decision was not arrived at.' It was aften important
to discovet which rules were änd which-were noi evaluated in a certain context. The

tracer/debugger provides this type of information.

9.5. Conclusions

SIMPLEXYS was an appropriate tooi in the design of the blood pressure controller, both
in the design of the knowledge base and in its testing, debugging and maintenance. The

complete freedom to design interfaces with the outside world, including those that use

interrupt routines, is a necessity. Knowledge acquisition remains the bottleneck in the design
of expert systems. Yet, SIMPLEXYS affered support rather than force the knowledge base

designer into inappropriate schemes. The protocol, in particular, was a valuable construct.

The automatic blood pressure controller functioned correctly in a ll respects, according to
its design criteria. It is impossible to decide whether we encountered 'difficult' cases in the
closed loop control phase of this study; except for the somewbat overly cautious behavior of

the controller (in a cardiac surgery context), no uncontrollable situations were discovered.

The controller uses a model which is partly black box, i.e. based on a mathematica!

description of the input-output relation of the system, and partly mechanistic, i.e. based on

knowledge of the internals of the system. Such intermediale models lead to unique
controllers which are aften not optima! in a theoretical sense (they do not try to optimize

some performance criterium), but robust (they a re adequate under wide operating conditions

despite an imprecise model). As a consequence, their performance is aften difficult to

196

measure. The difference between MAP and setpoint is one measure, but not the only one,
since the pressure need not be kept at a fixed level but can be allowed to fluctuate within
reason.

There are other criteria. One eenstraint is that, for reasoos of safety, incremental
increases in infusion rate are limited. Also, overdosage has to be avoided at all costs. The
control system appears to achieve this better than the clinicians, indicating that the

advantage of computer control may oot necessarily be in improved control hut rather in the
support it provides.

The system is simple to interact with, unproblematic in use, and in special cases manual
control cao take over without much effort.

197

10. Conclusions

In this chapter we first survey the solutions that SIMPLEXYS offers in the domain of

real time expert systems. We then appraise its success as a new computer language, including

the software that surrounds the language. We then return briefly to what SIMPLEXYS

meant in the design of the blood pressure controller of chapter 9. A possible simplification

of SIMPLEXYS and a potential new application domaio will bedescribed next. We finish
with an overall conclusion.

10.1. SIMPLEXYS as a real time expert system

In section 2.2.3, some of the current problems in real time expert systems research were
reviewed. These were:

- Traditional tools are not well suited to real time applications. Many inferencing

algorithms are exponential time. An immediate goal should be the development of high­

performance inference engines that can guarantee response times.

Current shells are as suitable in the real time domaio as Prolog for a number-crunching

application or Fortran for a symbolic processing application.
'Real time expert systems are real hard to develop'.

SIMPLEXYS offers some solutions, notably:

- The loferenee Engine has a linear time algorithm, resulting in a high execution speed;

this is due to the elimination of searching during the inferencing process. Many expert

systems a re currently production rule based. Knowledge engineers who have experience

with production systems will, because of the resemblance, probably have little trouble

becoming familiarized with the SIMPLEXYS format. They can immediately profit from

the high performance of SIMPLEXYS, because it has been shown (in section 4.11) how a

production rule based expert system can be converted into the SIMPLEXYS format.

- The system's worst case response time can be estimated rather accurately; moreover, the
response time wi\1 generally not vary much from run to run, allowing a uniform processor
utilization, so that the system's performance does not become brittie on modifications of
the problem specification and type or quantity of data; in particular, no tuning wi\1 be

necessary, nor mechanisms to focus attention; since garbage collection does not exist in

SIMPLEXYS expert systems, it is not a problem; operation is continuous and predictable.

SIMPLEXYS offers optima! environment utilization: compiled instead of interpreled

code.
- A general problem solving framework, so that no ad hoc methods need to be reinvenled

for each new problem.

Although thus far only two major applications have been designed with the SIMPLEXYS

toolbox, a first impression is that SIMPLEXYS seems to offer an adequate capacity for

198

handling time sequencing information in the type of monitoring applications it is intended

for.
- SIMPLEXYS expert systems integrale efficiently with conventional software; they

efficiently integrale numeric with symbolic computing.

- SIMPLEXYS applications can integrale with a real time doek.

- Although there are no facilities for handling asynchronous inputs nor a way of handling

software-hardware interrupts (see section 3.4 on why interrupts have no place in
SIMPLEXYS), conventional software that perfarms such functions is easily interfaced
with (see section 9.3.1 on an example on how to interface with interrupts); in particular,
SIMPLEXYS expert systems can efficiently obtain input from external non-human
stimuli.

- Although the SIMPLEXYS inference engine has thus far not been formally validated, its

trouble-free prolonged use gives adequate assurance of its reliability.

SIMPLEXYS offers a variety of methods to verify and validate knowledge bases.

- SIMPLEXYS can run on PC-Iike hardware that is built for harsh environments.

Thus SIMPLEXYS offers all the tools that are necessary to design, build and test patient
monitoring oriented and other real time expert systems. lt exists both in a Pascal and a C

version. Both are fully functional, as was demonstraled by the expert systems built with the
SIMPLEXYS tools: the blood pressure controller of chapter 9 uses the Pascal version, and

the intelligent alarms system [van der Aa, 1990) uses the C version.

SIMPLEXYS thus solves some of the current probieros in real time expert systems
research:

- The SIMPLEXYS tools are wel! suited to real time applications. SIMPLEXYS has a

high-performance inference engine, and worst case response times can be estimated well.
- The SIMPLEXYS tooibox is suitable in the real time domain, bath for number-crunching

applications and for symbolic processing applications.
SIMPLEXYS real time expert systems are nol hard to develop.

10.2. SIMPLEXYS as a programming language

In section 3.4 we noted that the primary goal of any programming language is to allow
the programroer to formulate his thoughts in terms of abstractions suitable to his problem, to

build an 'abstract machine'. Two applications have demonstraled that SIMPLEXYS has the

right abstractions to eneode knowledge within the domain of monitoring applications. The

protocol describes the dynamic aspects of the knowledge base at a high level of abstraction;

it also specifies the (often context-dependent) goals, the abstractions of the tasks to be

performed. The mies have demonstraled to be appropriate constructs to formal.ly describe
chunks of knowledge. And the structure of SJMPLEXYS programs, finally, has been shown
to correspond wel I with the tasks that a real time expert system has to execute.

199

The second goal is that the 'abstract machine' must actually run and solve the problems it
was designed to solve. The issue is now efficiency, both in terms of code size and speed of
execution. The abstractions must be efficient. In SIMPLEXYS, they are.

A third goal is that the 'abstract machine' must be so logically built, that a compiler can
check the legality of the program statements. In SIMPLEXYS, not only single program
statements are checked, but also the program as a whole. Because deep semantic knowledge
is necessary to accomplish the Jatter, this type of testing cannot be complete. Yet, in
SIMPLEXYS it can be much more thorough than usual, because of the simplicity and forma!
nature of the constructs. Because the links between these constructs are explicitly known, the

compiler can discovers a variety of global errors in the knowledge base. This is possible
because a priori knowledge exists about some of the semantic properties of a knowledge
base. This makes it possible for the compiler, for example, to detect that the end of a
protocol cannot be reached because of a deadlock situation or that a goal cannot be
evaluated because its definition is self-referential. This type of checking makes it possible to
discover a variety of errors in the knowledge base in its early design stages without extensive
testing.

A fourth goal is to have a good compiler. The SIMPLEXYS compiler is reliable; it
perfarms a syntax check against every rule of the language, it translates correctly and takes
care that no incorrect program crashes the compiler. Also, although higher level static and
dynainic correctness checks can be slow, the SIMPLEXYS Rule -compiler itself coinpiles at

· a reasonable. speed, it generales efficient code and the execution cost of the code is
reasonably predictable. The compiler is compact. It also provides a simpte and effective
interface to the environment to programroers who are familiar with Pascal or C.

10.3. The SIMPLEXYS tooibox

The goals, set forth in section 4.1, have been realized by the currently existing tools.

SIMPLEXYS applications are small enough to run on a PC and yet be fast enough; the

starage of the knowledge is very compact and the inferencing method is ideally suited to
real time work.
Applications can have custom-designed user and device interfaces; the easy interface with

Pascal allows anything, including efficient computations.
- A good estimate of the worst case performance can be obtained. Due to the linear time

algorithm, moreover, the ratio between worst case run time and average run time is
relatively smal!.

- SIMPLEXYS expert systems are easy to program and use.
- The available knowledge structures are well geared to the type of applications.

The knowledge base can be checked thoroughly in a number of ways, so that a high level
of confidence in its correctness can be carried from the very early design stages to the

final product.

200

10.4. The blood pressure controller

SIMPLEXYS was a proper tooi in all phases of the construction of the sodium
nitroprusside blood pressure controller: in the design of the knowledge base, in its testing
and debugging and in its maintenance phase. The freedom to design interfaces with the

outside world, including those that use interrupt routines, is a necessity in a patient

monitoring context. SIMPLEXYS, because it is especially suited to this type of application,
affered support rather than force the knowledge base designer into inappropriate schemes.

The protocol, in particular, proved to be a vaJuable construct.
The automatic blood pressure controller functioned correctly in all respects, according to

its design criteria. lts robustness is convincing: it is impossible to decide whether we

encountered 'difficult' cases in this study. Due to the cautious behavior of the controller

(maybe somewhat overly cautious in a cardiac surgery context), no uncontrollable situations
were discovered. The system is simple to interact with, unproblematic in its use, and it offers
valuable extra information to the user. In special cases it is easy to temporarily take over
with manual controL

10.5. SIMPLEXYS siruplified

A review of the knowledge bases of both the blood pressure controller described in

chapter 9 and the intelligent alarms system [van der Aa, 1990] brought to light that the truth
value PO (unknown) was not exploited; the acknowledgment that knowledge was missing

was, if necessary, handled by extra rules. This can have several reasons. One is that the
knowledge engineers are not used to its availability; they are not 'experts' in three-valued

logic and hence understandably reluctant to use unfamiliar building blocks in what must

become high quality products. If this is so, we might expect that sooner or later they will
'discover' the possibilities of three-valued logic and start to use its capabilities.

Another reason might be that any other logic than the standard true-fa lse type is really

too difficult for knowledge engineers to comprehend, because they cannot fully fathom its
global repercussions. In section 4.6 we discussed why we did not want to introduce a more

complex logic than the one actually implemented. Maybe those very same arguments can

show that the truth value PO is dispensabie as well.

With only two major applications built, it is as yet impossible to decide whether to
maintain the truth value PO in future versions of SIMPLEXYS or not.

Suppose, however, that the truth value PO is abolished from the SIMPLEXYS language.

This has vast repercussions throughout the language and its implementation. Evaluation of a

rule then always leads to a condusion of either TR or FA, as in BoaJean logic. The
operators MUST, POSS and ALT become superfluous. The compiler thus becomes simpler,

in particular the completion of expressions described in section 6.5.2.3.3. Checking becomes
simpler, because elimination of the ALT operator means that no alternative evaluation paths

need to be traverse<.! any more. And inferencing becomes slightly faster as wel!. Such a

201

simplified (and faster, but less expressive) SIMPLEXYS might be adequate for many
applications.

10.6. SIMPLEXYS in hardware

Th is simplified SIMPLEXYS might also become a tooi for the design of very high speed
hardware expert systems or 'programmable logic controllers' [PLCs; Vingerhoedset al, 1989],
the design of which can be carried through using all the facilities of the SIMPLEXYS
toolbox, but whose final delivery takes the fonn of a custom hardware unit. The static AND­
OR net, which results from the simplification, is easy to implement using standard logic
gates. And the dynamic net, the protocol, shows a remarkable similarity with what Hili and
Peterson [1978] call an AHPL organization, which is implemented using clocked flip-flops.

Interfacing with the outside world, which is currently done through Pascal code, then

becomes the bottleneck where speed is concerned. In simpte cases, input and output can be
realized by (analog and digital) electronics; a TEST could be performed by a comparator,
executing a DO could be as simple as setting a flip-flop. In more complex cases, the Pascal
(or any other familiar programming language) code cannot be dispensed with, and would
require for its execution an extra high speed uni- or multi-processor system, depending upon
the necessary level of performance.

10.7. General conclusions

In both major applications of SIMPLEXYS, the blood pressure controller described in
chapter 9 and the intelligent alarms system [van der Aa, 1990], knowledge acquisition was by

far the most difficult and time-consuming activity. One can only hope, that the knowledge

representation language and the mechanism that translates the knowledge base into a
delivery system do not present additional difficulties but instead offer assistance. The
knowledge engineers, as wel! as the results obtained with the finished products, confirmed
that SIMPLEXYS is a convenient toolbox. lts language offers a convenient framework (the

protocol and the goals) to express the problem at a high level, the necessary elements to
conveniently chunk the knowledge (the different rule types), and the required constructs to
efficiently interface with the outside world. lts compiler delivers code which can be executed
at high speed, and it offers a variety of tests to check for the integrity and correctness of the
knowledge base. Several types of errors that cannot be found at compile time can be
discovered by the loferenee Engine at run time. And if the expert system still does not

perform as expected, the tracer/debugger may help to discover 'deep' semantic errors.

The overall condusion is that from an engineering point of view, the SIMPLEXYS
experiment is a success if tested according to the criterium that it supports the construction
of fast, inexpensive, compact, robust and safe real time expert systems. From an Al­
theoretica! point of view, the SIMPLEXYS experiment is a success in that it provides a
comprehensive framework to express and solve a class of (process supervision and control)
problems.

202

Appendix 1. The SIMPLEXYS syntax

Meta-descriptors

The forma! description of the (Pascal version) syntax of SIMPLEXYS uses the following
meta-descriptors:

1. the symbol :: = . indicates a definition;
2. an item between { and } is optional;
3. a • behind an item indicates 1 or more repetitions;

4. a • behind an optional item indicates 0 or more repetitions;
5. the symbol I indicates an alternative;
6. text between [and] is a comment only;

7. the symbol NL indicates the 'new line' symbol.

SIMPLEXYS is line-oriented. This has several reasons, but the most important one is, that
it farces a good program layout. This makes the program easier to overview and

comprehend. Also, expressions cannot become too long and complex; shorter expressions

often also lead to more efficient evaluations, since they invite the re-use of sub-expressions.

The SIMPLEXYS language is case-insensitive, i.e. 'AND' and 'and' mean the sa me thing,
as well as 'And', etc.

The SJMPLEXYS syntax

program

declarations

code

rul es

rule

ruleheader
rulename
alphanumeric
xalphanumeric
ruletext

::= {DECLS NL d e clarations NL}
{INITG NL code NL}
{INITR NL code NL}
{EXITR NL code NL}
{EXITG NL code NL}

RULES NL rules NL
PROCESS NL transitions NL

::= Pas calcode [de clarations of types, variables,
functio ns and procedures only)

:: = Pascalcode [executable statements)

: := rule NL
rules rule NL

::= ruleheader NL
rulebody NL

{ruleinit NL}
{consequences NL}

rulename : ruletext
alphanumeric {xalphanume ric} *
0 I 1 I .. I 9 I A I .. I z I a I .. I z
alphanumeric I _
string

203

string

rulebody

testline
testbody
boolean_expr
expression

term

opl
op2
historyop
numval

ruleinit

consequences
conseque_nce
conseq
ruleconseq
DOeode

goals

transitions

transition
statelist
estatelist

staterule

Operator priorities

::= ' {character} * ' [but not character ']
" {character} * " [but not character "]

: := FACT
ASK

:: =

:: =

:: =

: :=

TEST testline
TEST NL testbody NL ENDTEST
BTEST boolean_expr
MEMO
STATE
expression

Pascalcode [statement assigning to var TEST]
Pascalcode [statement(s) assigning to TEST]
Pascalcode [boolean expression]
term
expression op2 term
rulename
rulename historyop numval
opl term
(expression)
NOT I MUST I POSS
AND I UCAND I OR I UCOR I ALT

I '' I ' I <= I ' I >=
(<Pascal numeric expression >

::= INITIALLY TR I FA PO

: :=

: :=
:: =

: :=

: : =
: : =

: :=

{consequence NL} *
THEN I ELSE I IFPO con-seq
ruleconseq 1 DOeode 1 goals
TR I FA I PO : rulename *
DO Pascalcode [one executable statement]
DO NL Pascalcode [statement(s)] NL ENDDO
GOAL : rulename *

transition NL
transitions transition NL
ON rulename FROM statelis t TO estatelist
staterule *
statelist
* [denotes the empty list]
rulename

In expressions, operator priorities are thus as follows:

highest priority:

medium priority:

lowest priority:

history operators

monadic operators

dyadic operators

204

lf no confusion can arise, unnecessary parenthese>. in expressions may be tliscarded. For

example, (((Rl AND R2) AND R3) AND R4) can he rewritten as Rl AND R2 AND R3

AND R4, keeping in mind that the application of dyadic operators is from Ie ft to right 1•

Semantic exceptions

Forsemantic reasons, the following exceptions are enforced:

1. FACT rules cannot be goals; their condusion is assumed fixed and known, so there is no
logica! reason to evaluate them.

2. FACT rules cannot be assigned to with THELSEs; their condusion is assumed fixetl, so it

should not be possible to give them (a different) conclusion.

3. MEMO rules cannot be goals; they have a condusion already (the one inheritetl from the

previous run), so there is no logica! reason to evaluate them.
4. STATE rules cannot be goals; they have a condusion already (the one inherited from the

previous run), so there is no logica! reason to evaluate them.
5. STATE rules cannot be assigned to with THELSEs; the assignment takes place through

ON statements.

6. STATE rules can only have conclusions TR and FA; the context must be known.

7. An INITJALL Y TR to at least one STATE rule must exist; otherwise no context is
initially active.

Reserved words

The reserved wortls DECLS, INITG, INJTR, EXITR, EXITG, RULES, PROCESS, NOT.
MUST, POSS, A.J"\10, UCAND, OR, UCOR, ALT, FACT, ASK, TEST, BTEST, ENDTEST.

MEMO, STATE, INITIALLY, THEN, ELSE, IFPO, TR, FA, PO, GOAL, DO and ENDDO
must not be used as rule names, nor their equivalents if some or all letters are changed into

lower case; the Rule Compiler converts lower case 10 upper case when checking for reserved
words.

Commenls

Comments can appear in the text in any position where a space character would be
permitted. Multi-line comments are not allowed. Comments are endosed by the characters

'{' and '}'. Comments must not be nested.

1 Manadie operators are applied from right to left; thus the expression MUST NOT POSS
R5 is evaluated as MUST (NOT (POSS R5)).

205

Appendix 2. Additional operators

It is possible to 'define' many additional operators using the existing operators. In the

SIMPLEXYS three-valued logic, 3"3 = 27 different manadie and 3"3"3 = 19683 different

dyadic operators could theoretically be defined. Nat all these operators are of course equally

meaningful. Experimems brought to light that if additional operators were defined in the

SIMPLEXYS syntax, due to unfamiliarity they would nat be used except in very special
cases. These special cases were deemed nat important enough to make the language more
complex.

If necessary, therefore, tbe construction of additional operators can be done in terms of
the existing ones. An example: a construction

A unless B

might be needed, whose condusion is condusion A unless condusion B can be demonstraled

to be TR, in which case the condusion must be FA. An operator unless is nat defined in

SIMPLEXYS, hut it can be constructed from e.g.

A a nd not must B

as can be verified:

.a ~ DQt must B A aod DQt must B
FA FA TR A
PO FA TR A
TR TR FA FA

206

Appendix 3. SIMPLEXYS utilities

The following symbols/utilities are predefined for the user:

type bool = (TR, FA, PO, UD);

function ASKyn (t: string): boolean; prints string t and waits for a 'y' or 'n' foliowed hy a

'return' typed in at the keyboard.

function ASKval (t: string): bool; prints string t and waits for a 'y', 'n' or '?' foliowed by a

'return' typed in at the keyboard.

function ASKint (t: string; imin, imax: integer): integer; prints string t and waits for an

integer foliowed by a 'return' typed in at the keyboard; the input must be between imin

and imax (inclusive).

function ASKword (t: string; imin, imax: word): word; prints string t and waits for a non­

negative integer foliowed by a 'return' typed in at the keyboard; the input must be

between imin and imax (inclusive).

function ASKreal (t: string; imin, imax: real): real; prints string t and waits for a real number

foliowed by a 'return' typed in at the keyboard; the input must be between imin and imax

(inclusive).

procedure dump (t: string); prints string t, foliowed hy all currently known results (rules with

conclusions TR, FA or PO); useful while debugging.

procedure fa tal_ error (t: string); prints an error message and ha lts the system; can he used

when a fata! error occurs.

var _ error: boolean; initially, _error is given the value false; as soon as an inconsistency error

occurs, _error is given the value true; the user can intereepi the e rror (e.g. in a TEST

rule) and end the expert system's operation; the loferenee Engine's default action is to

write an error message to file 'simplex.err' and continue.

207

Appendix 4. The Inference Engine's main data structures

In the Inference Engine's data structures, shown in table 1, _N is the total number of
rules in the knowied ge base, _ F the total number of ON statements, and _ E, _ T, _ B and _ 0

are appropriate array dimensions.

t
__ r~_l_e _:_:or_a_g_e __ --,-- ---------·-~
_RULENAME: array [1 _N] of string j rule narnes
_RULETEXT: array [1 _N] of strlng l rule texts

1_RULETYPE: array [1 N] of 0 .. 5 [rule types
1_IVALUE: array [1 =N) of bool initial values

I
_ R: array [1 _ N) of bool current values
_s: array [l _N] of bool previous values
_EVINDEX: array [1 _N] of O .. _E index i nto _EVSTORE

TINDEX: array [1 .. _N] of O .. _T index into _TTSTORE

BINDEX: -~-~~~-~-· -· ~L~~>T _L~~c:=:_~nto :-~~ST~~~---··
rule related taken starage

~EVSTORE-;- --array [1 .. _E] ~f-~ord - Ï exp~;ssio;-t~-k~-;;-~---·· ..
TTSTORE: array [1 .. _T] of word ! THELSE tokens
TBSTORE: array [1 .. _B] of word J reversed THELSE tokens ,
---------- _________ _ L_. A------------ ~

ON .statement starage - · · · - · - 1·
-------------- ---- ----- -·--r------- -------------i

TRIGGER: array [1 F] of 1 .. N I trigger rule numbers i
=FRINDEX: array [1 =F] of 1. ·=0 i FROM list index i
_TOINDEX: array [1 _F] of 1 .. _0 ! TO list index I

FROM/TO lis.t starage __ ___ .J. __ ·--,

-----·---------·--·-~ ·-- -1
ONSTORE: array [1 .. _0) of 0 . . _N _j FROM and TO list_:.__ _____ j

Table 1. The Inference Engine's tables.

Indices having a zero value represent a null pointer, e.g. if a rule has a zero_ TTINDEX
entry, it has no THELSEs. Zeroes are also use to indicate the end of a list, e.g. in
_ EVSTORE, where a zero marks the end of an expression, and in _ON STORE, where a
zero marks the end of a FROM or TO list.

The storage of a rule:ç infonnation

An example will demonstrate how a rule's information is stored. We consider the starage
of rule M's information from the following example:

M : 'rule M'
H AND (L OR P)
THEN TR: K, F

B: 'rule B'
F AND P
THEN FA: M

208

The Rule Compiler first assigns a sequence number to the rules, in the order of

occurrence. The narnes of the rules are preserved, so that the user can access any
information through Pascal code; they are preceded by an underscore, however. Assume that
10 other rules have been processed already. The sequence number assignments thus become:

M : = lli
_K := 15i

H : = 12 i
F . - 16i

L : = 13i
B : = 17 i

p . - 14 i

Then the rule's name, text string, type and initia! value are stored. Since rule M does not
have an INITIALLY, and since it is an evaluation rule, its initia! value is marked UD.

RULENAME RULETEXT RULETYPE IVALUE -t-·----1 T--- -·--·l ' ------ ~
~--- ________,;

11 M ! 1rule M ' EVAL UD ! --·-·--j ~----- -~ --------·-· . ' r-·-----·--î

Then the Rule Compiler tokenizes and stores the rule's expression into array
_ EVSTORE, including a null tok en to indicate the expression's end; the start position of the

expression is stored into _ EVINDEX. Assume that the first free location in _ EVSTORE is
position 23. lf the rule is not an evaluation rule, it has no expression, and a null is stared

into _ EVINDEX and nothing is stared in _ EVSTORE.

EVINDEX

11 t-;;· .. _lr----·, 2 3
-------j

24

EVSTORE

30101 AND

12 H

30103 OR

13 L

14 p
L.._ ______ ____ •

, 0 , end of expression
~-----·;

Next, the Rule Compiler tokenizes and stores the rule's THELSEs into array

_ TTSTORE, including a null token to indicate the end; the start position is stared into

_ TTINDEX. Assume that the first free location in _ TTSTORE is position 13. lf the rule has
no THELSEs, a null is stored into _ TTINDEX and nothing is stared in _ TTSTORE.

209

TT INDEX TT STORE

1 }------1
11 13) 13 1 3ooo1 : THEN TR

1-------1
14 ! 15 • K

~~~ THEN TR 
~----J 

L 16 I - F 

~ 0---J end 

Finally, the Rule Compiler tokenizes and stores other rules' THELSEs to this rule into 

array_ TBSTORE, including a null token to indicate the end; the start position is stored into 

_ TBINDEX. Assume that the first free location in _ TTSTORE is position 33, and that only 

rule B has a THELSE to rule M. If there are no THELSEs to the rule, a null is stored into 
_ TBINDEX and nothing is slored in _ TBSTORE. 

TB INDEX 

11 ~---~----) 33 

34 

THEN FA 

_B 

end 

The slorage of an ON statement's infonnation 

Next, we consider the storage of the following ON statement: 

ON u FROM p q r TO s t 

lf the knowledge base is correct, all rules have already been found, their information 

stored, and assigned a sequence number. Assume the following sequence number 

assignments: 

_p : = 21; 
s : = 24; 

_q := 22; 
_t := 25; 

r : = 2 3 ; 
u : = 26; 

The trigger rule's sequence number is stored in _ TRIGGER, the FROM and TO lists wil! 

both be stored in _ ONSTORE, while indices to the lists wiJl be stored in _ FRINDEX and 

_ TOINDEX. Assume that this is the third ON statement, and that the first free location in 

_ON STORE occurs at position 31. 

210 



FR INDEX 

r-;-~- ·t _______ _ 
I I ' 1----

ONSTORE 
L . _. --------- -

31 I 21 . 

32 j --;;-·- ! r ---- __ , 
33 ' 23 

~----- --
34 i 0 

35 I 24 
r·---·- -· ·- ···-

36 I 25 I 
I 

37 i 0 ! 

_p < 

_ q 

r 

end of 

s ( -

t 

end of 

TOINDEX 

~ --3~ - . i_ ____ , 
--i 

list 

···- i 

list 

The condusion of each rule is maintained in two arrays, _ R and _ S. Array _ R stores the 

rule's cwrent conclusion, array_ S stores the condusion that was obtained in the previous 

run. This organization is necessary for several bookkeeping reasons. Examples are: 

- A MEMO rule's condusion is read from _ S a nd wtitten to _ R. The value of its R en try 

varies during the run. It is tagged UD at the start of each run. A THELSE to a MEMO 

rule writes to _ R; subsequent THELSEs to the rule check the rule's _ R entry in order to 

detect conflicting assignments. The value of its _ S en try does not, of course, change 

during the run. 

A rule's history counter is reset when that rule's R e ntry is assigned a va lue diffe re nt 

from that in the previous run, i.e. if its _ R e n try is diffe re nt from its _ S en try. 

At the start of the first run, _ R and _ S are set up according to default va lues (see section 

5.3.2.3), which can be modified by any initia! va lues specified by the INITIALLYs of the 

knowledge base. 

2ll 



Appendix 5. The loferenee Engine's main procedures and functions. 

The loferenee Engine's main procedures/functions are the following three, which are 
mutually recursive: 

procedure _thelse (rule: 1 .. _N); 

executes all the rule's THELSEs 

procedure _setrule (rule: 1 .. _N, value: bool); 

assigns value to the rule's condusion without evaluation, but checking for an assignment 

conflict 

function _ evalrule (rule: 1 .. _N); 

evaluates rule; returns its condusion 

Executing a THELSE is done by procedure _thelse, which has the following code: 

value := R [rule]; 
ptr := _TTINDEX [rule]; 
if ptr = 0 the n 

exit; (exit procedure : the rule has no THELSEs} _ 
token : = _TTSTORE [ptr]; ptr := ptr + 1; 
arg := _TTSTORE [ptr): ptr ptr + 1; 
while token <> 0 do 
begin 

case token of 
thentr: if value TR then setrule (arg, TR) 
thenfa : if value TR then setrule (arg, FA) 
thenpo: if value TR then s etrule (arg, PO) 
t he ngoal: if value TR then dummy := _evalrule (arg); 
thendo : if value TR then FDOS (arg); 
... {same for elsetr etc, ifpotr etc} 
else fatal error ( 'invalid token inTHELSE list') {this 

should not occur but is checked anyway} · 
end case; 
token := _TTSTORE [ptr]; ptr 
arg : = TTSTORE [ptr ]: ptr 

end; 

:= ptr + 1; 
: = p t r + 1; 

Procedure _ thelse uses procedures _ FDOS and _setrule and function _ evalrule; 

procedure _FDOS executes a DO and its structure is analogous to function _ FTEST, 

described insection 5.6.1. Procedure _setrule does the following, depending on the type of 

the rule: 

If the rule type is F ACT or STATE, this is a fa tal error; trying to assign to a F ACT or 

STATE rule is illegal (this should not occur because the Rule Compiler tlags this as an 

error; for safety reasoos the check is executed anyway). 

212 



If the rule type is MEMO, then, if _R [rule) is marked UD, the new conclu>ion is 

assigned. Otherwise, a condusion has already been assigned in the current run and the 

new assignment must be consistent with it. lf the new assignment is different, this is 
flagged as an error, and the new assignment is not carried out. lf the new assignment is 

the same, there is no problem (and of course the assignment does nol need to be carried 
out). 

lf the rule type is ASK, TEST or evaluation, then, if R [rule) is marked UD, the new 

condusion is assigned. Otherwise, a condusion has already been assigned in the current 
run and the new assignment must be consistent with it. lf the new assignment is different, 

this is flagged as an error, and the new assignment is not carried out. lf the new 

assignment is the same, there is no problem (an<.l of course the assignment does not nee<.l 

to be carried out). lf the rule's condusion becomes different from that of the previous 

run, the history counter is updated (_ HlSTORY [rule) := _time), and the rule\ 

TH ELS Es are executed by calling procedure _ thelse. 

An important run time consistency check is thus: once a rule's condusion is evaluated (to 

TR, FA or PO) it cannot be changed again to another ennelusion in that same run. Trying to 

assign a different condusion to that rule leads to an error message and the assignment is not 

executed (by default, this type of error is not fata!, but the user may want to intereepi it and 

halt the system). This ineonsistency is a result of either mutually inconsistent rules (however, 

ineonsistency of rules can frequently he deteeted at compile time; see chapters 6 and 7 on 

semantic and protocol checks) or of inconsistent answers (to ASK rules) or data (to TEST 

rules). 

Function _ evalrule does the following: 

1. lf the rule's conclw;ion is TR, FA or PO, return that condusion and exit. Step I is all that 

is ever needed in the retrieval of FACT, MEMO and STATE rule's eonclusions; in the 

case of ASK, TEST and evaluation rules, step 1 is all that is needed if the rule has heen 

evaluated before in the same run. 

2. The condusion is now marked UD; evaluate the rule: ASK a question, TESTdata, 

evaluate an expression. The code is: 

case ruletype [rule] of 
ask: value . -
test: value .­
eval: value := 

end {case}; 

ASKval ('Is true: 
-FTEST (rule); 
::::evalexp (rule); 

If the result is now TR or FA, then skip step 3. 

213 

' + RULETEXT [rule] + '?'); 



3. Tbe condusion is now PO; check if TR or FA condusion can be obtained from a 

THELSE TR/FA from an other rule that has a condusion marked UD; do this by 

traversing list_ TBSTORE starting at_ TB INDEX [rule], if it has entries; the main code 

resembles that-of procedure _thelse: 

ptr := _ TBINDEX [rule]; if ptr = 0 then exit; 
taken := _TBSTORE [ptr]; ptr := ptr + 1; 
trule := _ TBSTORE [ptr]; ptr : = ptr + 1; 
value := PO; 
while (taken < > 0) and (value = PO) do 
begin 

case taken of 
thentr: if 
thenfa: if 
elsetr: if 
elsefa: if 
ifpotr: if 
ifpofa: if 

end {case}; 

evalrule 
evalrule 

-evalrule 
evalrule 

-evalrule 
eval r ule 

(trule) TR 
(trule) TR 
(trule) FA 
(trule) FA 
(trule) PO 
(trule) PO 

then 
then 
then 
then 
then 
then 

taken := TBSTORE [ptr]; ptr := ptr + 1; 
trule := TBSTORE [ptr]; ptr := ptr + 1; 

end; 

value 
value 
value 
value 
value 
value 

:= TR; 
:= FA; 
:= TR; 
:= FA; 
:= TR; 
: = FA; 

4. The condusion is now TR, FA or still PO; assign this value to the rule's condusion and 

to the function. 

5: Execute ihe appropriate THELSEs of the rule, if any, by calling procedure _thelse. 

6. Take the rule's condusion and exit. 

The only major still unexpla ined function is _ evalexp, the function that eva\uates an 

expression. It is structured as the other procedures and functions. It main body is: 

ptr := _EVINDEX [rule]; 
taken := _EVSTORE [ptr]; ptr := ptr + 1; 
case taken of 

codeNOT: 
c odeMUST: 
c odePOSS: 
code AND: 
codeUCAND: 
code OR: 
codeUCOR: 
codeALT: 
codeHIST: 
1 .. N: 
el se 

end {c a s e}; 

_applyNOT; 
_applyMUST; 
_applyPOSS; 

_ applyAND; 
_ applyUCAND; 
_applyOR; 

_applyUCOR; 
_applyALT; 

_applyHIST; 
value := _ evalrule (taken); 
fatal error ( 'invalid taken in expression') 

if value = UD then fatal e r r or ( ' evalexp returned UD'); 
_ evalexp := value 

214 



As an example of one of the procedures called hy _ evalexp, we give the Pascal code for 

procedure_ applyAND, which basically implements a look up tahle combined with one or two 

(recursive) calls to _evalexp: 

procedure _applyAND; {computes ~, a global variable} 
begin 

value := _evalexp; {evaluate the first argument} 
case value of 

FA: _skipexpr; {second argument neects no evaluation} 
PO: case _evalexp of {evaluate second argument, too} 

FA: value := FA; {TR and PO: leave value as is} 
end {case}; 

TR: value := _evalexp; {take second argument's value} 
end {case} 

end; 

Procedure _skipexpr skips an expression (the second operand) by positioning ptr, the 

pointer into the evaluations starage array _ EVSTORE, past the tokens that camprise the 
expression. 

From the above it is clear, that all major inferencing procedures and functions are highly 

(mutually) recursive. This ' recursive descent' evaluation makes the lnference Engine so 

simple. 

215 



References 1 

Aa JJ van der. Intelligent alarms in anesthesia: a real time expert system application. PhD 
thesis, Dept of Electr Engng, Eindhoven Univ of Technology. 1990. 

Abkoude WC van. Software for the analysis of the respiratory oxygen signa! (in Dutch). BSc 

thesis, Dept of Electr Engng, Eindhoven Univ of Technology. 1981. 

Ackley D, Hinton G, Sejnowski, T. A learning algorithm for Boltzmann machines. Cognitive 
Science 9, 147-169. 1985. 

Allen JF. Maintaining knowledge about temporal intervals. Comm ACM 26:11, 832-843. 
1983. 

Andre P, Bachy JL, Col J. Computer control of mean arterial pressure with sodium 
nitroprusside: an adaptive model-based system. Computers in cardiology, Linkoping, Sweden, 
471-474. 1985. 

Arnsparger JM, Mclnnis BC, Glover JR, Normann NA. Adaptive control of blood pressure. 

IEEE Trans Biomed Engng 30:3, 168-176. 1983. 

Attinger EO. Parsimonious systems description: a necessary first step in the development of 
predielive indicators. In: Carson ER, Cramp DG (eds). Computers and control in clinical 

medicine, 175-212. Plenum. 1985. 

Barr A, Feigenbaum EA (eds). The Handbook of Artificial Intelligence, Vals 1, 2 and 3. 
Kaufman, Los Altos, Calif. 1981. 

Bendixen HH, Duberman SM. Decision making in the operating room. In: Grundy BL, 

Gravenstein JS (eds). The quality of care in anesthesia, 88-99. Springfield, Illinois. 1982. 

Beneken JEW, Blom JA, Jorritsma FF, Nandorff A, Spierdijk J. Trend prediction as a basis 
for optima! therapy. Dept of Electr Engng, Eindhoven Univ of Technology, TH-Report 78-E-

86. 1978. 

Beneken JEW, Blom JA, Jorritsma FF, Nandorff A, Bijoen A van, Spierdijk J. Servo­

anesthesia: model-based prediction and optima] therapy in patients under anesthesia. 

Biomed Technik 24, Ergänzungsband, 233-234. 1979. 

1 Verslagen van stageairs worden hier BSc thesis genoemd, verslagen van afstudeerders ~ 
~. en rapporten van AIO's (assistenten in opleiding) AIO thesis. 

216 



Beneken JEW, Blom JA, Saranummi N. Trends in monitored variables. Proc Symp Control 

systems concepts and approaches in clinical medicine, 64-67. Brighton. 1982. 

Beneken JEW, Blom JA. An integrative patient monitoring approach. In: Gravenstein JS, 

Newbower RS, Ream AK, Smith NT (eds). An integrated approach to monitoring, 121-131. 

Butterworths, Boston. 1983. 

Beneken JEW, Blom JA, Saranummi N. Accuracy in trend detection. In: Gravenstein JS, 

Newbower RS, Ream AK, Smith NT (eds). An integrated approach to monitoring, 133-144. 
Butterwonhs, Boston. 1983. 

Beneken JEW, Blom JA, Meijler AP, Cluitmans P, Spierdijk J, Nandorff A, Nijhuis R, 

Kessel HM van. Computerized data acquisition and display in anesthesia. In: Prakash .O 

(ed). Computing in anesthesia and intensive care, 25-43. Nijhoff. 1983. 

Beneken JEW, Gravenstein JS. Sophisticated alarms: a methodology based on systems 

engineering concepts. In: Gravenstein JS, Newbower RS, Ream AK, Smith NT (eds). The 

automated anesthesia record and alarm systems, 211-228. Butterworths, Boston. 1987. 

Beneken JEW, van der Aa JJ. AJarms and their limitsin monitoring. J Clin Mon S, 205-210. 

1989. 

Bierens EJJ. Preliminary study for an expert system based blood pressure controller. MSc 

thesis, Dept of Electr Engng, Eindhoven Univ of Technology. 1987. 

Blom JA, Aa J van der, Jorritsma FF, Beneken JEW, Nandorff A, Spierdijk J , Bijnen A van. 

A research oriented microcomputer based patient monitoring system. Biomed Technik 26, 

135-140. 1981. 

Blom JA, Beneken JEW, Jorritsma FF, Gieles JPM, Nandorff A, Spierdijk J. Erkennung von 

Trends und Fehlern bei Signalen von Patienten unter Narkose. Proc Symp Rechnergestützte 

Intensivpflege Tuebingen 1979, 126-130. Thieme. 1981. 

Blom JA, Beneken JEW. On-line information and data reduction in patient monitoring. In: 
Paul JP, Jordan MM, Ferguson-Pell MW, Andrews BJ (eds). Computing in Medicine, 117-

125. MacMillan. 1982. 

Blom JA, Bruijn NP de. Peroperalive estimation of sodium nitroprusside sensitivity. Proc 

IEEE Southeastcon, Sandestin, Fla, 564-566. 1982. 

Blom JA, Ruyter JAF de, Saranummi N, Beneken JEW. Detection of trends in monitored 

variables. In: Carson ER, Cramp DG (eds). Computers and control in clinical medicine, 153-

174. Plenum. 1985. 

; 
211 . ' 

.. ··; ..... 
.. . · ]~-~-/-~: .\ ~~ , . : ~ :~~;~~\ ·~~~' ,: . 

-.. ,_ 



Bobrow DG, Mittal S, Stefik MJ. Expert systems: periJs and promise. Commun ACM 29:9. 
1986. 

Bonissone PP, Tong RM. Reasoning with uncertainty in expert systems. Int J Man-Machine 
Studies 22, 241c250. 1985. 

Boon PMG. Efficiency and correctness of SIMPLEXYS expert systems. MSc thesis, Dept of 
Electr Engng, Eindhoven Univ of Technology. 1987. 

Brachman RJ. What IS-A is and isn't: an analysis of taxonomie links in semantic networks. 

IEEE Computer 16:10, 30-36. 1983. 

Brachman RJ, Levesque HJ (eds). Readings in Knowledge Representation. Kaufmann, Los 
Altos, Calif. 1985. 

Brok MWNM den. A rule based adaptive blood pressure controller (in Dutch). MSc thesis, 
Dept of Electr Engng, Eindhoven Univ of Technology. 1986. 

Brok NWNM den, Blom JA. A rule based adaptive blood pressure controller. Proc 2nd 
European workshop on fault detection and reliability; knowiedge-based and other 

approaches, Manchester, 67-74. Pergamon Press, Oxford. 1987. 

Buchanan BG, Shortliffe EH (eds). Rule-based expert systems; the MYCIN experiments of 
the Stanford Reuristic Programming Project. Addison-Wesley. 1984. 

Burke D. Diagnosis: art or science? Diagn Med l, 25. 1978. 

Butler AR. Further investigations regarding the taxicity of sodium nitroprusside. Clinical 
chemistry 33:4, 490-492. 1987. 

Cantor N, J(jhlstrom JF. Social intelligence, the cognitive basis of personality. In: Sage SP 

(ed). Review of personality and social psychology, vol. 6. Beverley Hills. 1985. 

Chellaas BF. Modal logic: an introduction. Cambridge University Press, Cambridge. 1980. 

Chizeck HJ. Adaptive control theory and applications to drug delivery. 1986 American 

Control Conf, Vol 2, 871-873. 1986. 

Coad NR. Beta blockade and nitroprusside. Anesthesia 42:9, 1022-1023. 1987. 

Cobelli C, Romanin-Jacur G. Controllability, observability and structural identifiability of 
multi input and multi output biologica! compartmental systems. IEEE Trans Biomed Engng 

23, 93~100. 1976. 

218 



Coolegem KG. Processing of the in- and expiratory oxygen signa! measurement (in Dutch). 

BSc thesis, Dept of Electr Engng, Eindhoven Univ of Technology. 1981. 

Coolen J. Improvements in the man-machine interaction of a patient monitoring system (in 

Dutch). MSc thesis, Dept- of Electr Engng, Eindhoven U niv of Technology. 191\5. 

Coombs MJ. Developments in expert systems. In: Hasting DW (ed). Strategie explanations 

fora diagnostic consultalion system. Jovanovich, London. 1984. 

Caoper JB, Newbower RS, Long CD. Human error in anesthesia management. In: 

Gravenstein JS, Paulus DA (eds). Monitoring practice in clinical anesthesia. Lippincott, 
Philadelphia. 1982. 

Caoper JB, Couvillon LA. Accidental breathing system disconnections, Interim report t.o the 

FDA. Arthur D Little Inc, Cambridge. 1983. 

Davis R. Applications of meta level knowledge to the construction, maintenance and use of 

large knowledge bases. Report STAN-CS-76-552, Stanford Al Lab, Stanford Univ, Stanford, 

Calif. July 1976. 

Davis R, Buchanan B, Shortliffe EH. Production rules as a representation for a knowiedge­

based consullation program. Artif Intell 8, 15-45. 1977. 

Dijkstra EW. The humbie programmer. Comm ACM 15, 859-866. 1972. 

Divers RT. The quality of physiologic da ta for automated records and alarm systems. In: 

Gravenstein JS, Newbower RS, Ream AK, Smith NT (eds). The a utomated anesthesia 

record and alarm systems. Butterworths, Boston. 1987. 

Donabedian A. Needed research in the assessment and monitoring of the quality of medica! 

care. NCHSR Research Report Series, HEW Publication (PHS) 78-3219, July 19711. 

Dreyfus HL. From micro-worlds to knowledge representation: Al at an impasse. In: 

Haugeland J (ed). Mind design, 161-204. MIT Press. 1981. 

Dreyfus H, Dreyfus S. Why expert systems do not exhibit expertise. IEEE Expert I, 86-90. 

Summer 1986. 

Ernst GW, Newell A. GPS: a casestudy in generality and problem solving. ACM 

monograph, Academie Press, New York. 1969. 

219 



Fagan LM. Ventilator manager: a program to provide on-line consultative advice in the 

intensive care unit. Report HPP-78-16, Computer Science Dept, Stanford University, 
Stanford, Calif. Sept 1978. 

Fagan LM, Kunz JC, Feigenbaum EA. Representation of dynamic clinical knowledge: 

measurement interpretation in the intensive care unit. Proc IJCAI-79, 260-262. 1979. 

Fagan LM. VM: representing time-dependent relations in a medica( setting. PhD thesis, 

Dept of Computer Science, Stanford Univ, Stanford, Calif. June 1980. 

Feinstein AR. An analysis of diagnostic reasoning. I. The domains and disorders of clinical 

macrobiology. Yale J Biol Med 46, 212. 1973. 

Feinstein AR. An analysis of diagnostic reasoning. IJ. The strategy of intermediate decisions. 
Yale J Biol Med 46, 264. 1973. 

Feinstein AR. An analysis of diagnostic reasoning. III. The construction of clinical 

algorithms. Yale J Biol Med 47, 5. 1974. 

Feinstein AR. Clinical bio-statistics XXIX, the Haze of Bayes, the aerial palaces of decision 

analysis and the computeriz.ed Ouija board. Clin Pharmacol Ther21, 483. 1977. 

Feldbrugge F, Jensen K. Petri Net Tool Overview. In: Rozenberg G (ed). Actvances in Petri 

Nets 1986, part 2. Lecture notes in Computer Science, Vol 255, 20-61. Springer, Berlin. !91l6. 

Feltovich PJ, Barrows HS. Issues of generaJity in medica! problem solving. In: Schmidt HG, 

Volder ML de (eds). Tutorials in problem-based learning. Van Gorcum, Assen. 1984. 

Fink DJ, Galen RS. Probabilistic approaches to clinical decision support. In: Williams BT 

(ed). Computer aids to clinical decisions, Vol I. CRC Press. 1982. 

Gaines BR. Fuzzy and probability uncertainty logies. Information and control 38, 154-169. 
1978. 

Genderingen HR van. Some aspects of system identification and control theory in the design 

of an adaptive blood pressure controller (in Dutch). MSc thesis, Dept of Electr Engng, 
Eindhoven Univ of Technology. 1984. 

Goldstein Jr A, Keats AS. The risk of anesthesia. Anesthesiol 33, 130-143. 1970. 

Goossens JJM. Signa! validation of patient signals (in Dutch). MSc thesis, Dept of Electr 

Engng, Eindhoven Univ of Technology 1986. 

220 



Gravenstein JS. Introduction. In: Gravenstein JS, Newbower RS, Ream AK, Smith NT, 

Barden J (eds). Monitoring surgical patients in the operating room. Springfield, Illinois. 

1979. 

Gupta A, Prasad BE (eds). Principlesof expert systems. IEEE Press, New York. 198R. 

Hair PJA de. Realization of an explain facility for SIMPLEXYS expert systems. MSc thesis, 

Dept of Electr Engng, Eindhoven Univ of Technology. 1988. 

Hajek J. A knowledge engineering logic for smarter, saferand faster (expert) systems. EUT 

Computing Centre Note 41, Eindhoven Univ of Technology. 1988. 

Hammond JJ, Kirkendali WM, Calfee RV. Hypertensive crisis managed by computer 

controlled infusion of sodium nitroprusside: a model for the closed loop adminis tration of 

short acting vasoactive agents. Comp and Biomed Res 12, 97-108. 1979. 

Harmon P, K.ing D. Expert Systems. Wiley. 1985. 

Hart P. Peter Hart talksabout expert systems. IEEE Expert 1, 96-99. Spring 1986. 

Hayes-Roth F, Waterman DA, Le nat D (eds). Building Expe rt Systems, Addison-Wesley. 

1983. 

Hayes-Roth F. A blackboard architecture for control. Artif Intell, 26:3, 251-321. July 1985. 

He WG, Kaufman H, Roy R. Multiple model adaptive control procedure for hlood pressure 

controL IEEE Trans Biomed Engng 33:1, 10-19. 1986. 

Hendier JA. Expert systems: the user interface. Ablex, Norwood, NJ. 1988. 

Hengst J, Krämer B. A data acquisition system for patient monitoring in anesthesia (in 

Dutch). MSc thesis, Dept of E lectr Engng, Eindhoven Univ of Technology. 1980. 

Hili FJ, Peterson GR. Digital systems: ha rdware organization and design, 2nd ed. Wiley, 

New Y ork. 1978. 

Hofstadter DR. Metamagical themas: Questing for the essence of mind and pattern. Bantam. 

1986. 

Hoogendoom P. Automated blood pressure control, a literature review. BSc thesis, Dept of 

Electr Engng, E indhove n Univ of Technology. 1988. 

221 



Hoogendoom P. The design of a rule based blood pressure controller. MSc thesis, Dept of 

Electr Engng, Eindhoven Univ of Technology. 1989. 

Hopking BDA. Hazards and errors in anesthesia. Springer. 1980. 

Horvitz EJ. Toward a science of expert systems. In: Computer Science and Statistics. Proc 

18th Symp on the Interface. Arnerican Statistica! Assoc, Fort Collins, 45-52. March 1986. 

Hughes GE, Cresswell MJ. An introduetion to modal logic. Methuen. 1968. 

Hutchinson WF, Hollway, TE. An interesting effect of sodium nitroprusside [letter]. 

Anesthesia 40:11, 1128. 1985. 

Jazwinski AH. Stochastic processes annd filtering theory. Academie Press, New York. 1970. 

Jensen K. Computer Tools for Construction, Modification and Analysis of Petri Nets. In: 

Rozenberg G (ed). Advances in Petri Nets 1986, part 1. Lecture notes in Computer Science, 
Vol 254, 4-19. Springer, Berlin. 1986. 

Kanal LN, Lemmer JF. Uncertainty in Artificial Intelligence. North-Holland. 1986. 

Kary DD, Juell PL. TRC, an expert system compiler. SIGPLAN Notices 21:5, 64:68. May 
1986. 

Kelly J. Intelligent machines, wbat chance? In: Hallam J, Mellish C (eds). Advances in 

Artificial lntelligence. Wiley, Chichester. 1987. 

Kessel HM van. Design of a data acquisition and display system for patient monitoring in 

anesthesia (in Dutch). MSc thesis, Dept of ElectrEngng, Eindhoven Univ of Technology. 
1981. 

Khoroshevsky VF. ATN-based explanation subsystems: design and implementation. Comp 

and Artif Inteli 4:4, 289-311. 1985. 

Klingier DE. Rapid prototyping revisited. Datamation 32:20, 131-132. 1986. 

Krijgsman AJ, Verbruggen HB, Bruijn PM. Knowledge based real time controL In: Rodd 

MG, Suski GJ (eds). Artificial Intelligence in reai-time controL Pergamon. 1989. 

Laffey TA, Cox PA, Schmidt JL, Kao SM, Read JY. Real time Knowiedge-Based Systems. 

Al Magazine, 27-45, Spring 1988. 

222 



Lammers JO. The use of Petri net theory for SIMPLEXYS expert systems protocol checking. 

AIO thesis, Dept of Electr Engng, Eindhoven Univ of Technology. EUT-Report 90-E-23R. 

1990. 

Lammers JO. Knowledge based adaptive blood pressure control: a SIMPLEXYS expert 

system application. AlO thesis, Dept of Electr Engng, Eimlhoven Univ of Technology. EUT­

Report 90-E-236. 1990. 

Lenat DB. The nature of heuristics. Artif Inteli 19, 189-249. 1982. 

Lutgens JMA. A tautology checker for the SIMPLEXYS expert system (in Dutch). BSc 

thesis, Dept of Electr Engng, Eindhoven Univ of Technology. 1989. 

Mamdani EH, Efstathiou J. An analysis of forma i logies as inference mechanisms in expert 

systems. In: Gupta A, Prasad BE (eds). Principlesof expert systems. IEEE Press, New York. 
1988. 

Manteleers JJH. Critica! incidents in anesthesia, a literature survey. BSc thesis, Dept of 

Electr Engng, Eindhoven Univ of Technology. 1985. 

Marsh J, Greenwood J. Guide to defense and aerospace systems. Pasha Puhl, Arlington, Va. 

1986. 

Martin JF, Schneider AM, Smith NT. Multiple model adaptive control of blood pressure 

using sodium nitroprusside. IEEE Trans Biomed Engng 34:8, 617-623. 1987. 

Mclnnis BC, Deng LZ. Automatic control of blood pressures with multiple drug inputs. Ann 

of Biomed Engng 13, 217-225. 1985. 

McNally RT, Engelman K, Noordergraaf A, Edwards Jr M. A device for the precise 

regulation of blood pressure in patients during surgery and hypertensive crises. Proc San 

Diego Biomed Symp 16, 419-424. 1977. 

Medawar PB. Induction and intuition in scientific thought. American Philosophical Soc, 

Philadelphia. 1969. 

Meijler AP. Automation in anesthesia, a relief? PhD thesis, Dept of Electr Engng, 

Eindhoven Univ of Technology. 1986. Springer, 1987. 

Meijler AP, Beneken JEW. Data acquisition and display: a system with centralized display, 

automatic record keeping, and intelligent alarms. In: Gravenstein JS, Newbower RS, Rearn 

AI<, Smith NT (eds). The automated anesthesia record and alarm systems. Butte rworths, 

Boston. 1987. 

223 



Meline U, Westenskow DR, Somerville A, Wernick RT, Pace NL. Evaluation of two 

adaptive SNP control algorithms. J Clin Monit 2:2, 79-86. 1986. 

Melle W van, Shortliffe EH, Buchanan BG. EMYCIN, a domaio-independent system that 

aids in constructing knowiedge-based consullation programs. In: Bond A (ed). Machine 

Intelligence, Infotech State of the Art Report, Series 9 No 3, Pergamon Jnfotech Ltd. 1981. 

Meltzer B. The programming of Deduction and Induction. In: Elithorn A, Jones D (eds). 

Artificial and Human Thinking. Elsevier. 1973. 

Miebie D. Expert Systems. The Computer Joumal 23:4, 371. 1980. 

MilJard RK, Hutton P, Pereira E, Prys-Roberts C. On using a self-tuning controller for blood 
pressure regulation during surgery in man. Comp Biol and Med 17:1, 1-18. 1987. 

Milne RW. A few problems with expert systems. In: Gupta A, Prasad BE (eds). Principles of 

expert systems. IEEE Press, New York. 1988. 

Mitchell MM. Human factors in the man-machine interface. In: Gravenstein JS, Newbower 

RS, Ream AK, Smith NT (eds). The autornaled anesthesia record and alarm systems. 

Butterwo~hs, BQston. 1987. 

Murphy EA. The logic of medicine. John Hopkins University Press, Baltimore. 1976. 

Neapolitan RE. Forward-chaining versus a graph approach as the inference engine in expert 

systems. In: Gupta A, Prasad BE (eds). Principlesof expert systems. IEEE Press, New York. 

1988. 

Nelson PE, Ream AK. Monitor calibration for an automated anesthesia record. In: 

Gravenstein JS, Newbower RS, Ream AK, Smith NT (eds). The automated anesthesia 

record and alarm systems. Butterworths, Boston. 1987. 

Newell A, Sirnon HA. Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ. 1972. 

Newell A, Rosenbloom PS. Mecha nisms of skill acquisition and the law of practice. In: 

Anderson JR (ed). Cognitive skilis and their acquisition. Erlbaum, Hillsdale, NJ. 1981. 

Newell A. Foreword. In: Buchanan BG, Shortliffe EH (eds). Rule-based expert systems; the 

MYCIN experimentsof the Stanford Heuristic Programming Project. Addison-Wesley. 1984. 

Nguyen TA. Verifying consistency of production systems. In: Gupta A, Prasad BE (eds). 

Principlesof expert systems. IEEE Press, New York. 1988. 

224 



Nilsson NJ. Problem-solving methods in Artificial Jntelligence. McGraw-Hill. 1971. 

Niwa K, Sasaki K, lhara H. An experimental comparison of knowledge representation 
schemes. Al Mag, 29-36, Summer 1984. 

O'Reilly CA, Cromarty AS. 'Fast' is not 'Real time' in designing effective real time Al 

systems. In: Appl of Artif Inteli 11, 249-257. Int Soc of Optica! Engng, Bellingham, Wash. 

1985. 

Osterweil L. Inlegrating the testing, analysis and debugging of programs. Proc Symp Software 

Validation, Darmstadt, FRG, 73-102. September 1983. 

Pace NL, Westenskow DR: Computer regulated sodium nitroprusside infusion for blood 

pressure control. In: Prakash 0 (ed). Computing in Anesthesia and Intensive Care, 292-301. 
Nijhoff. 1983. 

Packer JS, Mason DG, Cade JF, McKinley SM. An adaptive controller for closed-loop 

management of blood pressure in seriously ill patients. IEEE Trans Biomed Engng 34:8, 
612-616. 1987. 

Pass TM, Komaroff AL, Ervin CT. Ca tegorical approaches to clinica l decision support. In: 
Williams BT (ed). Computer aids to clinical decisions, Vol I, 95-138. CRC Press. 19H2. 

Patel CB, Laboy V, Venus 8, Mathru M, Wier D. Use of sodium nitroprusside in post­

coronary bypass surgery; a plead for conservatism. Chest 89:5, 663-667. 19H6. 

Pau LF. Prototyping, validatien and maintenance of knowledge based systems software. In: 
Third Annual Proc of expert systems in Government, Washington. Octobe r 19H7. 

Pearl J. Fusion, propagation, and structuring in Bayesian networks. Symp on complexity of 

approximately solved problems, Columbia University. 1985. 

Peters MMJ. Optimization of the trend tieteetion algorithm (in Dutch). MSc thesis, Dept of 

Electr Engng, E indhoven Univ of Technology. 1984. 

Petri CA. Kommunikation mit Automaten. Schriften des lnstitutes für lnstrumentelle 

Mathematik, Bonn. 1962. 

Petri CA. Concurrency Theory. In: Rozenberg G (ed). Advances in Petri. Nets 1986, part I. 

Lecture notes in Computer Science, Vol 254, 4-24. Springer, Berlin. 19H6. 

Philippens EHJ. Designing debugging tools for SIMPLEXYS expert systems. MSc thesis, 

Dept of Electr Engng, Eindhoven University of Technology. December 1989. 

225 



Plasman JLC. Analysis of the arterial and venous blood pressure signals (in Dutch). MSc 

thesis, Dept of Electr Engng, Eindhoven Univ of Technology. 1981. 

Politakis P, Weiss SM. Using empirica! analysis to refine expert system knowledge bases. 

Artif Inteli 22, 23-48. 1984. 

Post E. Forma! reductions of the general combinatorial problem. Am J of Math 65: 197-268. 

1943. 

Pratt JW, Raiffa H, Schlaifer R. Introduetion to statistica) decision theory. McGraw-Hill, 

New Vork. 1965. 

Ouillian MR. Word concepts: a theory and simulation of some basic semantic capabilities. 

Behaviaral Science 12, 410-430. 1967. 

Quine W Van Orman. Methods of logic. Routledge and Kegan Paul. 1958. 

Rademakers MAJ, Schelle HJ. Capnography and its automatic diagnostics (in Dutch). BSc 

thesis, Dept of Electr Engng, Eindhoven Univ of Technology. 1983. 

Raiffa H. Decision Analysis: Introductory lectures on choice undèr uncertainty. Addison­
Wesley, Reading, Mass. 1968. · 

Rampil IJ. Intelligent detection of artifact. In: Gravenstein JS, Newbower RS, Ream AK, 

Smith NT (eds). The automated anesthesia record and alarm systems. Butterworths, Boston. 

1987. 

Ream AK. Monitoring concepts and techniques. In: Ream AK, Fogdall RP (eds). Acute 

cardiovascular management; anesthesia and intensive care, 139-160. Lippincott. 1982. 

Ream AK, Robinson DJ, Nelson PE, Portner PM. The automated anesthesia record: 

software design philosophy. In: Gravenstein JS, Newbower RS, Ream AK, Smith NT (eds). 

The autornaled anesthesia record and alarm systems. Butterworths, Boston. 1987. 

Reid JA, Kenny GNC. Evaluation of closed loop control of arterial pressure after 

cardiopulmonary bypass. Br J of Anaesthesia 59:2, 247-255. 1987. 

Reisig W. Petri Nets. EATCS Monographs on Theoretica! Computer Science, Vol 4. 

Springer, Berlin. 1985. 

Rich E. Artificial intelligence. McGraw-Hill. 1983. 

226 



Richer MH. An evaluation of expert system development tools. Expert Syst 3:3, 166-1 H3. 

1986 . . 

Rodd MG, Suski GJ (eds). Artificial lntelligence in reai-time controL Pergamon. 19H9. 

'Rosenbloom PS. The chunking of goal hierarchies: a model of practice and stimulus­

esponse compatibility. PhD thesis, Carnegie-Mellon Univ. 1983. 

Rosenbloom PS, Newell A. The chunking of goal hierarchies: a generalized model of 

practice. In: Miehalski RS, Carboneli JG, Mitchell TM (eds). Machine learning, an Artificial 

Intelligence approach, Vol 2, 247-288. Kaufmann, Los Altos. 1986. 

Rosenfeld I. The complete medica! exam. Sirnon and Schuster, New York. 1978. 

Rosenfeldt FL, Chang V, Grigg H, Parker S, Learns R, Rabinov M, Xu WG. A closed loop 

microprocessor controller for treatment of hyperlension after cardiac surgery. Anesth and 

Intensive Care 14:2, 158-162. 1986. 

Russek E, Kronmal RA, Fisher LD. The effect of assuming independenee in applying Bayes' 

theorem to risk estimation and classification in diagnosis. Comp and Biomed Res 16:6, 537-

552, Dec 1983. 

Ruyter JAF de. Trend detection in physiological signals (in Dutch). MSc thesis, Dept of 

Electr Engng, Eindhoven Univ of Technology. 1982. 

Schoeider AJL. The current practice. In: Gravenstein JS, Newbower RS, Ream AK, Smith 

NT, Barden J (eds). Monitoring surgical patients in the operating room, 5-16. Springfield, 

lllinois. 1979. 

Schoor BFW. The trend detection algorithm as a basis for an intelligent alarms expert 

system (in Dutch). MSc thesis, Dept of Electr Engng, Eindhoven Univ of Technology. 1986. 

Shafer G. A mathematica! theory of evidence. Princeton University Press. 1976. 

Sheppard LC, Kouchoukos NT, Shotts JF, Wallace FD. Regulation of mean arterial pressure 

by computer control of vasoactive agents in postoperalive patients. Prae Computers in 

Cardiology, 91-94. 1975. 

Sheppard LC. Correlation analysis of blood pressure responses to vasoactive drugs, with 

particular reference to clinical surveillance of the post-surgical cardiac patient. PhD thesis, 

Imperia! College, London. 1976. 

227 



Shore JE. Relative entropy, probabilistic inference and Al. In: Uncertainty) n Artificial 

lntelligence, North Holland. 1986. 

Shortliffe EH, Buchanan BG. A model of inexact reasoning in medicine. Math Biosdences 
23, 351-379. 1975. 

Shortliffe EH. Computer-based medica! consultations, MYCIN. Elsevier, New York. 1976\ 

Shortliffe EH, Fagan LM. Expert systems research: modeling the medica] decision making · 

process. Technica! Memo HPP-82-3, Computer Science Dept, Stanford Univ, Stanford, Calif. 

1982. 

Shuman L. Evaluation of the process of anesthesia care. In: Grundy BL, Gravenstein JS 

(eds). The quality of care in anesthesia, 61-87. Springfield, Illinois. 1982. 

Simmonds WH. Representation of real knowledge for real time use. In: Rodd MG, Suski GJ 

(eds). Artificial Intelligence in reai-time controL Pergamon. 1989. 

Sirnon HA. The theory of problem solving. Information Processing 71, 261-277. 1972. 

Skolnick M: The impact of technology on anesthesia care: computers, communications, and 

the neurosciences. 1~: Grundy-BL, Gravenstein JS (e&;). The quality of care in anesthesia. 

Springfield, Illinois. 1982. 

Slate JB. Model based design of a controller for infusing sodium nitroprusside during 

postsurgical hypertension. PhD thesis, Univ of Wisconsin, Madison. 1980. 

Slate JB, Sheppard LC. Automatic control of blood pressure by drug infusion. Proc JEE 

129:9, 639-644. 1982. 

Stern KS, Chizeck HJ, Walker BK, Krishnaprasad PS, Katona PG. The self tuning controller, 

comparison with human performance in the control of arterial pressure. Ann of Biomed 

Engng 13,341-347. 1985. 

Suwa M, Scott C, Shortliffe EH. Completeness and consistency in a rule-based system. In: 

Buchanan BG and E.H. Shortliffe EH (eds). Rule-based expert systems, 159-170. Addison­

Wesley. 1984. 

Szolovits P, Pauker SG. Categorical and probabilistic reasoning in medica! diagnosis. Artif 

Inteli 11, 115. 1978. 

Tsang EPK. TLP, a temporal planner. In: Hallam J, Mellish C (eds). Actvances in Artificial 

lntelllgence, 63-80. Wiley, Chichester. 1987. 

228 



Tullemans MH. Expert systems and the implementation of expertise; a cognitive analysis of 

the human expert (in Dutch). BSc thesis, Dept of Electr Engng, Eindhoven Univ of 

Technology. 1987. 

Turner M. Real Time Experts. Systems Int 14, 1, 55-57. 1986. 

Vetter NJ, Julian DG. Comparison of arrhythmia computer and conventional monitoring in 

a coronary care unit. The Lancet, 1151-1154. 1975. 

Vingerhoeds RA, Delhar P, Boullart L. Expert systems for process control using automatic 

knowledge acquisition. In: Rodd MG, Suski GJ (eds). Artificial Intelligence in reai-time 

controL Pergamon. 1989. 

Voss GI, Katona PG, Chizeck HJ. Automated control of arterial blood pressure and cardiac 

output with sodium nitroprusside and dobutamine in anesthetized dogs. 1986 American 

Control Conf, Vol 2, 874-877. 1986. 

Waterman DA. A Guide to Expert Systems, Addiwn-Wesley. 1986. 

Weed LL. Medica! records, medica! education and patient care. Yearbook Medica!, Chicago. 

1971. 

Westenskow DR, Meline L, Pace NL. Controlled hypolension with sodium nitroprusside: 

anesthesiologist versus computer. J Clin Mon 3:2, 80-86. 1987. 

Winograd T. Onderstanding natura! language. Academie Press. 1972. 

Winston PH. Artificial lntelligence, Addison-Wesley. 1977. 

Wirth N. Programming languages: what to demand and how to assess them. Institut für 

Jnformatik, report nr 17. ETH Zürich. 1976. 

Wirth N. Algorithms + Data Structures = Programs. Prentice Hall, Englewood Cliffs, NJ . 

1976. 

Wood M, Hyman S, Wood AJJ. A clinical study of sensitivity to sodium nitroprusside during 

controlled hypotensive anesthesia in young and elderly patients. Anesthesia and Analgesia 

66:2, 132-136. 1987. 

Woods WA Important issues in knowied ge representation. Proc IEEE 74:10, 1322-1334. 

1986. 

229 



Woord H van der. Characteristics of sodium nitroprusside infusion for the design of an 

adaptive blood pressure controller. MSc thesis, Dept of Electr Engng, Eindhoven Univ of 
Technology. 1981. 

Zwart R. Implementation and evaluation of a robust adaptive blood pressure controller (in 

Dutch). MSc thesis, Dept of Electr Engng, Eindhoven Univ of Technology. 1990. 

230 



Summary 

This dissertation describes the SIMPLEXYS toolbox, a collection of tools to design real 

time expert systems. The central tooi is a new expert systems language that is especially 

meant to formulate and solve prohlems in the domain of patient monitoring and clinical 

éontrol systems. 

SIMPLEXYS expert systems are more effïcient and safe than many other expert systems. 

Their efficiency is caused by the fact that the SIMPLEXYS Inference Engine is based on a 

linear time algorithm. During the inferencing process, no searching is necesswy; searching is 

done by a compiler, which converts the knowledge base into an internal format which can be 

executed at high speed. This is essentiaJ in real time expert systems. The safety of 

SIMPLEXYS expert systems originates in the numerous ways in which the colTeemess of the 

knowledge base can be checked; this, too, is due to the fact that the knowledge base is 

compiled. The compiler ereales a dynamic and a static network, the properties of which can 

be analyzed against a variety of criteria that must he satisfied in a correct knowledge base. 

Basic features of the SIMPLEXYS language are its implementation of goals, which 

describe what must be done, and of protocols, which describe when to do what. Protocols 

denote a context, and the context specifies which of the goals must be pursued. Protocolscan 

efficienty provide an answer to many of the questions that temporal logies are designed to 

answer. 

Properties of the SIMPLEXYS language are 1) that it allows a knowledge base designer 

to clearly and concisely describe both symbolic and procedural knowledge and the ways in 

which these interact, 2) that it allows the knowledge to be translated into an internal format 

which can be rapidly executed by even a smal! computer, 3) that the correctness of the 

knowledge can be tested in a variety of ways, and 4) that it provides convenient and efficient 

methods toperfarm calculations and to interface with the 'outside world'. 

The basic unit of the language is the rule . SIMPLEXYS rules do not have the familiar 'if 

... then .. .' format that is used in production systems but a definitional one, ' ... is defined as 

.. .'. From this, and from the three7valued logic that is used in SIMPLEXYS, follows another 

major difference with production systems: a SIMPLEXYS rule bas as its default condusion 

unknown rather than fa/se, other possible conclusions being true and fa/se. Another 

difference is that a SIMPLEXYS rule "an lead 10 multiple conclusions. The combination of 

these properties leads to the possibility to check for a number of inconsistency errors in the 

knowledge base; many of these checks can be performed at compile time. 

Other SIMPLEXYS tools are, besides the language: the Rule Compiler and its 

extensions, which translate and check the knowledge, the Infereoce Engine which provides 

231 



the reasoning ability and the Tracer/Debugger, which can analyze the inferencing that took 
place during an expert system's operation. 

Chapter 1 gives a general description of the goal of the SIMPLEXYS experiment: to 

provide a set of tools to solve a particular class of problems in patient monitoring. 

Chapter 2 provides some background on expert systems and reviews in particular the 
requirements that must be met and the problems that are encountered in real time expert 
system applications; specific problems are the slow execution speed of rule-based systems 
due to the time spent in searching, and the unpredictability of the system's response time. 

Chapter 3 provides a background on problem solving in medicine, and particularly in 
patient monitoring in anesthesia. SIMPLEXYS formalizes the hypothetico-deductive problem 

solving approach and the models that describe diagnostic and therapeutic management which 
are known as protocols. The link with machine reasoning and with the SIMPLEXYS problem 
solving methodology is demonstrated. The chapter concludes with some issues that are 

important in the design of a new programming language, which is to be a tooi to build a 

logica!, verifiable 'abstract machine' to solve a certain class of problems given a convenient 

and appropriate set of building blocks. 

Chapter 4 provides the necessary insight into the features that the SIMPLEXYS language 
provides and gives a motivation for their"ëXistence. It stresses the needs for simpliëity and 
clarity of the Janguage's constructs, efficiency in their evaluation, and appropriateness of the 
constructs within the problem domain. 

Next, chapter 5 gives a detailed description of all SIMPLEXYS constructs and how they 

are used, describes the various tools, and gives some insight in how efficiently SIMPLEXYS 
expert systems perform. In particular, the SIMPLEXYS inferencing mechanism is shown to 

be approximately linear time. One of the causes for this is the fact that no searching need be 
done by the inferencing mechanism. 

Chapters 6 and 7 describe in detail how the semantics of the knowledge base can be 
checked. Checking is feasible because the rules, the elementary chunks of knowledge, are 
connected into a logica\ network that must have certain pre-specified properties. Chapter 6 
considers the correctness of the static aspects of the knowledge, e.g. contradictions and 

circular definitions, and chapter 7 its dynamic aspects, e.g. whether deadlock can occur. 

Chapter 8 considers what to do when real time expert systems must process large 

quantities of rapidly changing data. Data processing algorithms can compact the data by 
eliminating redundancies and computing symbolic 'features' that the expert system will be 
a bie to handle at a symbolic level. Data can also contain artifacts, which must be de tected; 

otherwise the expert system might reach erroneous conclusions based on corrupted 

232 



...,. 
information. Besides some issues 'conèe-rning data input and data processing, this chapter 

presents a feature extraction arul validation methodology for physiological signals. 

Chapter 9 describes one of the SIMPLEXYS applications, a sodium nitroprusside hlood 

pressure controller, whose task it is to stabilize a patient's mean arterial pressure at a lower 

than normal level. This chapter reviews the available knowledge about sodium nitroprusside, 

sodium nitroprusside controllers, especially those of the PlO type, and the adaptation of the 

controller's properties which is necessary due to the large sensitivity range in patients. Some 

implementation details are described, which demonstrate how protocols are used to specify 

expectations. The chapter concludes with a review of the performance of the controller and 

some of the remarks of the knowledge engineer about the role of SIMPLEXYS in its design. 

Chapter 10, finally, concludes that SIMPLEXYS provides an appropriate set of tools for 
the design of high performance real time experts in the patient monitoring domain. 

233 



Samenvatting 

Deze dissertatie beschrijft SIMPLEXYS, een verzameling gereedschappen om real time 

expert systemen te ontwerpen en te ontwikkelen. Het centrale gereedschap is een nieuwe 

expert systeem programmeertaal die in het bijzonder is bedoeld om problemen op het 

gebied van patientbewaking en klinische regelsystemen te formuleren en op te lossen. 

SIMPLEXYS expert systemen zijn sneller en veiliger dan vele andere. Hun snelheid wordt 
veroorzaakt door het feit dat de Inference Engine van SIMPLEXYS gebaseerd is op een 

algoritme dat slechts lineair met de tijd is. Tijdens het inferentieproces is zoeken niet nodig; 

zoeken wordt gedaan door een compiler, die het kennisbestand converteert naar een interne 

vorm die met hoge snelheid kan worden verwerkt. Dit is essentiëel in real time expert 

systemen. De veiligheid van SIMPLEXYS expert systemen berust op de vele wijzen waarop 
de correctheid van het kennisbestand gecontroleerd kan worden; ook dit is mogelijk vanwege 
het feit dat het kennisbestand wordt gecompileerd. De compiler creëert een dynamisch en 

een statisch netwerk, waarvan de eigenschappen kunnen worden geanalyseerd ten aanzien 
van een veelheid van criteria waaraan voldaan moet zijn wil het kennisbestand correct zijn. 

Basis-aspecten van de SIMPLEXYS taal zijn de implementatie van goals (doelstellingen), 
die beschrijven wat er gedaan moet worden, en van protoco/s, die beschrijven wanneer iets 

gedaan moet worden. Protoeals duiden een context aan, die specificeert welke van de 

doelstellingen gevolgd moet worden. Protoeals kunnen op efficiente wijze antwoord geven op 

de meeste vragen die een temporele logica kan beantwoorden. 

Eigenschappen van de SIMPLEXYS taal zijn 1) dat zij de expert systeem ontwerper in 

staat stelt zowel symbolische als procedurele kennis als ook de wijze waarop deze 
samenhangt duidelijk en beknopt weer te geven, 2) dat de kennis vertaald kan worden naar 
een interne representatie die snel kan worden gemanipuleerd door zelfs een kleine 

computer, 3) dat de correctheid van de kennis op een aantal verschillende manieren 

gecontroleerd kan worden, en 4) dat zij geschikte en efficiente methoden biedt om 

berekeningen uit te voeren en om met de 'buitenwereld' te communiceren. 

De basis-eenheid van de taal is de regel. Regels hebben in SIMPLEXYS niet de bekende 

'als ... dan .. .' vorm van de productie-systemen, maar de vorm van een definitie, ' .. . is 

gedefiniëerd als .. .'. Hieruit, en uit de driewaardige logica die in SIMPLEXYS wordt 

gebruikt, volgt nog een belangrijk verschil met de productie-systemen: een conclusie heeft in 

SIMPLEXYS de waarde onbekend indien voor die conclusie noch waar, noch onwaar kan 

worden afgeleid; in productie-systemen is een conclusie onwaar tenzij waar kan worden 
afgeleid. Nog een verschil is dat in SIMPLEXYS uit één regel meerdere conclusies kunnen 

volgen. Deze eigenschappen leiden lesamen tot de mogelijkheid het kennisbestand op een 
aantal mogelijke vormen van inconsistentie te controleren; veel van deze controles kunnen 

reeds worden uitgevoerd bij het vertalen van de kennis naar zijn interne representatie. 

234 



Naast de taal zijn andere gereedschappen die SIMPLEXYS aanbiedt: de 'Rule Compiler' 

en zijn extensies, die de kennis vertalen en controleren, de 'Inference Engine' die het 

red~neermechanisme incorporeert, en de 'Tracer/Debugger', die het redeneerproces zoals 

da} plaats vond tijdens het in bedrijf zijn van een expert systeem kan analyseren. 

Hoofdstuk 1 geeft een algemene beschrijving van de doelstelling van het SIMPLEXYS 

experiment: het leveren van een aantal gereedschappen om een welbepaal.de klasse 

problemen op het gebied van de patientbewaking op te lossen. 

Hoofdstuk 2 biedt enige achtergrondinformatie over expert systemen en beschouwt in het 

bijzonder de eisen die gesteld moeten worden en de problemen die tegemoet gezien kunnen 

worden bij het toepassen van real time expert systemen; in het bijzonder zijn de geringe 

executiesnelheid van regel-gebaseerde expert systemen, veroorzaakt door de tijd die nodig is 
voor zoeken, en de onvoorspelbaarheid van de responstijd van het systeem problemen die 

een oplossing behoeven. 

Hoofdstuk 3 beschouwt hoe medische problemen opgelost worden, in het bijzonder in de 

patientbewaking in de anesthesie. SIMPLEXYS formaliseert de hypothetico-deductieve 

methode van probleem-oplossen en de onder de naam protocol bekend staande modellen die 

het diagnostische en therapeutische handelen beschrijven. Ook wordt het verband gelegd 

met machinaal redeneren en met de methodologie voor het oplossen van problemen die in 

SIMPLEXYS wordt gehanteerd. Dit hoofdstuk besluit met enige zaken die van belang zijn 

bij het ontwerp van een nieuwe programmeertaal, die immers een hulpmiddel moet zijn om 

een logische, verifieerbare 'abstracte machine' te bouwen die een bepaalde klasse problemen 

kan oplossen gegeven een aantal handige en toepasselijke bouwstenen. 

Hoofdstuk 4 biedt het noodzakelijke inzicht in en een motivatie voor de eigenschappen 

van de SIMPLEXYS taal. De eenvoud en helderheid van de basis-elementen van de taal, de 

efficientie van de evaluatie daarvan, en de toepasselijkheid ervan voor het probleem-domein 

worden benadrukt. 

Vervolgens geeft hoofdstuk 5 een gedetailleerde beschrijving van alle basis-elementen van 

SIMPLEXYS en hoe ze gebruikt worden, het beschrijft de diverse gereedschappen, en het 

geeft enig inzicht in de executie-snelheid van SIMPLEXYS expert systemen. In het bijzonder 

wordt aangetoond dat het redeneermechanisme van SIMPLEXYS bij benadering lineair is 

met de tijd. Dit is onder andere een gevolg van het feit dat het inferentie-mechanisme niet 

behoeft te zoeken. 

Hoofdstukken ó en 7 beschrijven in detail hoe de semantiek van het kennisbestand 

gecontroleerd kan worden. Controle is mogelijk omdat de regels, de elementaire kennis­

entiteiten, verbonden worden tot een netwerk dat aan bepaalde van te voren gespecificeerde 

eigenschappen moet voldoen. Hoofdstuk ó beschouwt de correctheid van de statische 

235 



~ ~ -
aspecten van de kennis zoals contradicties en circulaire definities, en hoofdstuk 7 de 
dynamische aspecten zoals de mogelijkheid het einde van het protocol te bereiken. 

Hoofdstuk 8 beschouwt hoe gehandeld kan worden indien een real time expert systeem 
een grote hoeveelheid snel veranderende gegevens moet verwerken. Gegevensverwerkende 
algoritmes kunnen de gegevens samenvatten en symbolische 'eigenschappen' berekenen die 
het expert systeem vervolgens op symbolisch niveau kan verwerken. In de gegevens kunnen 
ook artefacten aanwezig zijn; deze dienen gedetecteerd te worden omdat het expert systeem 
anders foutieve conclusies zou kunnen afleiden tengevolge van gecorrumpeerde informatie. 
Naast enkele zaken betreffende de invoer van gegevens en gegevensverwerking biedt dit 
hoofdstuk een methodologie om de 'eigenschappen' van fysiologische signalen te extraheren 
en om die te valideren. 

Hoofdstuk 9 beschrijft één van de toepassingen van .SIMPLEXYS, een 
bloeddrukregelaar, waarvan het de taak is door middel van infusie van natrium-nitroprusside 
de bloeddruk van een patient op een kunstmatig verlaagd niveau te stabiliseren. Dit 
hoofdstuk geeft een overzicht van de beschikbare kennis op het gebied van natrium­
nitroprusside, automatische regelaars die deze stof toedienen, in het bijzonder die van het 
PlO-type, en de adaptatie van de eigenschappen van de. regelaar die noodzakelijk is vanwege 
de grote spreiding van de gevoeligheid in patienten. Enkele implementatie-details, die laten 
zien hoe protocols gebruikt worden om verwachtingen te specificeren, worden beschreven. 
Het hoofdstuk besluit met-een overzicht van de performance van deregelaar en m~t enk: le 
van de opmerkingen van de ontwerper van het systeem over de rol die SIMPLEXYS speelde 
bij het ontwerp. 

Tenslotte concludeert hoofdstuk 10 dat SIMPLEXYS een geschikt assortiment 
hulpmiddelen biedt om real time expert systemen van hoge kwaliteit te kunnen realiseren op 
het gebied van patientbewaking. 

236 



... 
Curriculum Vitàe 

' ~ohannes Abraham Blom werd geboren op 3 april 1944. Van 1955 tot 1961 bezocht hij 

het Corderius Lyceum in Amersfoort, ·.vaar hij het diploma Gymnasium-13 behaalde. Daarna 

bracht hij als 'exchange student' een jaar in de Verenigde Staten door, waar hij in 1962 het 

High School diploma behaalde aan de University High School in West Los Angeles. 

Van 1962 tot 1970 studeerde hij aan de afdeling Elektrotechniek van de Technische 

Hogeschool te Eindhoven. De afstudeerrichting wa' Meet- en Regeltechniek en zijn 

afstudeerhoogleraar was prof.ir. D.H. Bekkering. De afstudeeropdracht werd verricht aan het 

Medisch Fysisch Instituut TNO te Utrecht en betrof de analyse van met oppervlakte­

elektroden geregistreerde elektromyografische signalen. In 1970 verkreeg hij het ingenieurs­

diploma. 

Van 1971 tot 1972 was hU werkzaam op het Medisch Fysisch Instituut TNO te Utrecht, 

waar hij werkte aan de opzet van een deelmodel van het perifere zenuwstelsel dat 

verschillende verschijnselen in het elektromyogram zou kunnen verklaren. 

Als gewetensbezwaarde militaire dienst werd hij in 1972 te werk gesteld bij de vakgroep 

Meet- en Regeltechniek van de Technische Hogeschool te Eindhoven, waar hij in 

samenwerking met prof.ir. D.H . Bekkering begon te werken aan de mathematische 

modellering van en parameterschatting aan fysiologische systemen. Vanwege een tijdelijke 

aanstelling aan de THE kon hij dit werk tot 1974 voortzetten, nu in samenwerking met 

prof.dr.ir. J.E.W. Beneken. In deze periode begon zijn werk zich te specialiseren in de 

richting van anesthesie en patientbewaking. 

Van 1974 tot 1975 werkte hij bij het Department of Surgery van de University of 

Alabama in Birmingham, waar hij, in samenwerking met dr. L.C. Sheppard, zijn werk 

voortzette, nu gericht op een optimale regeling van bloedinfusie aan patienten, die na een 

hartoperatie op de intensive care unit verbleven. 

In 1975 keerde hij terug naar de vakgroep Meet- en Regeltechniek van de Technische 

Hogeschool te Eindhoven. Hij werd, onder verantwoordelijkheid van prof.dr.ir. J.E.W. 

Beneken, leider van het serva-anesthesie projekt, waarvan de doelstelling was en is het 

onderzoek in hoeverre automatisering in de anesthesie zinvol en mogelijk is. Sinds in 19HO 

de vakgroep Medische Elektrotechniek gevormd werd, is hij daar werkzaam. 

In 1985 begon hij theoretisch en praktisch onderzoek op het gebied van kunstmatige 

intelligentie en expert systemen. Hij ontwikkelde een nieuwe, speciaal voor taken als 

patientbewaking bedoelde, expert systeem programmeertaal en de daarbij behore nde 

compiler en andere hulpmiddelen. Op grond van dat werk is deze dissertatie to stand 

gekomen. 

237 



ADDENDUM 

to 

The SIMPLEXYS Experiment 

real time expert systems in patient monitoring 

by 

JA. Blom 



Ir. Jan Hajek has brought it to my attention, that the thanks that I offer 
him in my (Dutch) foreword have been misunderstood, by at least one 
person. Thcrefore maybe hy others, too. This addendum wants to take 
such an impression away. if it may have arisen. What I meant was most 
cmphatically a compliment. Let me clahorate, and in recompense add 
some extra praise and acknowledge the indispcnsable hut often invisible 
role ,..-hich Jan Hajek played in the design history of the SIMPLEXYS 
s~ skm . 

I hope that at least the statement in the foreword. that Hajek put me on 
the track of what was to become SIMPLEXYS, is unmistakable. This 
early start has only briefly been mentioned on page 51. Let me add some 
more details. It came about as follows. 

In May 1986 Hajek presenred his first Artificial Intelligence course at the 
Eindhoven University of Technology, in \vhich I was probably the most 
en1housiast (and most obnoxious"?) student. I am sure I graduated. 
although I did not get ä grade. Following this course. upto aboui May 
1')87. we bccame both collabora10rs and competitors. Jan Hajek was 
de' cloping his expert system Quixpert, I was working On what was going 
to he called SIMPLEXYS. and of course hoth of us v.·anted to be best. 
We frequentlv had long, heated. detailed, in-dept h discussions about thc 
features that fast and safe expert systems should have . 

How to adequately describe this creative process in action, this battle of 
minds, in rationaL objective, scientific terms? Such a creative process is 
non-rational, Jike a championship ping-pong game in which idcas, ripe and 
unripe, are, like balls, feverishly bounced back and forth in an effort to 
score. New ideas grow or suddenly erupt. And a great many of my ideas 
originated, grew or ripened during such intensive exchanges. The term 
"destructive mind set", mentioned in the foreword, is Jan Hajek's own 
phrase for his critica! attitude and high standards whcre software in 
general and expert systems in particular a re concerned. He knows exactly 
what I mean. And this attitude was very helpfut to me in discriminating 
worthwhile idcas from useless ones. 



If an idea survived such a confrontation. it probably was a good one. And, 
stubborn as I am, I did not give up easily at all. That is whal the forcword 
means when it says that his 'destructive mind set' stimulated me to do it 
anyway. 

V V .-----. - -- ----: 

u I TR FA PO u TR FA PO 
·---- ------- - . 

TR TR TR TR TR TR ** TR 
·- -------· - -· 

FA FA FA FA FA ** FA FA 
---------·-- -- ----

PO TR FA PO PO TR FA PO 
·----

u DEFAULT V u ALT V 

One area of discourse was. that both Jan Hajek and l were coo\inced that 
a three-valued logic needed more dyadic operators than just and and nr. 
Whereas my initia! idea was an opaator tentatively called DEFAULT, 
Jan Hajek fina\ly succeeded in com·incing me, after many long and hcated 
discussions, that his idea, the ALT operator ( described on page 7ó) was 
superior. lt had more extra expressi\C power, it had symmelry and it had 
an extra error checking possibility. Hajá. whosc emphasis was on logic 
and operators, later designed a whole new class of additional operators 
{Hajek, 1988]. These havenotbeen included in SIMPLEXYS. where the 
emphasis was on inferencing. 

Later, in December 1986, Hajek presenled me with the souree code of his 
expert system Quixpert, 1he logic of which was described in Hajek [198Rl. 
Quixpert was extrcmely uscful, too. The TH ELS Es ( descriheel on page 
56) provided a breakthrough both in expressivc power and in eftïciency. 
And Quixpert's ASK rules (page 52) provides me with a last missing link: 
the concept of an active 'rule type'; Quixpert showed me how to evaluatc 
'primitive' rules only when necessary. I immediately inventcd other types 
of primitive rules as wel\, beside ASK rules. Thc first full-fcature version 
of SIMPLEXYS, consisting of a Rule Compiler and an loferenee Engine, 
was ready in March of 1987 and could do anything QuLxpcrt could, al 



.. • 

least the Ouixpert version of December 1986, and more, much more 
compactly. and possibly even faster. But then, that had not been the last 
version of Qui_xpert either ... 

From about May 19R7 on, cooperation continued in a different way. at 
times ofticiallv sanctioned. at other times unofficially. Jan and I had fcwer 
brainstorm sessions, but now he also started to take part in thc coaching 
of thc M .Sc. studcnts who participated in the devclopment of 
SIMPLEXYS. Boon [19~7]. whose task it was to develop the scmantic 

··checks. was thc first. Hajek refcrred him to two fundamental building 
blocks: Quinc·s mcthod (page 115) and thc ciosure algorithm (page 118). 
In coaching him and others. Jan Ha jek showed these students entries into 
thc litaaturc. and discussed problcms, solutions and caveats. In bis 
coaching, his contrihutions must have been substantial. too. 

Jan Hajek's inlluence on SIMPLEXYS has therefore been pervasive. Only 
his most important contributions, the "micro expert" and Quixpert. have 
been mentioned in my disscrtation. and not in very much detail. Many of 
Jan Hajek's contrihutions have not been ll)entioned because they were 
effectively inüsibk: provlding e~tries into the literature. but most ('f all 
helping the studcnts and me to hone and develop ideas. discard inferior 
ones and imprO\c good oncs. Jan, thank you agai_n, for en:rything you 
have done. And in particular. thank you for your "destructive mind set". 
which has inspired many a good idea and saved me quitc a lot of effort 
in pursuing bad oncs. 

JA Blom 



STELLINGEN 

behorende bij het proefschrift 

The SIMPLEXYS Experiment 

real time expert systems in patient monitoring 

door 

J.A. Blom 

Eindhoven, 11 mei 1990 



1. Natuurlijke taal kent, in tegenstelling tot een kunstmatige taal als 
SIMPLEXYS, geen 'primitieven'. Het begrip 'betekenis' is in een 
natuurlijke taal dan ook problematisch. 

Dit proefschrift 

2. Veel menselijke kennis is slecht onder woorden te brengen (het probleem 
van kennisacquisitie). 

Dit proefschrift 

3. Kennisacquisitie is de formalisering van intuïtieve overtuigingen. 

B. Russell: De menselijke kennis 
Servire, Katwijk, 1950 

4. Een programmeertaal moet de communicatie mogelijk maken tussen een 
meris, die opdrachten gëeft, en een machine, die de opdrachten uitvoert. 
De functie van de programmeertaal is deze communicatie zo foutloos 
mogelijk te laten verlopen. 

L. Wittgenstein: Filosofische Onderzoekingen 
Boom, Meppel, 1976 

5. Definitieve criteria voor de geldigheid van uitspraken zijn voor het 
menselijk denken (ook voor het wetenschappelijk denken) niet weggelegd. 

L. Kolakowski: Horror Metaphysicus 
Kok Agora, Kampen, 1989 

6. De betekenis van een begrip is niet altijd duidelijker naarmate we het 
vaker gebruiken. 

P. Vroon: Intelligentie 
Ambo, Baarn, 1980 



7. De meeste van de bedoelingen die de programmeur had bij het schrijven 
van zijn computerprogramma gaan verloren bij het compileren van dat 
programma. 

Dit proefschrift 

8. Een gebeurtenis treedt op, zij treedt niet op, of het is onbekend of zij al 
dan niet optreedt (uitgangspunt van de SIMPLEXYS logica). 

Dit proefschrift 

9. Alle abstracties op hoog mveau behoren uiteindelijk te berusten op 
waarnemingsgegevens. 

N. Elias: Een essay over tijd 
Meulenhoff, Amsterdam, 1982 

10. Waarnemen is zinloos als de waarneming niet kan leiden tot enigerlei 
aktie. 

D.O. Hebb: Organizations of behavior; 
a neurophysiological theory 

Erlbaum, Hillsdale, 1963 

11. Een waarneming kan slechts tot kennis leiden als bekend is hoe die 
waarneming geïnterpreteerd dient te worden. Het verkrijgen van kennis 
vooronderstelt dus kennis. 

Dit proefschrift 

12. Het achteloze gebruik van de uitdrukking 'niet te ftlmen' geeft er blijk van 
dat de spreker een geringe kennis bezit van de mogelijkheden van de 
hedendaagse cinematografie. 


