16 research outputs found

    Left ventricular rotation: a neglected aspect of the cardiac cycle

    Get PDF
    Purpose: To describe the mechanics and possible clinical importance of left ventricular (LV) rotation, exemplify techniques to quantify LV rotation and illustrate the temporal relationship of cardiac pressures, electrocardiogram and LV rotation. Materials and methods: Review of the literature combined with selected examples of echocardiographic measurements. Results: Rotation of the left ventricle around its longitudinal axis is an important but thus far neglected aspect of the cardiac cycle. LV rotation during systole maximizes intracavitary pressures, increases stroke volume, and minimizes myocardial oxygen demand. Shearing and restoring forces accumulated during systolic twisting are released during early diastole and result in diastolic LV untwisting or recoil promoting early LV filling. LV twist and untwist are disturbed in a number of cardiac diseases and can be influenced by several therapeutic interventions by altering preload, afterload, contractility, heart rate, and/or sympathetic tone. Conclusions: The concept of LV twisting and untwisting closely linking LV systolic and diastolic function may carry potential diagnostic and therapeutic importance for the management of critically ill patients. Future clinical studies need to address the feasibility of assessing LV twist and untwist as well as the relevance of its therapeutic modulation in critically ill patient

    Influenza A(H1N1) infection and severe cardiac dysfunction in adults: A case series

    Get PDF
    Zusammenfassung: HINTERGRUND: Während die virale Myokarditis und das Herzversagen anerkannte und gefürchtete Komplikationen einer saisonalen Influenza A Infektion sind, liegen bislang nur wenig Informationen über ein durch das 2009 Influenza A(H1N1) Virus induziertes Herzversagen vor. METHODEN UND HAUPTERGEBNISSE: Diese Fallsammlung fasst den Krankheitsverlauf von vier Patienten mit 2009 Influenza A(H1N1) Infektion zusammen, welche an unserer Klinik im Zeitraum von November 2009 bis September 2010 behandelt wurden. Alle Patienten präsentierten sich mit einer schweren kardialen Funktionsstörung (akutes Herzversagen, kardiogener Schock oder Herzkreislaufstillstand im Rahmen eines Kammerflimmerns) als das führende Symptom einer Influenza A(H1N1) Infektion. Zwei Patienten waren mit hoher Wahrscheinlichkeit kardial vorerkrankt, und drei benötigten eine Katecholamintherapie, um die hämodynamische Funktion zu stabilisieren. Mit Ausnahme eines Patienten der vor der Diagnosestellung der Influenza A(H1N1) Infektion verstarb, wurden alle Patienten mit einer antiviralen Therapie mit Oseltamivir und supportiver Intensivtherapie behandelt. Ein Acute Respiratory Distress Syndrom infolge der Influenza A(H1N1) Infektion trat bei einem Patienten auf. Die Herzfunktion normalisierte sich bei zwei Patienten und war bei einem Patienten noch bei Krankenhausentlassung eingeschränkt. SCHLUSSFOLGERUNG: Eine Influenza A(H1N1) Infektion kann mit einer schweren kardialen Funktionseinschränkung assoziiert sein. Diese kann sich sogar als führendes klinisches Symptom darstellen. Während einer Influenza Pandemie kann eine genaue Anamneseerhebung Grippeähnliche Symptome hervorbringen und sollte auch bei kritisch kranken Patienten mit akutem Herzversagen eine Diagnostik auf H1N1 Infektion veranlasse

    The effects of positive end-expiratory pressure on cardiac function: a comparative echocardiography-conductance catheter study.

    Get PDF
    BACKGROUND Echocardiographic parameters of diastolic function depend on cardiac loading conditions, which are altered by positive pressure ventilation. The direct effects of positive end-expiratory pressure (PEEP) on cardiac diastolic function are unknown. METHODS Twenty-five patients without apparent diastolic dysfunction undergoing coronary angiography were ventilated noninvasively at PEEPs of 0, 5, and 10 cmH2O (in randomized order). Echocardiographic diastolic assessment and pressure-volume-loop analysis from conductance catheters were compared. The time constant for pressure decay (τ) was modeled with exponential decay. End-diastolic and end-systolic pressure volume relationships (EDPVRs and ESPVRs, respectively) from temporary caval occlusion were analyzed with generalized linear mixed-effects and linear mixed models. Transmural pressures were calculated using esophageal balloons. RESULTS τ values for intracavitary cardiac pressure increased with the PEEP (n = 25; no PEEP, 44 ± 5 ms; 5 cmH2O PEEP, 46 ± 6 ms; 10 cmH2O PEEP, 45 ± 6 ms; p < 0.001). This increase disappeared when corrected for transmural pressure and diastole length. The transmural EDPVR was unaffected by PEEP. The ESPVR increased slightly with PEEP. Echocardiographic mitral inflow parameters and tissue Doppler values decreased with PEEP [peak E wave (n = 25): no PEEP, 0.76 ± 0.13 m/s; 5 cmH2O PEEP, 0.74 ± 0.14 m/s; 10 cmH2O PEEP, 0.68 ± 0.13 m/s; p = 0.016; peak A wave (n = 24): no PEEP, 0.74 ± 0.12 m/s; 5 cmH2O PEEP, 0.7 ± 0.11 m/s; 10 cmH2O PEEP, 0.67 ± 0.15 m/s; p = 0.014; E' septal (n = 24): no PEEP, 0.085 ± 0.016 m/s; 5 cmH2O PEEP, 0.08 ± 0.013 m/s; 10 cmH2O PEEP, 0.075 ± 0.012 m/s; p = 0.002]. CONCLUSIONS PEEP does not affect active diastolic relaxation or passive ventricular filling properties. Dynamic echocardiographic filling parameters may reflect changing loading conditions rather than intrinsic diastolic function. PEEP may have slight positive inotropic effects. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT02267291 , registered 17. October 2014

    Axonal injury-dependent induction of the peripheral benzodiazepine receptor in small-diameter adult rat primary sensory neurons

    No full text
    International audienceThe peripheral benzodiazepine receptor (PBR), a benzodiazepine but not gamma-aminobutyric acid-binding mitochondrial membrane protein, has roles in steroid production, energy metabolism, cell survival and growth. PBR expression in the nervous system has been reported in non-neuronal glial and immune cells. We now show expression of both PBR mRNA and protein, and the appearance of binding of a synthetic ligand, [(3)H]PK11195, in dorsal root ganglion (DRG) neurons following injury to the sciatic nerve. In naĂŻve animals, PBR mRNA, protein expression and ligand binding are undetectable in the DRG. Three days after sciatic nerve transection, however, PBR mRNA begins to be expressed in injured neurons, and 4 weeks after the injury, expression and ligand binding are present in 35% of L4 DRG neurons. PBR ligand binding also appears after injury in the superficial dorsal horn of the spinal cord. The PBR expression in the DRG is restricted to small and medium-sized neurons and returns to naĂŻve levels if the injured peripheral axons are allowed to regrow and reinnervate targets. No non-neuronal PBR expression is detected, unlike its putative endogenous ligand the diazepam binding inhibitor (DBI), which is expressed only in non-neuronal cells, including the satellite cells that surround DRG neurons. DBI expression does not change with sciatic nerve transection. PBR acting on small-calibre neurons could play a role in the adaptive survival and growth responses of these cells to injury of their axons

    Reply to La Via and colleagues.

    No full text

    Left ventricular rotation: a neglected aspect of the cardiac cycle

    Get PDF
    To describe the mechanics and possible clinical importance of left ventricular (LV) rotation, exemplify techniques to quantify LV rotation and illustrate the temporal relationship of cardiac pressures, electrocardiogram and LV rotation

    Heart–lung interactions during neurally adjusted ventilatory assist

    No full text
    Abstract Introduction Assist in unison to the patient’s inspiratory neural effort and feedback-controlled limitation of lung distension with neurally adjusted ventilatory assist (NAVA) may reduce the negative effects of mechanical ventilation on right ventricular function. Methods Heart–lung interaction was evaluated in 10 intubated patients with impaired cardiac function using esophageal balloons, pulmonary artery catheters and echocardiography. Adequate NAVA level identified by a titration procedure to breathing pattern (NAVAal), 50% NAVAal, and 200% NAVAal and adequate pressure support (PSVal, defined clinically), 50% PSVal, and 150% PSVal were implemented at constant positive end-expiratory pressure for 20 minutes each. Results NAVAal was 3.1 ± 1.1cmH2O/μV and PSVal was 17 ± 2 cmH20. For all NAVA levels negative esophageal pressure deflections were observed during inspiration whereas this pattern was reversed during PSVal and PSVhigh. As compared to expiration, inspiratory right ventricular outflow tract velocity time integral (surrogating stroke volume) was 103 ± 4%, 109 ± 5%, and 100 ± 4% for NAVAlow, NAVAal, and NAVAhigh and 101 ± 3%, 89 ± 6%, and 83 ± 9% for PSVlow, PSVal, and PSVhigh, respectively (p < 0.001 level-mode interaction, ANOVA). Right ventricular systolic isovolumetric pressure increased from 11.0 ± 4.6 mmHg at PSVlow to 14.0 ± 4.6 mmHg at PSVhigh but remained unchanged (11.5 ± 4.7 mmHg (NAVAlow) and 10.8 ± 4.2 mmHg (NAVAhigh), level-mode interaction p = 0.005). Both indicate progressive right ventricular outflow impedance with increasing pressure support ventilation (PSV), but no change with increasing NAVA level. Conclusions Right ventricular performance is less impaired during NAVA compared to PSV as used in this study. Proposed mechanisms are preservation of cyclic intrathoracic pressure changes characteristic of spontaneous breathing and limitation of right-ventricular outflow impedance during inspiration, regardless of the NAVA level. Trial registration Clinicaltrials.gov Identifier: NCT00647361, registered 19 March 200

    Influenza A(H1N1) infection and severe cardiac dysfunction in adults: A case series

    Get PDF
    BACKGROUND: While viral myocarditis and heart failure are recognized and feared complications of seasonal influenza A infection, only limited information is available for 2009 influenza A(H1N1)-induced heart failure. METHODS AND MAIN FINDINGS: This case series summarizes the disease course of four patients with 2009 influenza A(H1N1) infection who were treated at our institution from November 2009 until September 2010. All patients presented with severe cardiac dysfunction (acute heart failure, cardiogenic shock or cardiac arrest due to ventricular fibrillation) as the leading symptom of influenza A(H1N1) infection. Two patients most likely had pre-existent cardiac pathologies, and three required catecholamine therapy to maintain hemodynamic function. Except for one patient who died before influenza A(H1N1) infection had been diagnosed, all patients received antiviral therapy with oseltamivir and supportive critical care. Acute respiratory distress syndrome due to influenza A(H1N1) infection developed in one patient. Heart function normalized in two of the three surviving patients but remained impaired in the other one at hospital discharge. CONCLUSIONS: Influenza A(H1N1) infection may be associated with severe cardiac dysfunction which can even be the leading clinical symptom at presentation. During an influenza pandemic, a thorough history may reveal flu-like symptoms and should indicate testing for H1N1 infection also in critically ill patients with acute heart failure

    Left ventricular torsion abnormalities in septic shock and corrective effect of volume loading: a pilot study

    No full text
    BACKGROUND Ventricular torsion is an important component of cardiac function. The effect of septic shock on left ventricular torsion is not known. Because torsion is influenced by changes in preload, we compared the effect of fluid loading on left ventricular torsion in septic shock with the response in matched healthy control subjects. METHODS We assessed left ventricular torsion parameters using transthoracic echocardiography in 11 patients during early septic shock and in 11 age- and sex-matched healthy volunteers before and after rapid volume loading with 250 mL of a Ringer's lactate solution. RESULTS Peak torsion and peak apical rotation were reduced in septic shock (10.2 ± 5.2° and 5.6 ± 5.4°) compared with healthy volunteers (16.3 ± 4.5° and 9.6 ± 1.5°; P = 0.009 and P = 0.006 respectively). Basal rotation was delayed and diastolic untwisting velocity reached its maximum later during diastole in septic shock patients than in healthy volunteers (104 ± 16% vs 111 ± 14% and 13 ± 5% vs 21 ± 10%; P = 0.03 and P = 0.034, respectively). Fluid challenge increased peak torsion in both groups (septic shock, 10.2 ± 5.3° vs 12.6 ± 3.9°; healthy volunteers, 16.3 ± 4.5° vs 18.1 ± 6°; P = 0.01). Fluid challenge increased left ventricular stroke volume in septic shock patients (P = 0.003). CONCLUSIONS Compared with healthy volunteers, left ventricular torsion is impaired in septic shock patients. Fluid loading attenuates torsion abnormalities in parallel with increasing stroke volume. Reduced torsional motion might constitute a relevant component of septic cardiomyopathy, a notion that merits further testing in larger populations

    Changes in Left Ventricular Torsion Early Postoperatively After Aortic Valve Replacement and at Long-Term Follow-up.

    No full text
    OBJECTIVE In patients with aortic stenosis, left ventricular systolic torsion (pT) is increased to overcome excessive afterload. This study assessed left ventricular torsion before and immediately after surgical valve replacement and tested the instant effect of fluid loading. DESIGN Prospective, clinical single-center study. SETTING Intensive care unit of a university hospital. PARTICIPANTS 12 patients undergoing elective aortic valve replacement for aortic stenosis. INTERVENTIONS Echocardiography was performed on the day before surgery, within 18 hours after surgery including a fluid challenge, and after 2.5 years. MEASUREMENTS AND MAIN RESULTS pT decreased early postoperatively by 21.2% (23.4° ± 5.6° to 18.4° ± 6.9°; p = 0.012) and reached preoperative values at 2.5 years follow-up (24 ± 7). Peak diastolic untwisting velocity occurred later early postoperatively (13% ± 8% to 21% ± 9.4%; p = 0.019) and returned toward preoperative values at follow-up (10.2 ± 4.7°). The fluid challenge increased central venous pressure (8 ± 4 mmHg to 11 ± 4 mmHg; p = 0.003) and reduced peak systolic torsion velocity (138.7 ± 37.6/s to 121.3 ± 32/s; p = 0.032). pT decreased in 3 and increased in 8 patients after fluid loading. Patients whose pT increased had higher early mitral inflow velocity postoperatively (p = 0.04) than those with decreasing pT. Patients with reduced pT after fluid loading received more fluids (p = 0.04) and had a higher positive fluid balance during the intensive care unit stay (p = 0.03). Torsion after fluid loading correlated with total fluid input (p = 0.001) and cumulative fluid balance (p = 0.002). CONCLUSIONS pT decreased early after aortic valve replacement but remained elevated despite elimination of aortic stenosis. After 2.5 years, torsion had returned to preoperative levels
    corecore