1,087 research outputs found
Weak and Electromagnetic Nuclear Decay Signatures for Neutrino Reactions in SuperKamiokande
We suggest the study of events in the SuperKamiokande neutrino data due to
charged- and neutral-current neutrino reactions followed by weak and/or
electromagnetic decays of struck nuclei and fragments thereof. This study could
improve the prospects of obtaining evidence for production from oscillations and could augment the data sample used to disfavor
oscillations.Comment: 7 pages, latex, to appear in Phys. Rev. Let
Milagro Constraints on Very High Energy Emission from Short Duration Gamma-Ray Bursts
Recent rapid localizations of short, hard gamma-ray bursts (GRBs) by the
Swift and HETE satellites have led to the observation of the first afterglows
and the measurement of the first redshifts from this type of burst. Detection
of >100 GeV counterparts would place powerful constraints on GRB mechanisms.
Seventeen short duration (< 5 s) GRBs detected by satellites occurred within
the field of view of the Milagro gamma-ray observatory between 2000 January and
2006 December. We have searched the Milagro data for >100 GeV counterparts to
these GRBs and find no significant emission correlated with these bursts. Due
to the absorption of high-energy gamma rays by the extragalactic background
light (EBL), detections are only expected for redshifts less than ~0.5. While
most long duration GRBs occur at redshifts higher than 0.5, the opposite is
thought to be true of short GRBs. Lack of a detected VHE signal thus allows
setting meaningful fluence limits. One GRB in the sample (050509b) has a likely
association with a galaxy at a redshift of 0.225, while another (051103) has
been tentatively linked to the nearby galaxy M81. Fluence limits are corrected
for EBL absorption, either using the known measured redshift, or computing the
corresponding absorption for a redshift of 0.1 and 0.5, as well as for the case
of z=0.Comment: Accepted for publication in the Astrophysical Journa
Discovery of Localized Regions of Excess 10-TeV Cosmic Rays
An analysis of 7 years of Milagro data performed on a 10-degree angular scale
has found two localized regions of excess of unknown origin with greater than
12 sigma significance. Both regions are inconsistent with gamma-ray emission
with high confidence. One of the regions has a different energy spectrum than
the isotropic cosmic-ray flux at a level of 4.6 sigma, and it is consistent
with hard spectrum protons with an exponential cutoff, with the most
significant excess at ~10 TeV. Potential causes of these excesses are explored,
but no compelling explanations are found.Comment: Submitted to PhysRevLet
Search for very high energy gamma-rays from WIMP annihilations near the Sun with the Milagro Detector
The neutralino, the lightest stable supersymmetric particle, is a strong
theoretical candidate for the missing astronomical ``dark matter''. A profusion
of such neutralinos can accumulate near the Sun when they lose energy upon
scattering and are gravitationally captured. Pair-annihilations of those
neutralinos may produce very high energy (VHE, above ) gamma-rays.
Milagro is an air shower array which uses the water Cherenkov technique to
detect extensive air showers and is capable of observing VHE gamma-rays from
the direction of the Sun with an angular resolution of . Analysis
of Milagro data with an exposure to the Sun of 1165 hours presents the first
attempt to detect TeV gamma-rays produced by annihilating neutralinos captured
by the Solar system and shows no statistically significant signal. Resulting
limits that can be set on gamma-ray flux due to near-Solar neutralino
annihilations and on neutralino cross-section are presented
The Intrinsic Origin of Spin Echoes in Dipolar Solids Generated by Strong Pi Pulses
In spectroscopy, it is conventional to treat pulses much stronger than the
linewidth as delta-functions. In NMR, this assumption leads to the prediction
that pi pulses do not refocus the dipolar coupling. However, NMR spin echo
measurements in dipolar solids defy these conventional expectations when more
than one pi pulse is used. Observed effects include a long tail in the CPMG
echo train for short delays between pi pulses, an even-odd asymmetry in the
echo amplitudes for long delays, an unusual fingerprint pattern for
intermediate delays, and a strong sensitivity to pi-pulse phase. Experiments
that set limits on possible extrinsic causes for the phenomena are reported. We
find that the action of the system's internal Hamiltonian during any real pulse
is sufficient to cause the effects. Exact numerical calculations, combined with
average Hamiltonian theory, identify novel terms that are sensitive to
parameters such as pulse phase, dipolar coupling, and system size.
Visualization of the entire density matrix shows a unique flow of quantum
coherence from non-observable to observable channels when applying repeated pi
pulses.Comment: 24 pages, 27 figures. Revised from helpful referee comments. Added
new Table IV, new paragraphs on pages 3 and 1
Observation of TeV Gamma Rays from the Crab Nebula with Milagro Using a New Background Rejection Technique
The recent advances in TeV gamma-ray astronomy are largely the result of the
ability to differentiate between extensive air showers generated by gamma rays
and hadronic cosmic rays. Air Cherenkov telescopes have developed and perfected
the "imaging" technique over the past several decades. However until now no
background rejection method has been successfully used in an air shower array
to detect a source of TeV gamma rays. We report on a method to differentiate
hadronic air showers from electromagnetic air showers in the Milagro gamma ray
observatory, based on the ability to detect the energetic particles in an
extensive air shower. The technique is used to detect TeV emission from the
Crab nebula. The flux from the Crab is estimated to be 2.68(+-0.42stat +-
1.4sys) x10^{-7} (E/1TeV)^{-2.59} m^{-2} s^{-1} TeV^{-1}, where the spectral
index is assumed to be as given by the HEGRA collaboration.Comment: 22 pages, 11 figures, submitted to Astrophysical Journa
Observation and Spectral Measurements of the Crab Nebula with Milagro
The Crab Nebula was detected with the Milagro experiment at a statistical
significance of 17 standard deviations over the lifetime of the experiment. The
experiment was sensitive to approximately 100 GeV - 100 TeV gamma ray air
showers by observing the particle footprint reaching the ground. The fraction
of detectors recording signals from photons at the ground is a suitable proxy
for the energy of the primary particle and has been used to measure the photon
energy spectrum of the Crab Nebula between ~1 and ~100 TeV. The TeV emission is
believed to be caused by inverse-Compton up-scattering scattering of ambient
photons by an energetic electron population. The location of a TeV steepening
or cutoff in the energy spectrum reveals important details about the underlying
electron population. We describe the experiment and the technique for
distinguishing gamma-ray events from the much more-abundant hadronic events. We
describe the calculation of the significance of the excess from the Crab and
how the energy spectrum is fit. The fit is consistent with values measured by
IACTs between 1 and 20 TeV. Fixing the spectral index to values that have been
measured below 1 TeV by IACT experiments (2.4 to 2.6), the fit to the Milagro
data suggests that Crab exhibits a spectral steepening or cutoff between about
20 to 40 TeV.Comment: Submitted to Astrophysical Journa
A Measurement of the Spatial Distribution of Diffuse TeV Gamma Ray Emission from the Galactic Plane with Milagro
Diffuse -ray emission produced by the interaction of cosmic-ray
particles with matter and radiation in the Galaxy can be used to probe the
distribution of cosmic rays and their sources in different regions of the
Galaxy. With its large field of view and long observation time, the Milagro
Gamma Ray Observatory is an ideal instrument for surveying large regions of the
Northern Hemisphere sky and for detecting diffuse -ray emission at very
high energies. Here, the spatial distribution and the flux of the diffuse
-ray emission in the TeV energy range with a median energy of 15 TeV
for Galactic longitudes between 30 and 110 and between
136 and 216 and for Galactic latitudes between -10 and
10 are determined. The measured fluxes are consistent with predictions
of the GALPROP model everywhere except for the Cygnus region
(). For the Cygnus region, the flux is twice the
predicted value. This excess can be explained by the presence of active cosmic
ray sources accelerating hadrons which interact with the local dense
interstellar medium and produce gamma rays through pion decay.Comment: 15 pages, 3 figures, accepted by Ap
Solar 8B and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data
Solar neutrino measurements from 1258 days of data from the Super-Kamiokande
detector are presented. The measurements are based on recoil electrons in the
energy range 5.0-20.0MeV. The measured solar neutrino flux is 2.32 +-
0.03(stat.) +0.08-0.07(sys.)*10^6cm^{-2}s^{-1}, which is
45.1+-0.5(stat.)+1.6-1.4(sys.)% of that predicted by the BP2000 SSM. The day vs
night flux asymmetry is 0.033+-0.022(stat.)+0.013-0.012(sys.). The recoil
electron energy spectrum is consistent with no spectral distortion
(\chi^2/d.o.f. = 19.0/18). The seasonal variation of the flux is consistent
with that expected from the eccentricity of the Earth's orbit (\chi^2/d.o.f. =
3.7/7). For the hep neutrino flux, we set a 90% C.L. upper limit of 40
*10^3cm^{-2}s^{-1}, which is 4.3 times the BP2000 SSM prediction.Comment: 7 pages, 5 figures, submitted to PRL (part of this paper
Recommended from our members
A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube
We present two searches for IceCube neutrino events coincident with 28 fast radio bursts (FRBs) and 1 repeating FRB. The first improves on a previous IceCube analysis - searching for spatial and temporal correlation of events with FRBs at energies greater than roughly 50 GeV - by increasing the effective area by an order of magnitude. The second is a search for temporal correlation of MeV neutrino events with FRBs. No significant correlation is found in either search; therefore, we set upper limits on the time-integrated neutrino flux emitted by FRBs for a range of emission timescales less than one day. These are the first limits on FRB neutrino emission at the MeV scale, and the limits set at higher energies are an order-of-magnitude improvement over those set by any neutrino telescope
- …