1,664 research outputs found

    Vortices in dipolar Bose-Einstein condensates

    Full text link
    Quantized vortices are the hallmark of superfluidity, and are often sought out as the first observable feature in new superfluid systems. Following the recent experimental observation of vortices in Bose-Einstein condensates comprised of atoms with inherent long-range dipole-dipole interactions [Nat. Phys. 18, 1453-1458 (2022)], we thoroughly investigate vortex properties in the three-dimensional dominantly dipolar regime, where beyond-mean-field effects are crucial for stability, and investigate the interplay between trap geometry and magnetic field tilt angle.Comment: 15 pages, 6 figure

    Breathlessness in the elderly during the last year of life sufficient to restrict activity

    Get PDF
    OBJECTIVES: Breathlessness is prevalent in older people. Symptom control at the end of life is important. This study investigated relationships between age, clinical characteristics and breathlessness sufficient to have people spend at least one half a day in that month in bed or cut down on their usual activities (restricting breathlessness) during the last year of life. DESIGN: Secondary data-analysis SETTING: General community PARTICIPANTS: 754 non-disabled persons, aged 70 and older. Monthly telephone interviews were conducted to determine the occurrence of restricting breathlessness. The primary outcome was the percentage of months with restricting breathlessness reported during the last year of life. RESULTS: Data regarding breathlessness were available for 548/589 (93.0%) decedents (mean age 86.7 years (range 71 to 106; males 38.8%). 311/548 (56.8%) reported restricting breathlessness at some time-point during the last year of life but no-one reported this every month. Frequency increased in the months closer to death irrespective of cause. Restricting breathlessness was associated with anxiety, (0.25 percentage point increase in months breathlessness per percentage point months reported anxiety, 95% CI 0.16 to 0.34, P<0.001), depression (0.14, 0.05 to 0.24, P=0.002) and mobility problems (0.07, 0.03 to 0.1, P=0.001). Percentage months of restricting breathlessness increased if chronic lung disease was noted at the most recent comprehensive assessment (6.62 percentage points, 95% CI 4.31 to 8.94, P<0.001), heart failure (3.34, 0.71 to 5.97, P<0.01), and ex-smoker status (3.01, 0.94 to 5.07, P=0.002), but decreased with older age (─0.19, ─0.37 to ─0.02, P=0.03). CONCLUSION: Restricting breathlessness increased in this elderly population in the months preceding death from any cause. Breathlessness should be assessed and managed in the context of poor prognosis

    Superconducting Diamond on Silicon Nitride for Device Applications

    Get PDF
    Chemical vapour deposition (CVD) grown nanocrystalline diamond is an attractive material for the fabrication of devices. For some device architectures, optimisation of its growth on silicon nitride is essential. Here, the effects of three pre-growth surface treatments, often employed as cleaning methods of silicon nitride, were investigated. Such treatments provide control over the surface charge of the substrate through modification of the surface functionality, allowing for the optimisation of electrostatic diamond seeding densities. Zeta potential measurements and X-ray photoelectron spectroscopy (XPS) were used to analyse the silicon nitride surface following each treatment. Exposing silicon nitride to an oxygen plasma offered optimal surface conditions for the electrostatic self-assembly of a hydrogen-terminated diamond nanoparticle monolayer. The subsequent growth of boron-doped nanocrystalline diamond thin films on modified silicon nitride substrates under CVD conditions produced coalesced films for oxygen plasma and solvent treatments, whilst pin-holing of the diamond film was observed following RCA-1 treatment. The sharpest superconducting transition was observed for diamond grown on oxygen plasma treated silicon nitride, demonstrating it to be of the least structural disorder. Modifications to the substrate surface optimise the seeding and growth processes for the fabrication of diamond on silicon nitride devices

    Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The neprilysin (M13) family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2), which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles.</p> <p>Results</p> <p>The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with <it>Drosophila </it>DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates and thus allows M13 peptidases to fulfil a broad range of physiological roles.</p> <p>Conclusion</p> <p>The M13 family of peptidases have diversified extensively in all species examined, indicating wide ranging roles in numerous physiological processes. It is predicted that differences in the S2' subsite are fundamental to determining the substrate specificities that facilitate this functional diversity.</p

    Prototype Cryospheric Experimental Synthetic Aperture Radiometer (CESAR)

    Get PDF
    Present satellite microwave radiometers typically have a coarse spatial resolution of several kilometers or more. This is only adequate only over homogenous areas. Significantly enhanced spatial resolution is critically important to reduce the uncertainty of estimated cryospheric parameters in heterogeneous and climatically-sensitive areas. Examples include: (1) dynamic sea ice areas with frequent lead and polynya developments and variable ice thicknesses, (2) mountainous areas that require improved retrieval of snow water equivalent, and (3) melting outlet glacier or ice shelf areas along the coast of Greenland and Antarctica. For these situations and many others, an Earth surface spot size of no more than 100 m is necessary to retrieve the information needed for significant new scientific progress, including the synthesis of field observations with satellite observations with high confidence

    Profile of the U 5f magnetization in U/Fe multilayers

    Full text link
    Recent calculations, concerning the magnetism of uranium in the U/Fe multilayer system have described the spatial dependence of the 5f polarization that might be expected. We have used the x-ray resonant magnetic reflectivity technique to obtain the profile of the induced uranium magnetic moment for selected U/Fe multilayer samples. This study extends the use of x-ray magnetic scattering for induced moment systems to the 5f actinide metals. The spatial dependence of the U magnetization shows that the predominant fraction of the polarization is present at the interfacial boundaries, decaying rapidly towards the center of the uranium layer, in good agreement with predictions.Comment: 7 pages, 6 figure

    Galaxy And Mass Assembly (GAMA): a deeper view of the mass, metallicity and SFR relationships

    Get PDF
    A full appreciation of the role played by gas metallicity (Z), star formation rate (SFR) and stellar mass (M*) is fundamental to understanding how galaxies form and evolve. The connections between these three parameters at different redshifts significantly affect galaxy evolution, and thus provide important constraints for galaxy evolution models. Using data from the Sloan Digital Sky Survey–Data Release 7 (SDSS–DR7) and the Galaxy and Mass Assembly (GAMA) surveys, we study the relationships and dependences between SFR, Z and M*, as well as the Fundamental Plane for star-forming galaxies. We combine both surveys using volume-limited samples up to a redshift of z ≈ 0.36. The GAMA and SDSS surveys complement each other when analysing the relationships between SFR, M* and Z. We present evidence for SFR and metallicity evolution to z ∼ 0.2. We study the dependences between SFR, M*, Z and specific SFR (SSFR) on the M*–Z, M*–SFR, M*–SSFR, Z–SFR and Z–SSFR relations, finding strong correlations between all. Based on those dependences, we propose a simple model that allows us to explain the different behaviour observed between low- and high-mass galaxies. Finally, our analysis allows us to confirm the existence of a Fundamental Plane, for which M* = f(Z, SFR) in star-forming galaxies

    Observation of vortices and vortex stripes in a dipolar Bose-Einstein condensate

    Full text link
    Quantized vortices are the prototypical feature of superfluidity. Pervasive in all natural systems, vortices are yet to be observed in dipolar quantum gases. Here, we exploit the anisotropic nature of the dipole-dipole interaction of a dysprosium Bose-Einstein condensate to induce angular symmetry breaking in an otherwise cylindrically symmetric pancake-shaped trap. Tilting the magnetic field towards the radial plane deforms the cloud into an ellipsoid through magnetostriction, which is then set into rotation. At stirring frequencies approaching the radial trap frequency, we observe the generation of dynamically unstable surface excitations, which cause angular momentum to be pumped into the system through vortices. Under continuous rotation, the vortices arrange into a stripe configuration along the field--in close corroboration with simulations--realizing a long sought-after prediction for dipolar vortices.Comment: 13 pages, 4+3 figure
    corecore