127 research outputs found

    Hardly the Best of Times the Practice of Medicine on the Maine Frontier, 1812-1841

    Get PDF
    Account books left by two physicians provide a glimpse of the practice of medicine on the eastern Maine frontier. They reveal some interesting patterns: Both doctors practiced some dentistry, delivered babies, and engaged in sidelines outside their medical practice. Both vaccinated patients in the face of impending epidemics, and both treated internal afflictions using standard nineteenth-century medical therapeutics. Sometimes doctors did more harm than good, but even in this short span of time we can see progress on the medical frontier

    The Wounded, the Sick, and the Scared: An Examination of Disabled Maine Veterans from the Civil War

    Get PDF
    Students of Civil War history often harbor a sterilized impression that veterans included only the living, who returned home to pick up the threads of their previous existence, and the dead, who were laid to rest with honors in local or national cemeteries. In truth, there were many who fell in between: neither dead nor physically intact, they suffered debilitating injury or disease for their remaining lives. Records of some 260 such individuals in the Bangor Historical Society provide insight into the medical and surgical problems suffered by Civil War veterans. Their conditions fall into four categories: those who suffered preexisting diseases and injuries; those who contracted diseases in the field brought on by stress, poor food, poor sanitation, and exposure; those who suffered battlefield traumas; and those who suffered from “heart palpations,’’ perhaps an early version of combat fatigue. This article suggests that distinctions between these categories are not always clear-cut. John Blaisdell, a prior contributor to Maine History, was born in Bangor and educated at the University of Maine, the University of Washington, and Iowa State University. He is currently an instructor in the Department of Animal and Veterinary Sciences at the University of Maine

    170 Years of Caring: The Animal Welfare Movement in Bangor, Maine

    Get PDF
    The history of the animal welfare movement in Bangor, Maine dates to the first decades of the nineteenth century: Over the course of its long history, the movement\u27s emphasis shifted from a focus on livestock and urban workhorses in the nineteenth century to children and animals at the turn of the century and finally to companion animals, primarily cats and dogs. These shifts, the author argues, reflect economic and technological changes as well as a transformation in society\u27s perception of animals. A Maine native, John Blaisdell, is currently working on a book exploring the history of Maine\u27s animal welfare movement. He has a Ph.D. from Iowa State University and teaches in the Department of Animal Science at the University of Maine, Orono

    Improved Surface Parameter Retrievals using AIRS/AMSU Data

    Get PDF
    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Two very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; and 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions. In this methodology, longwave C02 channel observations in the spectral region 700 cm(exp -1) to 750 cm(exp -1) are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm(exp -1) 2395 cm(exp -1) are used for temperature sounding purposes. This allows for accurate temperature soundings under more difficult cloud conditions. This paper further improves on the methodology used in Version 5 to derive surface skin temperature and surface spectral emissivity from AIRS/AMSU observations. Now, following the approach used to improve tropospheric temperature profiles, surface skin temperature is also derived using only shortwave window channels. This produces improved surface parameters, both day and night, compared to what was obtained in Version 5. These in turn result in improved boundary layer temperatures and retrieved total O3 burden

    Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    Get PDF
    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover

    Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    Get PDF
    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5

    SRT Evaluation of AIRS Version-6.02 and Version-6.02 AIRS Only (6.02 AO) Products

    Get PDF
    Version-6 contains a number of significant improvements over Version-5. This report compares Version-6 products resulting from the advances listed below to those from Version-5. 1. Improved methodology to determine skin temperature (T(sub s)) and spectral emissivity (Epsilon(sub v)). 2. Use of Neural-net start-up state. 3. Improvements which decrease the spurious negative Version-5 trend in tropospheric temperatures. 4. Improved QC methodology. Version-6 uses separate QC thresholds optimized for Data Assimilation (QC=0) and Climate applications (QC=0,1) respectively. 5. Channel-by-channel clear-column radiances R-hat(sub tau) QC flags. 6. Improved cloud parameter retrieval algorithm. 7. Improved OLR RTA. Our evaluation compared V6.02 and V6.02 AIRS Only (V6.02 AO) Quality Controlled products with those of Version-5.0. In particular we evaluated surface skin temperature T(sub s), surface spectral emissivity Epsilon(sub v), temperature profile T(p), water vapor profile q(p), OLR, OLR(sub CLR), effective cloud fraction alpha-Epsilon, and cloud cleared radiances R-hat(sub tau) . We conducted two types of evaluations. The first compared results on 7 focus days to collocated ECMWF truth. The seven focus days are: September 6, 2002; January 25, 2003; September 29, 2004; August 5, 2005; February 24, 2007; August 10, 2007; and May 30, 2010. In these evaluations, we show results for T(sub s), Epsilon(sub v), T(p), and q(p) in terms of yields, and RMS differences and biases with regard to ECMWF. We also show yield trends as well as bias trends of these quantities relative to ECMWF truth. We also show yields and accuracy of channel by channel QC d values of R-hat(sub tau) for V6.02 and V6.02 AO. Version-5 did not contain channel by channel QC d values of R-hat(sub tau). In the second type of evaluation, we compared V6.03 monthly mean Level-3 products to those of Version-5.0, for four different months: January, April, July, and October; in 3 different years 2003, 2007, and 2011. In particular, we compared V6.03 and V5.0 trends of T(p), q(p), alpha-Epsilon, OLR, and OLR(sub CLR) computed based on results for these 12 time period

    Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    Get PDF
    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5

    SRT Status and Plans for Version-7

    Get PDF
    The AIRS Science Team Version-6 retrieval algorithm is currently producing level-3 Climate Data Records (CDRs) from AIRS that have been proven useful to scientists in understanding climate processes. CDRs are gridded level-3 products which include all cases passing AIRS Climate QC. SRT has made significant further improvements to AIRS Version-6. Research is continuing at SRT toward the development of AIRS Version-7. At the last Science Team Meeting, we described results using SRT AIRS Version-6.19. SRT Version-6.19 is now an official build at JPL called 6.2. SRTs latest version is AIRS Version-6.22. We have also adapted AIRS Version-6.22 to run with CrISATMS. AIRS Version-6.22 and CrIS Version- 6.22 both run now on JPL computers, but are not yet official builds. The main reason for finalization of Version-7, and using it in the relatively near future for the future processing and reprocessing of old AIRS data, is to produce even better CDRs for use by climate scientists. For this reason all results shown in this talk use only AIRS Climate QC

    Retrieved Products from Simulated Hyperspectral Observations of a Hurricane

    Get PDF
    Retrievals were run using the AIRS Science Team Version-6 AIRS Only retrieval algorithm, which generates a Neural-Net first guess (T(sub s))(sup 0), (T(p))(sup 0), and (q(p))(sup 0) as a function of observed AIRS radiances. AIRS Science Team Neural-Net coefficients performed very well beneath 300 mb using the simulated radiances. This means the simulated radiances are very realistic. First guess and retrieved values of T(p) above 300 mb were biased cold, but both represented the model spatial structure very well. QC'd T(p) and q(p) retrievals for all experiments had similar accuracies compared to their own truth fields, and were roughly consistent with results obtained using real data. Spatial coverage of retrievals, as well as the representativeness of the spatial structure of the storm, improved dramatically with decreasing size of the instrument's FOV. We sent QC'd values of T(p) and q(p) to Bob Atlas at AOML for use as input to OSSE Data Assimilation experiments
    • …
    corecore