27 research outputs found

    Extreme Electron Beams and Brilliant X-rays : Generation, Manipulation and Characterization of Relativistic Electron Beams for and from Plasma-Based Accelerators

    No full text
    This thesis is based on work done by the author on the development of plasma-based electron accelerators driven by ultra-intense laser pulses and dense electron bunches. Plasma based accelerators have several benefits, such as accelerating fields around 1000 times stronger than in “conventional” radio-frequency accelerators, which can allow for shrinking the overall footprint of the accelerator. They can also allow for generating electron beams with unprecedented peak currents and ultra-low emittances, meaning that a large number of electrons can be packed into a very short time duration and that the quality of the bunches is high. They can also be used to generate X-ray pulses with durations only otherwise achievable at a few large accelerator facilities, using a laboratory setup the size of a large living room. These characteristics make plasma-based accelerators interesting as a technology for future particle colliders and free-electron lasers, as well as, for example, smaller and more available X-ray sources with particular source characteristics such as ultra-short pulse durations.This thesis describes both numerical and experimental studies on plasma-based accelerators. The experimental work has mainly been on generating electron bunches and X-ray pulses using a laser-wakefield accelerator, as well as applications of the generated X-rays. The results from this branch of the research include the identification and demonstration of a new regime for laser-driven X-ray generation, which produces pulses with significantly reduced divergence compared to the standard method, simplifying the subsequent use of such pulses in applications.The numerical work has been focused towards conventional radio-frequency accelerators, concerning the shaping of electron bunches from such an accelerator for use in electron beam-driven plasma-wakefield acceleration. Themain point in this research has been removing or circumventing detrimental effects that occur during acceleration and transport, to create bunches which can drive stable wakes. One of the results from this research is an optimization strategy for certain bunch compressors, leading to a decrease in chromatic and geometric aberrations in the bunch. The common thread through both experimental and numerical work is plasma-based acceleration of electrons, and as such there is a larger overlap between these two parts than might initially be seen

    First experimental measurements of the caustic nature of trajectories in bunch compressors

    No full text
    Advancements in the theory describing density perturbations in accelerated charge particle beams, known as caustics, has been gathering interest over the past few years. This proceeding describes the first experimental measurements of the caustic nature of charged particle trajectories in a particle accelerator. Caustics by their nature are discontinuities that result from small continuous perturbations of an input. Under certain conditions, small density modulations will reliably produce striking changes in the corresponding output current profile. These current modulations can shift along the bunch with varying higher-order longitudinal dispersion. The MAX IV linac double-bend achromats provide the perfect test bed for experimentally verifying how the caustic lines evolve. The natural amplification of small perturbations makes caustics an attractive diagnostic tool, and effective tool for characterise the bunch compressors. This approach also allows us to modify and improve the longitudinal charge profile, removing current spikes or creating tailor shaped current profiles

    Positronemissionstomografi

    No full text

    Third-order double-achromat bunch compressors for broadband beams

    No full text
    Many state-of-the-art applications for linear accelerators, such as free-electron lasers (FELs) and plasma-wakefield accelerators (PWFAs), require small normalized emittances, and PWFAs in particular are very sensitive to transverse slice offsets along the beam. Dispersive systems, such as bunch compressors, can cause different chromatic aberrations, one of which yields transverse slice offsets. In this paper, we show a design approach to double-achromat bunch compressors which greatly reduces different chromatic aberrations and mitigates coherent synchrotron radiation effects

    A focused very high energy electron beam for fractionated stereotactic radiotherapy

    No full text
    An electron beam of very high energy (50–250 MeV) can potentially produce a more favourable radiotherapy dose distribution compared to a state-of-the-art photon based radiotherapy technique. To produce an electron beam of sufficiently high energy to allow for a long penetration depth (several cm), very large accelerating structures are needed when using conventional radio-frequency technology, which may not be possible due to economical or spatial constraints. In this paper, we show transport and focusing of laser wakefield accelerated electron beams with a maximum energy of 160 MeV using electromagnetic quadrupole magnets in a point-to-point imaging configuration, yielding a spatial uncertainty of less than 0.1 mm, a total charge variation below 1 % and a focal spot of 2.3×2.6mm2. The electron beam was focused to control the depth dose distribution and to improve the dose conformality inside a phantom of cast acrylic slabs and radiochromic film. The phantom was irradiated from 36 different angles to obtain a dose distribution mimicking a stereotactic radiotherapy treatment, with a peak fractional dose of 2.72 Gy and a total maximum dose of 65 Gy. This was achieved with realistic constraints, including 23 cm of propagation through air before any dose deposition in the phantom

    A focused very high energy electron beam for fractionated stereotactic radiotherapy

    No full text
    An electron beam of very high energy (50–250 MeV) can potentially produce a more favourable radiotherapy dose distribution compared to a state-of-the-art photon based radiotherapy technique. To produce an electron beam of sufficiently high energy to allow for a long penetration depth (several cm), very large accelerating structures are needed when using conventional radio-frequency technology, which may not be possible due to economical or spatial constraints. In this paper, we show transport and focusing of laser wakefield accelerated electron beams with a maximum energy of 160 MeV using electromagnetic quadrupole magnets in a point-to-point imaging configuration, yielding a spatial uncertainty of less than 0.1 mm, a total charge variation below 1%1 \% and a focal spot of 2.3×2.6  mm22.3 \times 2.6\;{\text {mm}}^2. The electron beam was focused to control the depth dose distribution and to improve the dose conformality inside a phantom of cast acrylic slabs and radiochromic film. The phantom was irradiated from 36 different angles to obtain a dose distribution mimicking a stereotactic radiotherapy treatment, with a peak fractional dose of 2.72 Gy and a total maximum dose of 65 Gy. This was achieved with realistic constraints, including 23 cm of propagation through air before any dose deposition in the phantom

    Arclike variable bunch compressors

    No full text
    Electron bunch compressors formed of achromat arcs have a natural advantage over the more commonly used chicane compressors in that linearisation of the longitudinal phase space is of the correct sign to compensate for the curvature imprinted by rf acceleration. Here we extend the utility of arc compressors to enable variation of the longitudinal compaction within a fixed footprint. We also show that this variability can be achieved independently order-by-order in momentum deviation. The technique we employ consists of additional dipoles, leading to the advantageous property that variability can be achieved without incurring significant penalty in terms of chromatic degradation. We show this by comparison to an alternative system where additional quadrupoles are utilised to enable variation of momentum compaction. Each of these alternative approaches are being considered in the context of an upgrade of the MAX IV linac, Sweden, to enable a soft X-ray free-electron laser (FEL) in addition to its existing functions

    Optimization of soft X-ray phase-contrast tomography using a laser wakefield accelerator

    No full text
    X-ray phase-contrast imaging allows for non-invasive analysis in low-absorbing materials, such as soft tissue. Its application in medical or materials science has yet to be realized on a wider scale due to the requirements on the X-ray source, demanding high flux and small source size. Laser wakefield accelerators generate betatron X-rays fulfilling these criteria and can be suitable sources for phase-contrast imaging. In this work, we present the first phase-contrast images obtained by using ionization injection-based laser wakefield acceleration, which results in a higher photon yield and smoother X-ray beam profile compared to self-injection. A peak photon yield of 1.9 × 1011 ph/sr and a source size of 3 μm were estimated. Furthermore, the current laser parameters produce an X-ray spectrum mainly in the soft X-ray range, in which laser-plasma based phase-contrast imaging had yet to be studied. The phase-contrast images of a Chrysopa lacewing resolve features on the order of 4 μm. These images are further used for a tomographic reconstruction and a volume rendering, showing details on the order of tens of μm

    Simultaneous X-ray absorption and two-photon LIF for imaging the spray formation region

    No full text
    Imaging the spray formation region of atomizing sprays is particularly challenging due to the presence of a variety of irregular liquid structures such as ligaments, liquid blobs, droplets, liquid sheets and a possible liquid core. The number and concentration of those liquid bodies dictate the presence of liquid/air interfaces, which are responsible to undesired scattering effects. The resulting images are blurred, ultimately concealing the real structure of the spray formation region. Due to both, scattering effects and the presence of highly irregular 3D liquid structures, the only reliable measurement of liquid mass in the spray formation region is obtained using X-ray radiography. The generation of collimated X-rays pulsed has been done, in the past, by means of a synchrotron, thus limiting the number of studies that can be performed.In parallel to the use of X-rays, progresses in advanced laser imaging techniques for suppressing multiple scattering issues have been particularly important over the past decade. A very recent solution consists in using 2-photon excitation LIF laser sheet imaging.In this paper, we report for the first time the possibility of simultaneously imaging an atomizing spray using X-ray absorption and 2-photon LIF planar imaging, where the simultaneous single-shot recordings are made over a ~20mmx20mm viewed area. The spray is generated from a commercial fuel port injection system from which, water was injected. The unique illumination/detection scheme proposed here was made possible thanks to the use of X-rays emitted from a laser plasma accelerator (Betatron radiation). For this experiment, we use the High Intensity Laser system at Lund University that provides on target 800mJ, 38fs laser pulses. The emitted X-ray radiation is ranging from 1 to 10keV and peaking at ~2keV. It propagates outside of the vacuum chamber where an X-ray camera records the shadow of the liquid jet. In addition to that, a fraction of the laser pulse ~10mJ is directed on the liquid jet and focuses with a cylindrical lens where it induces fluorescence from a 2-photon excitation process in a dye -here, fluorescein- added to the liquid. The 2p-LIF images provide details on the size and shape of the liquid structures, optically sectioned by the light sheet, while the integrated liquid mass is extracted from the X-ray radiography. This is making the two imaging techniques highly complementary for the characterization of spray systems as well as for further understanding the physics related to liquid atomization

    Double-bunches for two-color soft X-ray free-electron laser at the MAX IV Laboratory

    No full text
    The ability to generate two-color free-electron laser (FEL) radiation enables a wider range of user experiments than just single-color FEL radiation. There are different schemes for generating the two colors, the original being to use a single bunch and two sets of undulators with different K-parameters. An alternative scheme was recently shown, where two separate bunches in the same RF bucket are used for lasing at different wavelengths in a single set of undulators. We here investigate the feasibility of accelerating and compressing a double-bunch time structure generated in the photocathode electron gun for subsequent use in a soft X-ray FEL at the MAX IV Laboratory
    corecore