101 research outputs found

    Prevalence and audiological features in carriers of GJB2 mutations, c.35delG and c.101T>C (p.M34T), in a UK population study

    Get PDF
    OBJECTIVES: To determine the carrier rate of the GJB2 mutation c.35delG and c.101T>C in a UK population study; to determine whether carriers of the mutation had worse hearing or otoacoustic emissions compared to non-carriers. DESIGN: Prospective cohort study. SETTING: University of Bristol, UK. PARTICIPANTS: Children in the Avon Longitudinal Study of Parents and Children. 9202 were successfully genotyped for the c.35delG mutation and c.101>T and classified as either carriers or non-carriers. OUTCOME MEASURES: Hearing thresholds at age 7, 9 and 11 years and otoacoustic emissions at age 9 and 11. RESULTS: The carrier frequency of the c.35delG mutation was 1.36% (95% CI 1.13 to 1.62) and c.101T>C was 2.69% (95% CI 2.37 to 3.05). Carriers of c.35delG and c.101T>C had worse hearing than non-carriers at the extra-high frequency of 16 kHz. The mean difference in hearing at age 7 for the c.35delG mutation was 8.53 dB (95% CI 2.99, 14.07) and 12.57 dB at age 9 (95% CI 8.10, 17.04). The mean difference for c.101T>C at age 7 was 3.25 dB (95% CI -0.25 to 6.75) and 7.61 dB (95% CI 4.26 to 10.96) at age 9. Otoacoustic emissions were smaller in the c.35delG mutation carrier group: at 4 kHz the mean difference was -4.95 dB (95% CI -6.70 to -3.21) at age 9 and -3.94 dB (95% CI -5.78 to -2.10) at age 11. There was weak evidence for differences in otoacoustic emissions amplitude for c.101T>C carriers. CONCLUSION: Carriers of the c.35delG mutation and c.101T>C have worse extra-high-frequency hearing than non-carriers. This may be a predictor for changes in lower-frequency hearing in adulthood. The milder effects observed in carriers of c.101T>C are in keeping with its classification as a mutation causing mild/moderate hearing loss in homozygosity or compound heterozygosity

    Molecular pathology of Usher 1B patient-derived retinal organoids at single cell resolution

    Get PDF
    Usher syndrome-associated retinitis pigmentosa (RP) causes progressive retinal degeneration, which has no cure. The pathomechanism of Usher type 1B (USH1B)-RP caused by MYO7A mutation remains elusive because of the lack of faithful animal models and limited knowledge of MYO7A function. Here, we analyzed 3D retinal organoids generated from USH1B patient-derived induced pluripotent stem cells. Increased differential gene expression occurred over time without excessive photoreceptor cell death in USH1B organoids compared with controls. Dysregulated genes were enriched first for mitochondrial functions and then proteasomal ubiquitin-dependent protein catabolic processes and RNA splicing. Single-cell RNA sequencing revealed MYO7A expression in rod photoreceptor and MĆ¼ller glial cells corresponding to upregulation of stress responses in NRL+ rods and apoptotic signaling pathways in VIM+ MĆ¼ller cells, pointing to the defensive mechanisms that mitigate photoreceptor cell death. This first human model for USH1B-RP provides a representation of patient retina inĀ vivo relevant for development of therapeutic strategies

    Hearing in 44ā€“45 year olds with m.1555A>G, a genetic mutation predisposing to aminoglycoside-induced deafness: a population based cohort study

    Get PDF
    Background The mitochondrial DNA mutation m.1555A>G predisposes to permanent idiosyncratic aminoglycoside-induced deafness that is independent of dose. Research suggests that in some families, m.1555A>G may cause non-syndromic deafness, without aminoglycoside exposure, as well as reduced hearing thresholds with age (age-related hearing loss). Objectives To determine whether adults with m.1555A>G have impaired hearing, a factor that would inform the cost-benefit argument for genetic testing prior to aminoglycoside administration. Design Population-based cohort study. Setting UK. Participants Individuals from the British 1958 birth cohort. Measurements Hearing thresholds at 1 and 4 kHz at age 44-45 years; m.1555A>G genotyping. Results 19 of 7350 individuals successfully genotyped had the m.1555A>G mutation, giving a prevalence of 0.26% (95% CI 0.14% to 0.38%) or 1 in 385 (95% CI 1 in 714 to 1 in 263). There was no significant difference in hearing thresholds between those with and without the mutation. Single-nucleotide polymorphism analysis indicated that the mutation has arisen on a number of different mitochondrial haplogroups. Limitations No data were collected on aminoglycoside exposure. For three subjects, hearing thresholds could not be predicted because information required for modelling was missing. Conclusions In this cohort, hearing in those with m.1555A>G is not significantly different from the general population and appears to be preserved at least until 44-45 years of age. Unbiased ascertainment of mutation carriers provides no evidence that this mutation alone causes non-syndromic hearing impairment in the UK. The findings lend weight to arguments for genetic testing for this mutation prior to aminoglycoside administration, as hearing in susceptible individuals is expected to be preserved well into adult life. Since global use of aminoglycosides is likely to increase, development of a rapid test is a priority

    Systemic gene therapy rescues retinal dysfunction and hearing loss in a model of Norrie disease

    Get PDF
    Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive X-linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg ), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adeno-associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease

    Systemic gene therapy rescues retinal dysfunction and hearing loss in a model of Norrie disease

    Full text link
    Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive Xā€linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg^{tm1Wbrg}), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adenoā€associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease

    Mutational analyses of UPIIIA, SHH, EFNB2, and HNF1Ī² in persistent cloaca and associated kidney malformations

    Get PDF
    OBJECTIVES: ā€˜Persistent cloacaā€™ is a severe malformation affecting females in which the urinary, genital and alimentary tracts share a single conduit. Previously, a Uroplakin IIIA (UPIIIA) mutation was reported in one individual with persistent cloaca, and UPIIIA, Sonic Hedgehog (SHH), Ephrin B2 (EFNB2) and Hepatocyte Nuclear Factor 1Ī² (HNF1Ī²) are expressed during the normal development of organs that are affected in this condition. HNF1Ī² mutations have been associated with uterine malformations in humans, and mutations of genes homologous to human SHH or EFNB2 cause persistent cloaca in mice. PATIENTS AND METHODS: We sought mutations of coding regions of UPIIIA, SHH, EFNB2 and HNF1Ī² genes by direct sequencing in a group of 20 patients with persistent cloaca. Most had associated malformations of the upper renal tract and over half had impaired renal excretory function. The majority of patients had congenital anomalies outside the renal/genital tracts and two had the VACTERL association. RESULTS: Apart from a previously described index case, we failed to find UPIIIA mutations, and no patient had a SHH, EFNB2 or HNF1Ī² mutation. CONCLUSION: Persistent cloaca is only rarely associated with UPIIIA mutation. Despite the fact that SHH and EFNB2 are appealing candidate genes, based on their expression patterns and mutant mice phenotypes, they were not mutated in these humans with persistent cloaca. Although HNF1Ī² mutations can perturb paramesonephric duct fusion in humans, HNF1Ī² was not mutated in persistent cloaca

    The timing of auditory sensory deficits in Norrie disease has implications for therapeutic intervention

    Get PDF
    Norrie disease is caused by mutation of the NDP gene, presenting as congenital blindness followed by later onset of hearing loss. Protecting patients from hearing loss is critical for maintaining their quality of life. This study aimed to understand the onset of pathology in cochlear structure and function. By investigating patients and juvenile Ndp-mutant mice, we elucidated the sequence of onset of physiological changes (in auditory brainstem responses, distortion product otoacoustic emissions, endocochlear potential, blood-labyrinth barrier integrity) and determined the cellular, histological, and ultrastructural events leading to hearing loss. We found that cochlear vascular pathology occurs earlier than previously reported and precedes sensorineural hearing loss. The work defines a disease mechanism whereby early malformation of the cochlear microvasculature precedes loss of vessel integrity and decline of endocochlear potential, leading to hearing loss and hair cell death while sparing spiral ganglion cells. This provides essential information on events defining the optimal therapeutic window and indicates that early intervention is needed. In an era of advancing gene therapy and small-molecule technologies, this study establishes Ndp-mutant mice as a platform to test such interventions and has important implications for understanding the progression of hearing loss in Norrie disease
    • ā€¦
    corecore