18 research outputs found

    Selaginella bryopteris

    Get PDF
    The effective long-term cryopreservation of human mesenchymal stem cells (MSCs) is an essential prerequisite step and represents a critical approach for their sustained supply in basic research, regenerative medicine, and tissue engineering applications. Therefore, attempts have been made in the present investigation to formulate a freezing solution consisting of a combination of Selaginella bryopteris water-soluble extract with and without dimethyl sulfoxide (Me2SO) for the efficient long-term storage of human umbilical cord blood- (hUCB-) derived MSCs. The cryopreservation experiment using the formulated freezing solution was further performed with hUCB MSCs in a controlled rate freezer. A significant increase in postthaw cell viability and cell attachment of MSCs was achieved with freezing medium containing Selaginella bryopteris water extract along with 10% Me2SO as compared to the freezing medium containing Me2SO (10% v/v) alone. Furthermore, the decreasing apoptotic events and reactive oxygen species production along with increasing expression of heat shock proteins also confirmed the beneficial effect of Selaginella bryopteris water extract. The beneficial effect of Selaginella bryopteris water extract was validated by its ability to render postpreservation high cell viability. In conclusion, the formulated freezing solution has been demonstrated to be effective for the standardization of cryopreservation protocol for hMSCs

    Review Article Recent Advances and Future Direction in Lyophilisation and Desiccation of Mesenchymal Stem Cells

    Get PDF
    Mesenchymal Stem Cells (MSCs) are a promising mammalian cell type as they can be used for the reconstruction of human tissues and organs. MSCs are shown to form bone, cartilage, fat, and muscle-like cells under specific cultivation conditions. Current technology of MSCs cryopreservation has significant disadvantages. Alternative technologies of mammalian cells preservation through lyophilisation or desiccation (air-drying) are among the upcoming domains of investigation in the field of cryobiology. Different protectants and their combinations were studied in this context. Loading of the protectant in the live cell can be a challenging issue but recent studies have shown encouraging results. This paper deals with a review of the protectants, methods of their delivery, and physical boundary conditions adopted for the desiccation and lyophilisation of mammalian cells, including MSCs. A hybrid technique combining both methods is also proposed as a promising way of MSCs dry preservation

    Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence

    Get PDF
    Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors

    Influence of Non-Newtonian Viscosity on Flow Structures and Wall Deformation in Compliant Serpentine Microchannels: A Numerical Study

    No full text
    The viscosity of fluid plays a major role in the flow dynamics of microchannels. Viscous drag and shear forces are the primary tractions for microfluidic fluid flow. Capillary blood vessels with a few microns diameter are impacted by the rheology of blood flowing through their conduits. Hence, regenerated capillaries should be able to withstand such impacts. Consequently, there is a need to understand the flow physics of culture media through the lumen of the substrate as it is one of the vital promoting factors for vasculogenesis under optimal shear conditions at the endothelial lining of the regenerated vessel. Simultaneously, considering the diffusive role of capillaries for ion exchange with the surrounding tissue, capillaries have been found to reorient themselves in serpentine form for modulating the flow conditions while developing sustainable shear stress. In the current study, S-shaped (S1) and delta-shaped (S2) serpentine models of capillaries were considered to evaluate the shear stress distribution and the oscillatory shear index (OSI) and relative residual time (RRT) of the derivatives throughout the channel (due to the phenomena of near-wall stress fluctuation), along with the influence of culture media rheology on wall stress parameters. The non-Newtonian power-law formulation was implemented for defining rheological viscosity of the culture media. The flow actuation of the media was considered to be sinusoidal and physiological, realizing the pulsatile blood flow behavior in the circulatory network. A distinct difference in shear stress distributions was observed in both the serpentine models. The S1 model showed higher change in shear stress in comparison to the S2 model. Furthermore, the non-Newtonian viscosity formulation was found to produce more sustainable shear stress near the serpentine walls compared to the Newtonian formulation fluid, emphasizing the influence of rheology on stress generation. Further, cell viability improved in the bending regions of serpentine channels compared to the long run section of the same channel

    Fibroblast Derived Skin Wound Healing Modeling on Chip under the Influence of Micro-Capillary Shear Stress

    No full text
    Fibroblast cell migration plays a crucial role in the wound-healing process. Hence, its quantitative investigation is important to understand the mechanism of the wound-healing process. The dynamic nature of the wound-healing process can be easily implemented using a microfluidic-based wound-healing assay. This work presented the use of a microfluidics device to simulate traumatic wounds on fibroblast cell monolayers by utilizing trypsin flow and PDMS barrier. In this study, a microfluidic chip with a transparent silk film is reported. The placement of film provides 3D cell culture conditions that mimic a 3D extracellular matrix (ECM) like environment and allows real-time monitoring of cells. A numerical study was conducted to evaluate the influence of dynamic medium-induced shear stress on the base and wall of the microchannel. This could facilitate the optimization of the inlet flow conditions of the media in the channel. At the same time, it could help in identifying stress spots in the channel. The scaffolds were placed in those spots for evaluating the influence of shear forces on the migratory behavior of fibroblast cells. The in vitro microfluidic assembly was then evaluated for cell migration under the influence of external shear forces during the wound-healing phenomena. A faster wound healing was obtained at the end of 24 h of the creation of the wound in the presence of optimal shear stress. On increasing the shear stress beyond a threshold limit, it dissociates fibroblast cells from the surface of the substrate, thereby decelerating the wound-healing process. The above phenomena were transformed in both coplanar microfluidics surfaces (by realizing in the multichannel interlinked model) and transitional microfluidics channels (by realizing in the sandwich model)

    Numerical and Experimental Analysis of Shear Stress Influence on Cellular Viability in Serpentine Vascular Channels

    No full text
    3D bioprinting has emerged as a tool for developing in vitro tissue models for studying disease progression and drug development. The objective of the current study was to evaluate the influence of flow driven shear stress on the viability of cultured cells inside the luminal wall of a serpentine network. Fluid–structure interaction was modeled using COMSOL Multiphysics for representing the elasticity of the serpentine wall. Experimental analysis of the serpentine model was performed on the basis of a desirable inlet flow boundary condition for which the most homogeneously distributed wall shear stress had been obtained from numerical study. A blend of Gelatin-methacryloyl (GelMA) and PEGDA200 PhotoInk was used as a bioink for printing the serpentine network, while facilitating cell growth within the pores of the gelatin substrate. Human umbilical vein endothelial cells were seeded into the channels of the network to simulate the blood vessels. A Live-Dead assay was performed over a period of 14 days to observe the cellular viability in the printed vascular channels. It was observed that cell viability increases when the seeded cells were exposed to the evenly distributed shear stresses at an input flow rate of 4.62 mm/min of the culture media, similar to that predicted in the numerical model with the same inlet boundary condition. It leads to recruitment of a large number of focal adhesion point nodes on cellular membrane, emphasizing the influence of such phenomena on promoting cellular morphologies

    Assessment of Influences of Stenoses in Right Carotid Artery on Left Carotid Artery Using Wall Stress Marker

    No full text
    Purpose. Atherosclerosis is a diseased condition of blood vessel. It causes partial blockage in lumen of vessel and affects hemodynamic of localized flowing blood. Complex geometries like region of bifurcation also affects hemodynamic to a larger extent. Complexity further increases in presence of stenoses at region of bifurcation. Such morphological change in vessel largely affects parent as well as corresponding sister and daughter vessels. In this paper, complexity in hemodynamic of blood in pair of carotid arteries (left and right carotid arteries) is evaluated in presence of stenoses at basilar segment of right artery in three-dimensional domain using reconstructed tomographic images of patient. Methods. Transient information of blood flow is obtained using four-dimensional phase-contrast MRI technique. Haematocrit component of blood at diseased condition is considered using Power Law and Quemada model. Numerical techniques are used to solve pressure-coupled governing equations of flowing blood. Results. Dysfunctions of endothelial cells near the wall are characterised by evaluating shear stress markers. Wall shear stress and its gradient based and harmonic based descriptors are calculated over complete geometry during one cardiac cycle. Conclusion. Internal branch of left carotid artery and external branch of right carotid artery are found prone to secondary stenoses in presence of primary stenoses at basilar segment of right carotid artery

    Hybrid computational model depicts the contribution of non-significant lobes of human brain during the perception of emotional stimuli

    No full text
    Emotions are synchronizing responses of human brain while executing cognitive tasks. Earlier studies had revealed strong correlation between specific lobes of the brain to different types of emotional valence. In the current study, a comprehensive three-dimensional mapping of human brain for executing emotion specific tasks had been formulated. A hybrid computational machine learning model customized from Custom Weight Allocation Model (CWAM) and defined as Custom Rank Allocation Model (CRAM). This regression-based hybrid computational model computes the allocated tasks to different lobes of the brain during their respective executive stage. Event Related Potentials (ERP) were obtained with significant effect at P1, P2, P3, N170, N2, and N4. These ERPs were configured at Pz, Cz, F3, and T8 regions of the brain with maximal responses; while regions like Cz, C4 and F4 were also found to make effective contributions to elevate the responses of the brain, and thus these regions were configured as augmented source regions of the brain. In another circumstance of frequent –deviant - equal (FDE) presentation of the emotional stimuli, it was observed that the brain channels C3, C4, P3, P4, O1, O2, and Oz were contributing their emotional quotient to the overall response of the brain regions; whereas, the interaction effect was found presentable at O2, Oz, P3, P4, T8 and C3 regions of brain. The proposed computational model had identified the potential neural pathways during the execution of emotional task.</p

    A Review on the Nonlinear Dynamical System Analysis of Electrocardiogram Signal

    No full text
    Electrocardiogram (ECG) signal analysis has received special attention of the researchers in the recent past because of its ability to divulge crucial information about the electrophysiology of the heart and the autonomic nervous system activity in a noninvasive manner. Analysis of the ECG signals has been explored using both linear and nonlinear methods. However, the nonlinear methods of ECG signal analysis are gaining popularity because of their robustness in feature extraction and classification. The current study presents a review of the nonlinear signal analysis methods, namely, reconstructed phase space analysis, Lyapunov exponents, correlation dimension, detrended fluctuation analysis (DFA), recurrence plot, Poincaré plot, approximate entropy, and sample entropy along with their recent applications in the ECG signal analysis
    corecore