653 research outputs found

    Prediction accuracy evaluation of five soil test methods

    Get PDF
    How much fertilizer should farmers use to produce economical crop yields? Crop response to fertilization is one of the important factors to be considered in arriving at the answer. Farmers look to agricultural scientists to supply this information. The expense and the time of running field experiments make it desirable to employ other less expensive and less time-consuming methods for predicting crop response to fertilizer applications. To supplement field fertilizer experiments, scientists have developed rapid chemical tests for the purpose of supplying farmers needed information about the fertility levels of their soils. The chemical tests are used to predict crop responses on soil not studied. Many different laboratory tests have been developed in this and other countries. Every state in the United States and many foreign countries are using one or more of these methods in a soil testing program. The University of Tennessee Agricultural Extension Service initiated a state-wide soil testing service in 1944. The central laboratory was located in Nashville, Tennessee. Farmers are using the service at an increasing rate each year. During March 1954, 24,005 soil samples were analyzed for pH, available phosphate, and available potash as compared to 5,251 during March of 1953. Specific lime and fertilizer recommendations are made for crops to be grown on the field from which each soil sample was taken. The information supplied by these rapid laboratory tests is no better than the correlation between results from field experiments and the soil testing methods used. When one considers the number of farmers using this service and the amount spent for lime and fertilizer by these farmers, it is apparent that the soil testing methods used should be as reliable as possible. The purpose of this investigation is to determine the extent to which crop response to fertilization correlates with different levels of soil phosphorus and potassium as determined by the various soil test methods and to select the most reliable method for Tennessee conditions

    UAS Satellite Earth Station Emission Limits for Terrestrial System Interference Protection

    Get PDF
    Unmanned aircraft systems (UAS) will have a major impact on future aviation. Medium and large UA operating at altitudes above 3000 feet will require access to non-segregated, that is, controlled airspace. In order for unmanned aircraft to be integrated into the airspace and operate with other commercial aircraft, a very reliable command and control (C2, a. k. a. control and non-payload communications, (CNPC)) link is required. For operations covering large distances or over remote locations, a beyond-line-of-sight (BLOS) CNPC link would need to be implemented through satellite. Significant progress has taken place on several fronts to advance the integration of UAS into controlled airspace, including the recent completion of Minimum Operational Performance Standards (MOPS) for terrestrial line-of-sight (LOS) UAS command and control (C2) links. The development of MOPS for beyond line-of-sight C2 satellite communication links is underway. Meanwhile the allocation of spectrum for UAS C2 by the International Telecommunications Union Radiocommunication Sector (ITU-R) has also progressed. Spectrum for LOS C2 was allocated at the 2012 World Radiocommunication Conference (WRC-12), and for BLOS C2 an allocation was made at WRC-15, under WRC-15 Resolution 155. Resolution 155, however, does not come into effect until several other actions have been completed. One of these required actions is the identification of a power flux density (pfd) limit on the emissions of UAS Ku-Band satellite communications transmitters reaching the ground. The pfd limit is intended to protect terrestrial systems from harmful interference. WRC-19 is expected to finalize the pfd limit. In preparation for WRC-19, analyses of the required pfd limit are on-going, and supporting activities such as propagation modeling are also planned. This paper provides the status of these activities

    Satellite Communications for Unmanned Aircraft C2 Links: C-Band, Ku-Band and Ka-Band

    Get PDF
    Unmanned aircraft (UA) that require access to controlled (or non-segregated) airspace require a highly reliable and robust command and control (C2) link, operating over protected aviation spectrum. While operating within radio line-of-sight (LOS) UA can make use of air-to-ground C2 links to terrestrial stations. When operating beyond LOS (BLOS) where a group of networked terrestrial stations does not exist to provide effective BLOS coverage, a satellite communications link is required. Protected aviation spectrum for satellite C2 links has only recently been allocated in bands where operational satellites exist. A previously existing C-Band allocation covers a bands where there are currently no operational satellites. The new allocations, within the Fixed Satellite Service bands at Ku and Ka-Bands will not be finalized until 2023 due to the need for the development of standards and technical decisions on the operation of UA satellite C2 links within these bands. This paper provides an overview of BLOS satellite C2 links, some of the conditions which will need to be met for the operation of such links, and a look at some aspects of spectrum sharing which may constrain these operations

    Assessing Spectrum Compatibility for Beyond-Line-of-Sight UAS Control and Non-Payload Communications

    Get PDF
    In order to provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS), the control and non-payload communications (CNPC) link must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. Two types of links are required - line-of-sight (LOS) using terrestrial-based communications and beyond-line- of-sight (BLOS) using satellite communications. The 2012 World Radiocommunication Conference (WRC-12) provided a suitable allocation for LOS CNPC spectrum in the 5030-5091 MHz band which, when combined with a previously existing allocation fulfills the LOS spectrum requirement. The 5030- 5091 MHz band is also allocated for BLOS CNPC, but since a significant portion of that band is required for LOS CNPC, additional BLOS spectrum is required. More critically, there are no satellites in operation or in development to provide such services in that band. Hence BLOS CNPC cannot be provided in protected aviation spectrum under current conditions. To fill this gap and enable integration of UAS into the NAS, it has been proposed to allow CNPC to operate over certain Fixed Satellite Service (FSS) bands in which many satellites currently provide commercial services. To enable this, changes in international regulation must be enacted. Agenda Item 1.5 of the 2015 WRC examines the possible regulatory changes needed. As part of the examination process, sharing between potential UAS using satellite communications for BLOS CNPC and other services allocated to the FSS bands being considered must be studied. This paper reviews the technical requirements and approach being undertaken for these sharing studies, with emphasis on study of interference from UAS into digital repeater links operating under the Fixed Service allocation. These studies are being conducted by NASA Glenn Research Center

    Frequency Spectrum for Integration of Unmanned Aircraft

    Get PDF
    The goal of enabling the integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS) in terms of UAS achieving routine access to the NAS has been established as a national goal in the United States. Among a number of technical barriers that must be overcome to meet this goal is the absence of standard, certifiable communications links supplying the control and non-payload communications (CNPC) function, essentially providing the link over which a pilot on the ground can control the unmanned aircraft (UA). The International Civil Aviation Organization (ICAO) has determined that the CNPC link must operate over protected aviation spectrum. Therefore protected aviation spectrum must be allocated for this function, approved through the processes of the International Telecommunications Union Radiocommunication Sector (ITU-R). Work has progressed in the definition of spectrum requirements for CNPC, and a portion of these requirements has been satisfied through new allocations approved at the ITU-R 2012 World Radiocommunication Conference (WRC-12). Additional work is ongoing or planned to satisfy the remaining spectrum requirements and define the specifications for the usage of CNPC spectrum allocations and develop supporting standards. This paper provides an overview of the status of RF spectrum for UAS CNPC. Issues that have been identified and ongoing analysis and research that will be necessary to fulfill spectrum requirements for UAS CNPC will be discussed. The results of this work will provide for the safe integration of UA into the NAS in both the LOS (Line of Sight) and BLOS (Beyond Line of Sight) realms

    Assessing Spectrum Compatibility for Beyond-Line-of-Sight UAS Control and Non-Payload Communications

    Get PDF
    In order to provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS), the control and non-payload communications (CNPC) link must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. Two types of links are required - line-of-sight (LOS) using terrestrial-based communications and beyond-line-of-sight (BLOS) using satellite communications. The 2012 World Radiocommunication Conference (WRC-12) provided a suitable allocation for LOS CNPC spectrum in the 5030 to 5091 MHz band which, when combined with a previously existing allocation fulfills the LOS spectrum requirement. The 5030 to 5091 MHz band is also allocated for BLOS CNPC, but since a significant portion of that band is required for LOS CNPC, additional BLOS spectrum is required. More critically, there are no satellites in operation or in development to provide such services in that band. Hence BLOS CNPC cannot be provided in protected aviation spectrum under current conditions. To fill this gap and enable integration of UAS into the NAS, it has been proposed to allow CNPC to operate over certain Fixed Satellite Service (FSS) bands in which many satellites currently provide commercial services. To enable this, changes in international regulation must be enacted. Agenda Item 1.5 of the 2015 WRC examines the possible regulatory changes needed. As part of the examination process, sharing between potential UAS using satellite communications for BLOS CNPC and other services allocated to the FSS bands being considered must be studied. This paper reviews the technical requirements and approach being undertaken for these sharing studies, with emphasis on study of interference from UAS into digital repeater links operating under the Fixed Service allocation. These studies are being conducted by NASA Glenn Research Center

    Parameter Impact on Sharing Studies Between UAS CNPC Satellite Transmitters and Terrestrial Systems

    Get PDF
    In order to provide a control and non-payload communication (CNPC) link for civil-use unmanned aircraft systems (UAS) when operating in beyond-line-of-sight (BLOS) conditions, satellite communication links are generally required. The International Civil Aviation Organization (ICAO) has determined that the CNPC link must operate over protected aviation safety spectrum allocations. Although a suitable allocation exists in the 5030-5091 MHz band, no satellites provide operations in this band and none are currently planned. In order to avoid a very lengthy delay in the deployment of UAS in BLOS conditions, it has been proposed to use existing satellites operating in the Fixed Satellite Service (FSS), of which many operate in several spectrum bands. Regulatory actions by the International Telecommunications Union (ITU) are needed to enable such a use on an international basis, and indeed Agenda Item (AI) 1.5 for the 2015 World Radiocommunication Conference (WRC) was established to decide on the enactment of possible regulatory provisions. As part of the preparation for AI 1.5, studies on the sharing FSS bands between existing services and CNPC for UAS are being contributed by NASA and others. These studies evaluate the potential impact of satellite CNPC transmitters operating from UAS on other in-band services, and on the potential impact of other in-band services on satellite CNPC receivers operating on UAS platforms. Such studies are made more complex by the inclusion of what are essentially moving FSS earth stations, compared to typical sharing studies between fixed elements. Hence, the process of determining the appropriate technical parameters for the studies meets with difficulty. In order to enable a sharing study to be completed in a less-than-infinite amount of time, the number of parameters exercised must be greatly limited. Therefore, understanding the impact of various parameter choices is accomplished through selectivity analyses. In the case of sharing studies for AI 1.5, identification of worst-case parameters allows the studies to be focused on worst-case scenarios with assurance that other parameter combinations will yield comparatively better results and therefore do not need to be fully analyzed. In this paper, the results of such sensitivity analyses are presented for the case of sharing between UAS CNPC satellite transmitters and terrestrial receivers using the Fixed Service (FS) operating in the same bands, and the implications of these analyses on sharing study results

    Control and Non-Payload Communications (CNPC) Prototype Radio Verification Test Report

    Get PDF
    This report provides an overview and results from the verification of the specifications that defines the operational capabilities of the airborne and ground, L Band and C Band, Command and Non-Payload Communications radio link system. An overview of system verification is provided along with an overview of the operation of the radio. Measurement results are presented for verification of the radios operation

    Water as a Factor in Energy Resources Development

    Get PDF
    Water, in many cases, is a key factor in the development of energy resources in the western states. The total water supply available in the arid west is fixed; yet potential water uses in the region are growing continually. In fact, in many areas quantities of water desired to be put to beneficial use has already surpassed the limit of local supplies as indicated by filings for water rights. The availability of water, in adequate quantities and of suitable quality, is one of the essentials to the economic viability of some economic sectors in the states in the Colorado River Basin. Many existing water uses are already under economic pressure which could shift water to users who can afford to pay higher prices. With the entire region undergoing an energy boom, Duchesne and Uintah Counties, which are agriculture oriented, for example, may see water bought from agriculture for energy development

    Real-Time Decision Fusion for Multimodal Neural Prosthetic Devices

    Get PDF
    The field of neural prosthetics aims to develop prosthetic limbs with a brain-computer interface (BCI) through which neural activity is decoded into movements. A natural extension of current research is the incorporation of neural activity from multiple modalities to more accurately estimate the user's intent. The challenge remains how to appropriately combine this information in real-time for a neural prosthetic device., i.e., fusing predictions from several single-modality decoders to produce a more accurate device state estimate. We examine two algorithms for continuous variable decision fusion: the Kalman filter and artificial neural networks (ANNs). Using simulated cortical neural spike signals, we implemented several successful individual neural decoding algorithms, and tested the capabilities of each fusion method in the context of decoding 2-dimensional endpoint trajectories of a neural prosthetic arm. Extensively testing these methods on random trajectories, we find that on average both the Kalman filter and ANNs successfully fuse the individual decoder estimates to produce more accurate predictions.Our results reveal that a fusion-based approach has the potential to improve prediction accuracy over individual decoders of varying quality, and we hope that this work will encourage multimodal neural prosthetics experiments in the future
    • …
    corecore