55 research outputs found

    The burst gap is a peripheral temporal code for pitch perception that is shared across audition and touch

    Full text link
    When tactile afferents were manipulated to fire in periodic bursts of spikes, we discovered that the perceived pitch corresponded to the inter-burst interval (burst gap) in a spike train, rather than the spike rate or burst periodicity as previously thought. Given that tactile frequency mechanisms have many analogies to audition, and indications that temporal frequency channels are linked across the two modalities, we investigated whether there is burst gap temporal encoding in the auditory system. To link this putative neural code to perception, human subjects (n = 13, 6 females) assessed pitch elicited by trains of temporally-structured acoustic pulses in psychophysical experiments. Each pulse was designed to excite a fixed population of cochlear neurons, precluding place of excitation cues, and to elicit desired temporal spike trains in activated afferents. We tested periodicities up to 150 Hz using a variety of burst patterns and found striking deviations from periodicity-predicted pitch. Like the tactile system, the duration of the silent gap between successive bursts of neural activity best predicted perceived pitch, emphasising the role of peripheral temporal coding in shaping pitch. This suggests that temporal patterning of stimulus pulses in cochlear implant users might improve pitch perception

    Adaptation of cortical activity to sustained pressure stimulation on the fingertip

    Get PDF
    Background Tactile adaptation is a phenomenon of the sensory system that results in temporal desensitization after an exposure to sustained or repetitive tactile stimuli. Previous studies reported psychophysical and physiological adaptation where perceived intensity and mechanoreceptive afferent signals exponentially decreased during tactile adaptation. Along with these studies, we hypothesized that somatosensory cortical activity in the human brain also exponentially decreased during tactile adaptation. The present neuroimaging study specifically investigated temporal changes in the human cortical responses to sustained pressure stimuli mediated by slow-adapting type I afferents. Methods We applied pressure stimulation for up to 15 s to the right index fingertip in 21 healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. We analyzed cortical responses in terms of the degrees of cortical activation and inter-regional connectivity during sustained pressure stimulation. Results Our results revealed that the degrees of activation in the contralateral primary and secondary somatosensory cortices exponentially decreased over time and that intra- and inter-hemispheric inter-regional functional connectivity over the regions associated with tactile perception also linearly decreased or increased over time, during pressure stimulation. Conclusion These results indicate that cortical activity dynamically adapts to sustained pressure stimulation mediated by SA-I afferents, involving changes in the degrees of activation on the cortical regions for tactile perception as well as in inter-regional functional connectivity among them. We speculate that these adaptive cortical activity may represent an efficient cortical processing of tactile information.open

    Spike Timing Matters in Novel Neuronal Code Involved in Vibrotactile Frequency Perception

    Full text link
    Skin vibrations sensed by tactile receptors contribute significantly to the perception of object properties during tactile exploration [1–4] and to sensorimotor control during object manipulation [5]. Sustained low-frequency skin vibration (<60 Hz) evokes a distinct tactile sensation referred to as flutter whose frequency can be clearly perceived [6]. How afferent spiking activity translates into the perception of frequency is still unknown. Measures based on mean spike rates of neurons in the primary somatosensory cortex are sufficient to explain performance in some frequency discrimination tasks [7–11]; however, there is emerging evidence that stimuli can be distinguished based also on temporal features of neural activity [12, 13]. Our study's advance is to demonstrate that temporal features are fundamental for vibrotactile frequency perception. Pulsatile mechanical stimuli were used to elicit specified temporal spike train patterns in tactile afferents, and subsequently psychophysical methods were employed to characterize human frequency perception. Remarkably, the most salient temporal feature determining vibrotactile frequency was not the underlying periodicity but, rather, the duration of the silent gap between successive bursts of neural activity. This burst gap code for frequency represents a previously unknown form of neural coding in the tactile sensory system, which parallels auditory pitch perception mechanisms based on purely temporal information where longer inter-pulse intervals receive higher perceptual weights than short intervals [14]. Our study also demonstrates that human perception of stimuli can be determined exclusively by temporal features of spike trains independent of the mean spike rate and without contribution from population response factors

    Individual differences in the cardiovascular responses to tonic muscle pain: Parallel increases or decreases in muscle sympathetic nerve activity, blood pressure and heart rate

    No full text
    We recently showed that acute muscle pain, induced by bolus intramuscular injection of hypertonic saline, causes a sustained increase in muscle sympathetic nerve activity (MSNA) and a modest increase in blood pressure and heart rate. However, it is not known whether long-lasting (tonic) pain, which more closely resembles chronic pain, causes a sustained increase in MSNA and blood pressure. We tested this hypothesis by recording MSNA in 12 healthy subjects. Tonic pain was induced for ~60 min by slow intramuscular infusion of hypertonic saline (7%) into the ipsilateral tibialis anterior muscle. Pain was sustained at a tolerable level (5/10 to 6/10 on a visual analog scale). Seven subjects showed progressive increases in mean MSNA amplitude during tonic pain, increasing to 154 ± 17% (SEM) at 45 min and remaining essentially constant for the duration of the infusion. In these subjects, blood pressure and heart rate also increased. Conversely, for the other five subjects MSNA showed a progressive decline, with a peak fall of 67 ± 11% at 40 min; blood pressure and heart rate also fell in these subjects. We conclude that tonic muscle pain has long-lasting effects on the sympathetic control of blood pressure, causing a sustained increase in some subjects yet a sustained decrease in others. This may have implications for individual differences in the cardiovascular consequences of chronic pain

    Consistent interindividual increases or decreases in muscle sympathetic nerve activity during tonic muscle pain: implications for chronic pain

    No full text
    We recently showed that long-lasting muscle pain, induced by intramuscular infusion of hypertonic saline, evoked two patterns of cardiovascular responses across subjects: one group showed parallel increases in muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate, while the other group showed parallel decreases. Given that MSNA is consistent day to day, we tested the hypothesis that individuals who show increases in MSNA during experimental muscle pain will show consistent responses over time. MSNA was recorded from the peroneal nerve, together with blood pressure and heart rate, during an intramuscular infusion of hypertonic saline causing pain for an hour in 15 subjects on two occasions, 2-27 weeks apart. Pain intensity ratings were not significantly different between the first (5.8 ± 0.4/10) and second (6.1 ± 0.2) recording sessions. While four subjects showed significant decreases in the first session (46.6 ± 9.2 % of baseline) and significant increases in the second (159.6 ± 8.9 %), in 11 subjects, there was consistency in the changes in MSNA over time: either a sustained decrease (55.6 ± 6.8 %, n = 6) or a sustained increase (143.5 ± 6.1 %, n = 5) occurred in both recording sessions. There were no differences in pain ratings between sessions for any subjects. We conclude that the changes in MSNA during long-lasting muscle pain are consistent over time in the majority of individuals, reflecting the importance of studying interindividual differences in physiology

    Classification of texture and frictional condition at initial contact by tactile afferent responses

    No full text
    Adjustments to friction are crucial for precision object handling in both humans and robotic manipulators. The aim of this work was to investigate the ability of machine learning to disentangle concurrent stimulus parameters, such as normal force ramp rate, texture and friction, from the responses of tactile afferents at the point of initial contact with the human finger pad. Three textured stimulation surfaces were tested under two frictional conditions each, with a 4 N normal force applied at three ramp rates. During stimulation, the responses of fourteen afferents (5 SA-I, 2 SA-II, 5 FA-I, 2 FA-II) were recorded. A Parzen window classifier was used to classify ramp rate, texture and frictional condition using spike count, first spike latency or peak frequency from each afferent. This is the first study to show that ramp rate, texture and frictional condition could be classified concurrently with over 90% accuracy using a small number of tactile sensory units

    Temporal patterns in electrical nerve stimulation: Burst gap code shapes tactile frequency perception

    Get PDF
    We have previously described a novel temporal encoding mechanism in the somatosensory system, where mechanical pulses grouped into periodic bursts create a perceived tactile frequency based on the duration of the silent gap between bursts, rather than the mean rate or the periodicity. This coding strategy may offer new opportunities for transmitting information to the brain using various sensory neural prostheses and haptic interfaces. However, it was not known whether the same coding mechanisms apply when using electrical stimulation, which recruits a different spectrum of afferents. Here, we demonstrate that the predictions of the burst gap coding model for frequency perception apply to burst stimuli delivered with electrical pulses, re-emphasising the importance of the temporal structure of spike patterns in neural processing and perception of tactile stimuli. Reciprocally, the electrical stimulation data confirm that the results observed with mechanical stimulation do indeed depend on neural processing mechanisms in the central nervous system, and are not due to skin mechanical factors and resulting patterns of afferent activation
    corecore