8 research outputs found

    Syzygium (Myrtaceae): Monographing a taxonomic giant via 22 coordinated regional revisions

    Get PDF
    Syzygium Gaertn. is the largest woody genus of flowering plants in the world. Unpublished but extensive recent herbarium surveys suggest 1200‒1800 species distributed throughout the Old-World tropics and subtropics (Table 1). Until recently, Syzygium exemplified a recurring taxonomic impediment among megadiverse genera, wherein few taxonomists worked on the group in any sustained manner, a majority of the herbarium specimens remained undetermined or misidentified, few if any attempts were made to look at the genus globally and limited or no molecular studies were available to provide a predictive phylogenetic context of the genus. The situation with Syzygium has slowly begun to change as allied genera have been absorbed into the genus (Biffin et al., 2006; Craven & Biffin, 2010), and predictive phylogenetically based infrageneric classifications are emerging. Taxonomic outputs on Syzygium also have been increasing across its range with the description of new species, resolution of nomenclatural and typification issues, and some regional revisions being initiated or updated. However, virtually all regional treatments (which some areas lack) need urgent revision because they are severely outdated, have limited molecular sampling and are error-ridden. We are coordinating a genus-wide taxonomic update of Syzygium through a series of 22 regional revisions, including 9 in the Flora Malesiana region (Figure 1). Each treatment will include a phylogenetic framework with species descriptions, type information, synonymy, distributions, ecological notes, and keys. Field images (Figure 2) and/or line drawings will be included with the goal of every species being illustrated. This working group has been formed to encourage a coordinated effort to document this unwieldy taxonomic giant and regional botanists working on the group are encouraged to be involved. A robust taxonomy of the genus is a prerequisite for testing the many complex questions about evolution and ecology that Syzygium could help address

    A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set

    Get PDF
    PREMISE: To further advance the understanding of the species- rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit.METHODS: We combined high- throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76% of all genera in the order).RESULTS: Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed.CONCLUSIONS: High- throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events

    Evolutionary diversification of new caledonian Araucaria

    Get PDF
    New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a ‘museum’ for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island for the radiation of the Pacific Araucaria sect. Eutacta clade.Mai Lan Kranitz, Edward Biffin, Alexandra Clark, Michelle L. Hollingsworth, Markus Ruhsam, Martin F. Gardner, Philip Thomas, Robert R. Mill, Richard A. Ennos, Myriam Gaudeul, Andrew J. Lowe, Peter M. Hollingswort

    SNP_seq_data

    No full text
    Sequence data is in phylip format. Site ID name for each sample can be found the sampling site GPS coordinate fil

    Genotype_msats

    No full text
    Genotype data is in GeAlEx format. Site ID for each sample can be found in the sampling site GPS coordinate file
    corecore