83 research outputs found

    Similarity Grouping and Repetition Blindness are Both Influenced by Attention

    Get PDF
    Previous studies have reported seemingly conflicting results regarding how the amount of stimulus similarity between two simultaneously presented target stimuli impacts perceptual performance. There are many reports of ‘repetition blindness’, where individuals do worse when shown two similar stimuli relative to two different stimuli. On the other hand, there are reports of ‘similarity grouping’, where participants perform better when identifying two similar objects relative to two different objects. This manuscript posits that repetition blindness and similarity grouping coexist and can be elicited in the same subjects in a single task. This not only explains the previous opposite effects of stimulus similarity on task performance, but also provides a unique opportunity to directly compare these opposite effects of stimulus similarity with respect to susceptibility to a modulating factor. Since previous studies have provided inconclusive results on whether attentional relevance can modulate the effect of stimulus similarity on task performance, the current manuscript aims to compare repetition blindness and similarity grouping with respect to their susceptibility to attentional relevance. The results of the first experiment confirmed that both repetition blindness and similarity grouping can be elicited in the same experiment, suggesting that repetition blindness and similarity grouping coexist. The results of the second experiment suggest that both repetition blindness and similarity grouping can be modulated by attentional relevance. These results support the explanation of repetition blindness as a token individuation failure. Furthermore, these results suggest that supposedly pre-attentional grouping mechanisms might not operate as independently from top-down attentional modulations as traditionally thought

    Reducing alertness does not affect line bisection bias in neurotypical participants.

    Get PDF
    Alertness, or one's general readiness to respond to stimulation, has previously been shown to affect spatial attention. However, most of this previous research focused on speeded, laboratory-based reaction tasks, as opposed to the classical line bisection task typically used to diagnose deficits of spatial attention in clinical settings. McIntosh et al. (Cogn Brain Res 25:833-850, 2005) provide a form of line bisection task which they argue can more sensitively assess spatial attention. Ninety-eight participants were presented with this line bisection task, once with and once without spatial cues, and both before and after a 50-min vigilance task that aimed to decrease alertness. A single participant was excluded due to potentially inconsistent behaviour in the task, leaving 97 participants for the full analyses. While participants were, on a group level, less alert after the 50-min vigilance task, they showed none of the hypothesised effects of reduced alertness on spatial attention in the line bisection task, regardless of with or without spatial cues. Yet, they did show the proposed effect of decreased alertness leading to a lower level of general attention. This suggests that alertness has no effect on spatial attention, as measured by a line bisection task, in neurotypical participants. We thus conclude that, in neurotypical participants, the effect of alertness on spatial attention can be examined more sensitively with tasks requiring a speeded response compared to unspeeded tasks

    Lesion-symptom mapping corroborates lateralization of verbal and nonverbal memory processes and identifies distributed brain networks responsible for memory dysfunction.

    Get PDF
    Memory disorders are a common consequence of cerebrovascular accident (CVA). However, uncertainties remain about the exact anatomical correlates of memory impairment and the material-specific lateralization of memory function in the brain. We used lesion-symptom mapping (LSM) in patients with first-time CVA to identify which brain structures are pivotal for verbal and nonverbal memory and to re-examine whether verbal and nonverbal memory functions are lateralized processes in the brain. The cognitive performance of a relatively large cohort of 114 patients in five classic episodic memory tests was analysed with factor analysis. Two factors were extracted that distinguished the verbal and nonverbal components of these memory tests, and their scores were subsequently tested for anatomical correlates by combining univariate and multivariate LSM. LSM analysis revealed for the verbal factor exclusively left-hemispheric insular, subcortical and adjacent white matter regions and for the nonverbal factor exclusively right-hemispheric temporal, occipital, insular, subcortical and adjacent white matter structures. These results corroborate the long-standing hypothesis of a material-specific lateralization of memory function in the brain and confirm a robust association between right temporal lobe lesions and nonverbal memory dysfunction. The right-hemispheric correlates for the nonverbal aspects of episodic memory include not only classic memory structures in the medial temporal lobe but also a more distributed network that includes cortical and subcortical structures also known for implicit memory processes

    About the role of visual field defects in pure alexia

    Get PDF
    Pure alexia is an acquired reading disorder characterized by a disproportionate prolongation of reading time as a function of word length. Although the vast majority of cases reported in the literature show a right-sided visual defect, little is known about the contribution of this low-level visual impairment to their reading difficulties. The present study was aimed at investigating this issue by comparing eye movement patterns during text reading in six patients with pure alexia with those of six patients with hemianopic dyslexia showing similar right-sided visual field defects. We found that the role of the field defect in the reading difficulties of pure alexics was highly deficit-specific. While the amplitude of rightward saccades during text reading seems largely determined by the restricted visual field, other visuo-motor impairments—particularly the pronounced increases in fixation frequency and viewing time as a function of word length—may have little to do with their visual field defect. In addition, subtracting the lesions of the hemianopic dyslexics from those found in pure alexics revealed the largest group differences in posterior parts of the left fusiform gyrus, occipito-temporal sulcus and inferior temporal gyrus. These regions included the coordinate assigned to the centre of the visual word form area in healthy adults, which provides further evidence for a relation between pure alexia and a damaged visual word form area. Finally, we propose a list of three criteria that may improve the differential diagnosis of pure alexia and allow appropriate therapy recommendation

    Evolution of Neuropsychological Deficits in First-Ever Isolated Ischemic Thalamic Stroke and Their Association With Stroke Topography: A Case-Control Study.

    Get PDF
    BACKGROUND The thalamus plays an essential role in cognition. Cognitive deficits have to date mostly been studied retrospectively in chronic thalamic stroke in small cohorts. Studies prospectively evaluating the evolution of cognitive deficits and their association with thalamic stroke topography are lacking. This knowledge is relevant for targeted patient diagnostics and rehabilitation. METHODS Thirty-seven patients (57.5±17.5 [mean±SD] years, 57% men) with first-ever acute isolated ischemic stroke covering the anterior (n=5), paramedian (n=12), or inferolateral (n=20) thalamus and 37 in-patient controls without stroke with similar vascular risk factors matched for age and sex were prospectively studied. Cognition was evaluated using predefined tests at 1, 6, 12, and 24 months. Voxel-based lesion-symptom mapping was used to determine associations between neuropsychological deficits and stroke topography. RESULTS Patients with anterior thalamic stroke revealed severe deficits in verbal memory (median T score [Q1-Q3]: 39.1 [36.1-44.1]), language (31.8 [31.0-43.8]), and executive functions (43.8 [35.5-48.1]) at 1 month compared with controls (verbal memory: 48.5 [43.6-61.0], language: 55.7 [42.3-61.1], executive functions: 51.3 [50.1-56.8]). Patients with paramedian thalamic stroke showed moderate language (44.7 [42.8-55.9]) and executive (49.5 [44.3-55.1]) deficits and no verbal memory deficits (48.1 [42.5-54.7]) at 1 month compared with controls (59.0 [47.0-64.5]; 59.6 [51.1-61.3]; 52.5 [44.2-55.3]). The language and executive deficits in paramedian thalamic stroke patients almost completely recovered during follow-up. Intriguingly, significant deficits in verbal memory (44.7 [41.5-51.9]), language (47.5 [41.8-54.1]), and executive functions (48.2 [46.2-59.7]) were found in inferolateral thalamic stroke patients at 1 month compared with controls (50.5 [46.7-59.9]; 57.0 [51.2-62.9]; 57.4 [51.2-60.7]). Language, but not executive deficits persisted during follow-up. Voxel-based lesion-symptom mapping revealed an association of verbal memory deficits with anterior thalamus lesions and an association of non-verbal memory, language, and executive deficits with lesions at the anterior/paramedian/inferolateral border. CONCLUSIONS All 3 stroke topographies exhibited significant deficits in diverse cognitive domains, which recovered to a different degree depending on the stroke localization. Our study emphasizes the need for comprehensive neuropsychological diagnostics to secure adequate patient rehabilitation

    Errors on the Trail Making Test Are Associated with Right Hemispheric Frontal Lobe Damage in Stroke Patients

    Get PDF
    Measures of performance on the Trail Making Test (TMT) are among the most popular neuropsychological assessment techniques. Completion time on TMT-A is considered to provide a measure of processing speed, whereas completion time on TMT-B is considered to constitute a behavioral measure of the ability to shift between cognitive sets (cognitive flexibility), commonly attributed to the frontal lobes. However, empirical evidence linking performance on the TMT-B to localized frontal lesions is mostly lacking. Here, we examined the association of frontal lesions following stroke with TMT-B performance measures (i.e., completion time and completion accuracy measures) using voxel-based lesion-behavior mapping, with a focus on right hemispheric frontal lobe lesions. Our results suggest that the number of errors, but not completion time on the TMT-B, is associated with right hemispheric frontal lesions. This finding contradicts common clinical practice-the use of completion time on the TMT-B to measure cognitive flexibility, and it underscores the need for additional research on the association between cognitive flexibility and the frontal lobes. Further work in a larger sample, including left frontal lobe damage and with more power to detect effects of right posterior brain injury, is necessary to determine whether our observation is specific for right frontal lesions

    About the role of visual field defects in pure alexia

    Get PDF
    Pure alexia is an acquired reading disorder characterized by a disproportionate prolongation of reading time as a function of word length. Although the vast majority of cases reported in the literature show a right-sided visual defect, little is known about the contribution of this low-level visual impairment to their reading difficulties. The present study was aimed at investigating this issue by comparing eye movement patterns during text reading in six patients with pure alexia with those of six patients with hemianopic dyslexia showing similar right-sided visual field defects. We found that the role of the field defect in the reading difficulties of pure alexics was highly deficit-specific. While the amplitude of rightward saccades during text reading seems largely determined by the restricted visual field, other visuo-motor impairments-particularly the pronounced increases in fixation frequency and viewing time as a function of word length-may have little to do with their visual field defect. In addition, subtracting the lesions of the hemianopic dyslexics from those found in pure alexics revealed the largest group differences in posterior parts of the left fusiform gyrus, occipito-temporal sulcus and inferior temporal gyrus. These regions included the coordinate assigned to the centre of the visual word form area in healthy adults, which provides further evidence for a relation between pure alexia and a damaged visual word form area. Finally, we propose a list of three criteria that may improve the differential diagnosis of pure alexia and allow appropriate therapy recommendations

    Depression and anxiety in acute ischemic stroke involving the anterior but not paramedian or inferolateral thalamus

    Get PDF
    Background and objectivesEmotional and cognitive deficits are prevalent in strokes involving the thalamus. In contrast to cognitive deficits, emotional deficits have not been studied prospectively in isolated thalamic stroke.MethodsIn 37 ischemic thalamic stroke patients (57.0 [50.0; 69.5] years [median (Q1; Q3)], 21 males, 5 anterior, 12 paramedian, 20 inferolateral vascular territory), and 37 non-stroke control patients matched for age and sex, we prospectively examined depression, anxiety, activities of daily living, and quality of life at 1, 6, 12, and 24 months post-stroke using the Hospital-Anxiety-and-Depression Scale (HADS), Nürnberger-Alters-Alltagsaktivitäten scale (NAA), and Short Form-36 (SF36) questionnaire. Voxel-based lesion-symptom mapping (VLSM) and lesion-subtraction analyzes were performed to determine associations between questionnaire scores and thalamic stroke topography.ResultsAt 1 month post-stroke, anterior thalamic stroke patients had higher depression scores [8.0 (7.5; 10.5)] than paramedian [4.5 (1.0; 5.8)] and inferolateral [4.0 (1.0; 7.0)] thalamic stroke patients. Furthermore, anterior thalamic stroke patients had higher anxiety scores [11.0 (8.0; 14.5)] than their matched controls [2.5 (2.0; 2.5)], paramedian [4.5 (1.0; 5.8)] and inferior [4.0 (1.0; 7.0)] thalamic stroke patients. Depression and anxiety scores in anterior thalamic stroke patients remained high across the follow-up [depression: 9.0 (3.5; 13,8); anxiety:10.05 (2.8, 14.5)].Physical health assessed by SF36 was intact in anterior [1 month post-stroke: T-score = 55.9 (37.0; 57.6)] but reduced in inferolateral [44.5(32.4; 53.1)] thalamic stroke, whereas mental health was reduced in anterior thalamic stroke [32.0 (29.8; 47.3)].VLSM confirmed that voxels in the anterior thalamus around Montreal Neurological Institute (MNI) coordinates X = −8, Y = −12, Z = 2 were more often affected by the stroke in depressed (HADS-score ≥ 8) than non-depressed (HADS-score < 8) patients and voxels around coordinates X = −10, Y = −12, Z = 2 were more often affected in anxious (HADS-score ≥ 8) than non-anxious (HADS-score < 8) patients.ConclusionAnterior, but not paramedian or inferolateral thalamic stroke was associated with depression and anxiety. Even though our results are mostly significant in the left thalamus, this observation on stroke laterality might be confounded by the fact that the right hemisphere was underrepresented in our study
    corecore