769 research outputs found

    Bioequivalence and Population Pharmacokinetic Modeling of Two Forms of Antibiotic, Cefuroxime Lysine and Cefuroxime Sodium, after Intravenous Infusion in Beagle Dogs

    Get PDF
    To investigate the bioequivalence and the population pharmacokinetics of cefuroxime lysine and cefuroxime sodium in healthy beagle dogs. A randomized 2-period crossover design in 18 healthy beagle dogs after receiving 20, 40, and 80 mg/kg of cefuroxime lysine or cefuroxime sodium was conducted. A 3-compartment open model was used as the basic model for the population pharmacokinetic study. Both of the antibiotics exhibited dose-proportional pharmacokinetics over the dose range of 20–80 mg/kg. The mean relative bioavailability of cefuroxime lysine versus cefuroxime sodium was 1.05 (range, 0.71 to 1.42), with a significant difference between males and females. The estimates of population pharmacokinetic of CL, V1, Q2, V2, Q3, V3 were 3.74 mL/h, 1.70 mL, 29.5 mL/min, 3.58 mL, 0.31 mL/min, and 158 mL for cefuroxime lysine and 4.10 mL/h, 1.00 mL, 38.5 mL/min, 4.19 mL, 0.06 mL/min, and 13.6 mL for cefuroxime sodium, respectively. The inter-individual variability was determined to be less than 29.1%. A linear pharmacokinetic was revealed for cefuroxime lysine and cefuroxime sodium in dogs after intravenous infusion, and the bioequivalence of these forms of the antibiotic was observed with the significant gender-related differences in mean relative bioavailability of cefuroxime lysine versus cefuroxime sodium

    mGluR5 antagonism inhibits cocaine reinforcement and relapse by elevation of extracellular glutamate in the nucleus accumbens via a CB1 receptor mechanism.

    Get PDF
    Metabotropic glutamate receptor 5 (mGluR5) antagonism inhibits cocaine self-administration and reinstatement of drug-seeking behavior. However, the cellular and molecular mechanisms underlying this action are poorly understood. Here we report a presynaptic glutamate/cannabinoid mechanism that may underlie this action. Systemic or intra-nucleus accumbens (NAc) administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) dose-dependently reduced cocaine (and sucrose) self-administration and cocaine-induced reinstatement of drug-seeking behavior. The reduction in cocaine-taking and cocaine-seeking was associated with a reduction in cocaine-enhanced extracellular glutamate, but not cocaine-enhanced extracellular dopamine (DA) in the NAc. MPEP alone, when administered systemically or locally into the NAc, elevated extracellular glutamate, but not DA. Similarly, the cannabinoid CB1 receptor antagonist, rimonabant, elevated NAc glutamate, not DA. mGluR5s were found mainly in striatal medium-spiny neurons, not in astrocytes, and MPEP-enhanced extracellular glutamate was blocked by a NAc CB1 receptor antagonist or N-type Ca++ channel blocker, suggesting that a retrograde endocannabinoid-signaling mechanism underlies MPEP-induced glutamate release. This interpretation was further supported by our findings that genetic deletion of CB1 receptors in CB1-knockout mice blocked both MPEP-enhanced extracellular glutamate and MPEP-induced reductions in cocaine self-administration. Together, these results indicate that the therapeutic anti-cocaine effects of mGluR5 antagonists are mediated by elevation of extracellular glutamate in the NAc via an endocannabinoid-CB1 receptor disinhibition mechanism

    (3S,12R,20S,24R)-20,24-Ep­oxy­dammarane-3,12,25-triol

    Get PDF
    In the title mol­ecule, C30H52O4, the three six-membered rings are in chair conformations, the cyclo­pentane ring is in an envelope form and the tetra­hydro­furan ring has a conformation inter­mediate between half-chair and sofa. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds into helical chains along [100]. Two intra­molecular O—H⋯O hydrogen bonds are also present. One C atom of the tetrahydrofuran ring and its attached H atoms are equally disordered over two sets of sites

    A convenient tandem one-pot synthesis of donor-acceptor-type triphenylene 2,3-dicarboxylic esters from diarylacetylene

    Get PDF
    A tandem one-pot method for the direct synthesis of polysubstituted triphenylene 2,3-dicarboxylic esters with different substitution patterns was developed by enyne metathesis of diarylacetylene, followed by Diels–Alder, aromatization and a cyclization cascade
    corecore