3 research outputs found
Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection
Abstract
Age is the dominant risk factor for infectious diseases, but the mechanisms linking age to infectious disease risk are incompletely understood. Age–related mosaic chromosomal alterations (mCAs) detected from genotyping of blood–derived DNA, are structural somatic variants indicative of clonal hematopoiesis, and are associated with aberrant leukocyte cell counts, hematological malignancy, and mortality. Here, we show that mCAs predispose to diverse types of infections. We analyzed mCAs from 768,762 individuals without hematological cancer at the time of DNA acquisition across five biobanks. Expanded autosomal mCAs were associated with diverse incident infections (hazard ratio (HR) 1.25; 95% confidence interval (CI) = 1.15–1.36; P = 1.8 x 10-7), including sepsis (HR 2.68; 95% CI = 2.25–3.19; P = 3.1 x 10-28), pneumonia (HR 1.76; 95% CI = 1.53–2.03; P = 2.3 x 10-15), digestive system infections (HR 1.51; 95% CI = 1.32–1.73; P = 2.2 x 10-9) and genitourinary infections (HR 1.25; 95% CI = 1.11–1.41; P = 3.7 x 10-4). A genome–wide association study of expanded mCAs identified 63 loci, which were enriched at transcriptional regulatory sites for immune cells. These results suggest that mCAs are a marker of impaired immunity and confer increased predisposition to infections
Recommended from our members
Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential.
Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD