253 research outputs found

    A hyperelastic model for simulating cells in flow

    Get PDF
    In the emerging field of 3D bioprinting, cell damage due to large deformations is considered a main cause for cell death and loss of functionality inside the printed construct. Those deformations, in turn, strongly depend on the mechano-elastic response of the cell to the hydrodynamic stresses experienced during printing. In this work, we present a numerical model to simulate the deformation of biological cells in arbitrary three-dimensional flows. We consider cells as an elastic continuum according to the hyperelastic Mooney-Rivlin model. We then employ force calculations on a tetrahedralized volume mesh. To calibrate our model, we perform a series of FluidFM(R) compression experiments with REF52 cells demonstrating that all three parameters of the Mooney-Rivlin model are required for a good description of the experimental data at very large deformations up to 80%. In addition, we validate the model by comparing to previous AFM experiments on bovine endothelial cells and artificial hydrogel particles. To investigate cell deformation in flow, we incorporate our model into Lattice Boltzmann simulations via an Immersed-Boundary algorithm. In linear shear flows, our model shows excellent agreement with analytical calculations and previous simulation data.Comment: 15 pages, 9 figures, Supplementary information included. Unfortunately, the journal version misses an important contributor. The correct author list is the one given in this document. Biomech Model Mechanobiol (2020

    Composite Membranes Derived from Cellulose and Lignin Sulfonate for Selective Separations and Antifouling Aspects

    Get PDF
    Cellulose-based membrane materials allow for separations in both aqueous solutions and organic solvents. The addition of nanocomposites into cellulose structure is facilitated through steric interaction and strong hydrogen bonding with the hydroxy groups present within cellulose. An ionic liquid, 1-ethyl-3-methylimidazolium acetate, was used as a solvent for microcrystalline cellulose to incorporate graphene oxide quantum dots into cellulose membranes. In this work, other composite materials such as, iron oxide nanoparticles, polyacrylic acid, and lignin sulfonate have all been uniformly incorporated into cellulose membranes utilizing ionic liquid cosolvents. Integration of iron into cellulose membranes resulted in high selectivity (\u3e 99%) of neutral red and methylene blue model dyes separation over salts with a high permeability of 17 LMH/bar. With non-aqueous (alcohol) solvent, iron–cellulose composite membranes become less selective and more permeable, suggesting the interaction of iron ions cellulose OH groups plays a major role in pore structure. Polyacrylic acid was integrated into cellulose membranes to add pH responsive behavior and capacity for metal ion capture. Calcium capture of 55 mg Ca2+/g membrane was observed for PAA-cellulose membranes. Lignin sulfonate was also incorporated into cellulose membranes to add strong negative charge and a steric barrier to enhance antifouling behavior. Lignin sulfonate was also functionalized on the commercial DOW NF270 nanofiltration membranes via esterification of hydroxy groups with carboxyl group present on the membrane surface. Antifouling behavior was observed for both lignin-cellulose composite and commercial membranes functionalized with lignin. Up to 90% recovery of water flux after repeated cycles of fouling was observed for both types of lignin functionalized membranes while flux recovery of up to 60% was observed for unmodified membranes

    Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases

    Get PDF
    Amplification and overexpression of the c-myc gene have been associated with neoplastic transformation in a plethora of malignant tumours. We applied interphase fluorescence in situ hybridization (FISH) with a locus-specific probe for the c-myc gene (8q24) in combination with a corresponding chromosome 8 α-satellite probe to evaluate genetic alterations in 8 primary melanomas and 33 advanced melanomas and compared it to 12 melanocytic nevi, 7 safety margins and 2 cases of normal skin. Additionally, in metaphase spreads of 7 melanoma cell lines a whole chromosome 8 paint probe was used. We investigated the functionality of the c-myc gene by detecting c-myc RNA expression with RT-PCR and c-myc protein by immunohistochemistry. 4/8 primary melanomas and 11/33 melanoma metastases showed additional c-myc signals relative to the centromere of chromosome 8 copy number. None of the nevi, safety margins or normal skin samples demonstrated this gain. In 2/7 melanoma cell lines (C32 and WM 266–4) isochromosome 8q formation with a relative gain of c-myc copies and a loss of 8p was observed. The highest c-myc gene expression compared to GAPDH was found in melanoma metastases (17.5%). Nevi (6.6%) and primary melanomas (5.0%) expressed the c-myc gene on a lower level. 72.7% of the patients with c-myc extra copies had visceral melanoma metastases (UICC IV), patients without c-myc gain in 35.0% only. The collective with additional c-myc copies also expressed the gene on a significantly higher level. These results indicate that a c-myc gain in relation to the centromere 8 copy number might be associated with advanced cutaneous melanoma. © 2001 Cancer Research Campaign http://www.bjcancer.co

    The relationship between chiropractor required and current level of business knowledge

    Get PDF
    Background: Chiropractors frequently practice within health care systems requiring the business acumen of an entrepreneur. However, some chiropractors do not know the relationship between the level of business knowledge required for practice success and their current level of business knowledge. The purpose of this quantitative study was to examine the relationship between chiropractors’ perceived level of business knowledge required and their perceived level of current business knowledge. Methods: Two hundred and seventy-four participants completed an online survey (Health Care Training and Education Needs Survey) which included eight key business items. Participants rated the level of perceived business knowledge required (Part I) and their current perceived level of knowledge (Part II) for the same eight items. Data was collected from November 27, 2013 to December 18, 2013. Data were analyzed using Spearman’s ranked correlation to determine the statistically significant relationships for the perceived level of knowledge required and the perceived current level of knowledge for each of the paired eight items from Parts I and II of the survey. Wilcoxon Signed Ranks Tests were performed to determine the statistical difference between the paired items. Results: The results of Spearman’s correlation testing indicated a statistically significant (p < 0.01) positive correlation for the perceived level of knowledge required and perceived current level of knowledge for six variables: (a) organizational behavior, (b) strategic management, (c) marketing, (d) legal and ethical, (e) managerial decisions, and (f) operations. Wilcoxon Signed Ranks testing indicated a significant difference for three paired items: strategic management; marketing and; legal and ethical. The results suggest that relationships exist for the majority of business items (6 of 8) however a statistically difference was demonstrated in only three of the paired business items. Conclusion: The implications of this study for social change include the potential to improve chiropractors’ business knowledge and skills, enable practice success, enhance health services delivery and positively influence the profession as a viable career.https://doi.org/10.1186/s12998-017-0134-
    • …
    corecore