54 research outputs found
Hardness measures and resolution lower bounds
Various "hardness" measures have been studied for resolution, providing
theoretical insight into the proof complexity of resolution and its fragments,
as well as explanations for the hardness of instances in SAT solving. In this
report we aim at a unified view of a number of hardness measures, including
different measures of width, space and size of resolution proofs. We also
extend these measures to all clause-sets (possibly satisfiable).Comment: 43 pages, preliminary version (yet the application part is only
sketched, with proofs missing
QCDCL vs QBF Resolution: Further Insights
We continue the investigation on the relations of QCDCL and QBF resolution systems. In particular, we introduce QCDCL versions that tightly characterise QU-Resolution and (a slight variant of) long-distance Q-Resolution. We show that most QCDCL variants - parameterised by different policies for decisions, unit propagations and reductions - lead to incomparable systems for almost all choices of these policies
Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution
QBF solvers implementing the QCDCL paradigm are powerful algorithms that successfully tackle many computationally complex applications. However, our theoretical understanding of the strength and limitations of these QCDCL solvers is very limited.
In this paper we suggest to formally model QCDCL solvers as proof systems. We define different policies that can be used for decision heuristics and unit propagation and give rise to a number of sound and complete QBF proof systems (and hence new QCDCL algorithms). With respect to the standard policies used in practical QCDCL solving, we show that the corresponding QCDCL proof system is incomparable (via exponential separations) to Q-resolution, the classical QBF resolution system used in the literature. This is in stark contrast to the propositional setting where CDCL and resolution are known to be p-equivalent.
This raises the question what formulas are hard for standard QCDCL, since Q-resolution lower bounds do not necessarily apply to QCDCL as we show here. In answer to this question we prove several lower bounds for QCDCL, including exponential lower bounds for a large class of random QBFs.
We also introduce a strengthening of the decision heuristic used in classical QCDCL, which does not necessarily decide variables in order of the prefix, but still allows to learn asserting clauses. We show that with this decision policy, QCDCL can be exponentially faster on some formulas.
We further exhibit a QCDCL proof system that is p-equivalent to Q-resolution. In comparison to classical QCDCL, this new QCDCL version adapts both decision and unit propagation policies
Reasons for Hardness in QBF Proof Systems
We aim to understand inherent reasons for lower bounds for QBF proof systems, and revisit and compare two previous approaches in this direction.
The first of these relates size lower bounds for strong QBF Frege systems to circuit lower bounds via strategy extraction (Beyersdorff & Pich, LICS\u2716). Here we show a refined version of strategy extraction and thereby for any QBF proof system obtain a trichotomy for hardness: (1) via circuit lower bounds, (2) via propositional Resolution lower bounds, or (3) `genuine\u27 QBF lower bounds.
The second approach tries to explain QBF lower bounds through quantifier alternations in a system called relaxing QU-Res (Chen, ICALP\u2716). We prove a strong lower bound for relaxing QU-Res, which also exhibits significant shortcomings of that model. Prompted by this we propose an alternative, improved version, allowing more flexible oracle queries in proofs. We show that lower bounds in our new model correspond to the trichotomy obtained via strategy extraction
Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution
QBF solvers implementing the QCDCL paradigm are powerful algorithms that
successfully tackle many computationally complex applications. However, our
theoretical understanding of the strength and limitations of these QCDCL
solvers is very limited.
In this paper we suggest to formally model QCDCL solvers as proof systems. We
define different policies that can be used for decision heuristics and unit
propagation and give rise to a number of sound and complete QBF proof systems
(and hence new QCDCL algorithms). With respect to the standard policies used in
practical QCDCL solving, we show that the corresponding QCDCL proof system is
incomparable (via exponential separations) to Q-resolution, the classical QBF
resolution system used in the literature. This is in stark contrast to the
propositional setting where CDCL and resolution are known to be p-equivalent.
This raises the question what formulas are hard for standard QCDCL, since
Q-resolution lower bounds do not necessarily apply to QCDCL as we show here. In
answer to this question we prove several lower bounds for QCDCL, including
exponential lower bounds for a large class of random QBFs.
We also introduce a strengthening of the decision heuristic used in classical
QCDCL, which does not necessarily decide variables in order of the prefix, but
still allows to learn asserting clauses. We show that with this decision
policy, QCDCL can be exponentially faster on some formulas.
We further exhibit a QCDCL proof system that is p-equivalent to Q-resolution.
In comparison to classical QCDCL, this new QCDCL version adapts both decision
and unit propagation policies
Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution
QBF solvers implementing the QCDCL paradigm are powerful algorithms that
successfully tackle many computationally complex applications. However, our
theoretical understanding of the strength and limitations of these QCDCL
solvers is very limited.
In this paper we suggest to formally model QCDCL solvers as proof systems. We
define different policies that can be used for decision heuristics and unit
propagation and give rise to a number of sound and complete QBF proof systems
(and hence new QCDCL algorithms). With respect to the standard policies used in
practical QCDCL solving, we show that the corresponding QCDCL proof system is
incomparable (via exponential separations) to Q-resolution, the classical QBF
resolution system used in the literature. This is in stark contrast to the
propositional setting where CDCL and resolution are known to be p-equivalent.
This raises the question what formulas are hard for standard QCDCL, since
Q-resolution lower bounds do not necessarily apply to QCDCL as we show here. In
answer to this question we prove several lower bounds for QCDCL, including
exponential lower bounds for a large class of random QBFs.
We also introduce a strengthening of the decision heuristic used in classical
QCDCL, which does not necessarily decide variables in order of the prefix, but
still allows to learn asserting clauses. We show that with this decision
policy, QCDCL can be exponentially faster on some formulas.
We further exhibit a QCDCL proof system that is p-equivalent to Q-resolution.
In comparison to classical QCDCL, this new QCDCL version adapts both decision
and unit propagation policies
The Deduction Theorem for Strong Propositional Proof Systems
This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NPUnknown control sequence '\mathsf' -pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NPUnknown control sequence '\mathsf' -pairs
Hard QBFs for Merge Resolution
We prove the first proof size lower bounds for the proof system Merge Resolution (MRes [Olaf Beyersdorff et al., 2020]), a refutational proof system for prenex quantified Boolean formulas (QBF) with a CNF matrix. Unlike most QBF resolution systems in the literature, proofs in MRes consist of resolution steps together with information on countermodels, which are syntactically stored in the proofs as merge maps. As demonstrated in [Olaf Beyersdorff et al., 2020], this makes MRes quite powerful: it has strategy extraction by design and allows short proofs for formulas which are hard for classical QBF resolution systems.
Here we show the first exponential lower bounds for MRes, thereby uncovering limitations of MRes. Technically, the results are either transferred from bounds from circuit complexity (for restricted versions of MRes) or directly obtained by combinatorial arguments (for full MRes). Our results imply that the MRes approach is largely orthogonal to other QBF resolution models such as the QCDCL resolution systems QRes and QURes and the expansion systems ?Exp+Res and IR
- …