27 research outputs found
Microarray identifies ADAM family members as key responders to TGF-β1 in alveolar epithelial cells
The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-β1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-β1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-β1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM) proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO) databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing) family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity) of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-β1, suggesting a potential role for these molecules in ECM accumulation in IPF
Functional evolution of ADAMTS genes: Evidence from analyses of phylogeny and gene organization
BACKGROUND: The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs) proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs) common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10), thrombotic thrombocytopenic purpura (ADAMTS13), and Ehlers-Danlos syndrome type VIIC (ADAMTS2) in humans and belted white-spotting mutation in mice (ADAMTS20). RESULTS: Phylogenetic analysis and comparison of the exon/intron organization of vertebrate (Homo, Mus, Fugu), chordate (Ciona) and invertebrate (Drosophila and Caenorhabditis) ADAMTS homologs has elucidated the evolutionary relationships of this important gene family, which comprises 19 members in humans. CONCLUSIONS: The evolutionary history of ADAMTS genes in vertebrate genomes has been marked by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS subfamily (ADAMTS1, -4, -5, -8, -15) that may have distinct aggrecanase and angiogenesis functions
MicroRNA Regulation of Human Protease Genes Essential for Influenza Virus Replication
Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies
Guest Adsorption in the Nanoporous Metal–Organic Framework Cu3(1,3,5-Benzenetricarboxylate)2: Combined In Situ X-ray Diffraction and Vapor Sorption
The structure of the nanoporous metal–organic framework Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) with a variety of molecular guests was studied in situ using single crystal X-ray diffraction. By collecting crystal structure data for a series of guests within the same host crystal, insights into the molecular interactions underpinning guest adsorption processes have been gained. Adsorption behaviors are influenced strongly by both enthalpic and entropic thermodynamic, as well as interpore steric (size-exclusion) effects, and we note correlations between guest attributes and these effects. Vapor adsorption measurements revealed a guest uptake capacity inversely proportional to guest size. Correspondingly, structural results show that guests reside in the smallest pores accessible to them. Interpore steric effects for larger guests cause these to be excluded from the smallest pores, and this corresponds to lower total uptake. Both hydrophilic and lipophilic small guests adsorb favorably into the 5 Å diameter smallest pore of the material, with the number of guests in these pores dependent on guest size and their location, in turn dependent upon both guest–guest interactions and competition between hydrogen-bonding interactions at the apertures of the smallest pore and lipophilic interactions at the center of the smallest pore. Hydrophilic guests with lone electron pairs interact preferentially with the coordinatively unsaturated Cu sites of the desolvated framework, with the number of these depending on steric interactions between neighboring bound guests and guest flexibility. Guest coordination at the Cu sites has a significant effect on the framework structure, increasing the Cu···Cu distance in the dinuclear unit, with the Cu3(BTC)2 unit cell being smaller when guests that do not coordinate with the Cu are present, and in the case of cyclohexane, smaller than for the desolvated framework. Overall, our comprehensive structural study reconciles Cu3(BTC)2 adsorption properties with the underlying guest–host and guest–guest interactions that gives rise to these. © 2014, American Chemical Society
Comparison of cytotoxic T-lymphocyte responses to hepatitis C virus core protein in uninfected and infected individuals
Cytotoxic T lymphocytes have been implicated in the control of hepatitis C virus (HCV) infection. Recognition by cytotoxic T lymphocytes of epitopes within HCV core protein has been defined previously by in vitro stimulation with synthetic peptides. The aim of this study has been to examine cytotoxic T-lymphocyte responses generated against peptides produced naturally following intracellular processing of viral protein. Antigen-specific cytotoxic T-lymphocyte lines were generated from both HCV uninfected and infected individuals by culturing CD8+ T cells with autologous dendritic cells loaded intracytoplasmically with recombinant HCV core protein. Analysis of the epitopes recognized by core protein-specific cytotoxic T lymphocytes used synthetic peptides that were selected based on their predicted binding to HLA-A * 0201 molecules. Core protein-specific cytotoxic T lymphocytes derived from HCV uninfected and infected individuals were able to lyse autologous target cells pulsed with each of 5 predicted epitopes. Generation of HCV-specific cytotoxic T lymphocytes using dendritic cells as antigen presenting cells provides a method of comparing the potential repertoire of cytotoxic T-lymphocyte responses to the responses that occur in chronically infected individuals. No evidence of a qualitatively different response by patient cytotoxic T lymphocytes was apparent which might explain persistence of the virus