267 research outputs found

    State Regulation of Channel Encroachments

    Get PDF

    Overcoming Bandwidth Limitations in Wireless Sensor Networks by Exploitation of Cyclic Signal Patterns: An Event-triggered Learning Approach

    Get PDF
    Wireless sensor networks are used in a wide range of applications, many of which require real-time transmission of the measurements. Bandwidth limitations result in limitations on the sampling frequency and number of sensors. This problem can be addressed by reducing the communication load via data compression and event-based communication approaches. The present paper focuses on the class of applications in which the signals exhibit unknown and potentially time-varying cyclic patterns. We review recently proposed event-triggered learning (ETL) methods that identify and exploit these cyclic patterns, we show how these methods can be applied to the nonlinear multivariable dynamics of three-dimensional orientation data, and we propose a novel approach that uses Gaussian process models. In contrast to other approaches, all three ETL methods work in real time and assure a small upper bound on the reconstruction error. The proposed methods are compared to several conventional approaches in experimental data from human subjects walking with a wearable inertial sensor network. They are found to reduce the communication load by 60–70%, which implies that two to three times more sensor nodes could be used at the same bandwidth

    An X-ray variable absorber within the Broad Line Region in Fairall 51

    Full text link
    Fairall 51 is a polar-scattered Seyfert 1 galaxy, a type of active galaxies believed to represent a bridge between unobscured type-1 and obscured type-2 objects. Fairall 51 has shown complex and variable X-ray absorption but only little is known about its origin. In our research, we observed Fairall 51 with the X-ray satellite Suzaku in order to constrain a characteristic time-scale of its variability. We performed timing and spectral analysis of four observations separated by 1.5, 2 and 5.5 day intervals. We found that the 0.5-50 keV broadband X-ray spectra are dominated by a primary power-law emission (with the photon index ~ 2). This emission is affected by at least three absorbers with different ionisations (log(xi) ~ 1-4). The spectrum is further shaped by a reprocessed emission, possibly coming from two regions -- the accretion disc and a more distant scattering region. The accretion disc emission is smeared by the relativistic effects, from which we measured the spin of the black hole as a ~ 0.8 (+-0.2). We found that most of the spectral variability can be attributed to the least ionised absorber whose column density changed by a factor of two between the first (highest-flux) and the last (lowest-flux) observation. A week-long scale of the variability indicates that the absorber is located at the distance ~ 0.05 pc from the centre, i.e., in the Broad Line Region.Comment: 12 pages, 9 figures, accepted to A&

    SnapperGPS: Open Hardware for Energy-Efficient, Low-Cost Wildlife Location Tracking with Snapshot GNSS

    Full text link
    Location tracking with global navigation satellite systems (GNSS), such as the GPS, is used in many applications, including the tracking of wild animals for research. Snapshot GNSS is a technique that only requires milliseconds of satellite signals to infer the position of a receiver. This is ideal for low-power applications such as animal tracking. However, there are few existing snapshot systems, none of which is open source. To address this, we developed SnapperGPS, a fully open-source, low-cost, and low-power location tracking system designed for wildlife tracking. SnapperGPS comprises three parts, all of which are open-source: (i) a small, low-cost, and low-power receiver; (ii) a web application to configure the receiver via USB; and (iii) a cloud-based platform for processing recorded data. This paper presents the hardware side of this project. The total component cost of the receiver is under $30, making it feasible for field work with restricted budgets and low recovery rates. The receiver records very short and low-resolution samples resulting in particularly low power consumption, outperforming existing systems. It can run for more than a year on a 40 mAh battery. We evaluated SnapperGPS in controlled static and dynamic tests in a semi-urban environment where it achieved median errors of 12 m. Additionally, SnapperGPS has already been deployed for two wildlife tracking studies on sea turtles and sea birds.Comment: 17 pages, 9 figures, published in the Journal of Open Hardware (JOH

    Development of a VHH-Based Erythropoietin Quantification Assay

    Get PDF
    Erythropoietin (EPO) quantification during cell line selection and bioreactor cultivation has traditionally been performed with ELISA or HPLC. As these techniques suffer from several drawbacks, we developed a novel EPO quantification assay. A camelid single-domain antibody fragment directed against human EPO was evaluated as a capturing antibody in a label-free biolayer interferometry-based quantification assay. Human recombinant EPO can be specifically detected in Chinese hamster ovary cell supernatants in a sensitive and pH-dependent manner. This method enables rapid and robust quantification of EPO in a high-throughput setting

    Haben Ratingagenturen beim Raten von Asset Backed Securities bewusst falsche Modelle in Kauf genommen?

    Get PDF
    Die Arbeit untersucht, welche Anreize Ratingagenturen von ABS Transaktionen gehabt haben opportunistisch zu handeln und tendenziell zu gute Ratings zu vergeben

    A Suzaku, NuSTAR, and XMM-Newton view on variable absorption and relativistic reflection in NGC 4151

    Get PDF
    We disentangle X-ray disk reflection from complex line-of-sight absorption in the nearby Seyfert NGC 4151, using a suite of Suzaku, NuSTAR, and XMM-Newton observations. Extending upon earlier published work, we pursue a physically motivated model using the latest angle-resolved version of the lamp-post geometry reflection model relxillCp_lp together with a Comptonization continuum. We use the long-look simultaneous Suzaku/NuSTAR observation to develop a baseline model wherein we model reflected emission as a combination of lamp-post components at the heights of 1.2 and 15.0 gravitational radii. We argue for a vertically extended corona as opposed to two compact and distinct primary sources. We find two neutral absorbers (one full-covering and one partial-covering), an ionized absorber (logξ=2.8\log \xi = 2.8), and a highly-ionized ultra-fast outflow, which have all been reported previously. All analyzed spectra are well described by this baseline model. The bulk of the spectral variability between 1 keV and 6 keV can be accounted for by changes in the column density of both neutral absorbers, which appear to be degenerate and inversely correlated with the variable hard continuum component flux. We track variability in absorption on both short (2 d) and long (\sim1 yr) timescales; the observed evolution is either consistent with changes in the absorber structure (clumpy absorber at distances ranging from the broad line region (BLR) to the inner torus or a dusty radiatively driven wind) or a geometrically stable neutral absorber that becomes increasingly ionized at a rising flux level. The soft X-rays below 1 keV are dominated by photoionized emission from extended gas that may act as a warm mirror for the nuclear radiation.Comment: 21 pages, 19 figures, 8 tables, accepted for publication by A&

    Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

    Full text link
    Communication load is a limiting factor in many real-time systems. Event-triggered state estimation and event-triggered learning methods reduce network communication by sending information only when it cannot be adequately predicted based on previously transmitted data. This paper proposes an event-triggered learning approach for nonlinear discrete-time systems with cyclic excitation. The method automatically recognizes cyclic patterns in data - even when they change repeatedly - and reduces communication load whenever the current data can be accurately predicted from previous cycles. Nonetheless, a bounded error between original and received signal is guaranteed. The cyclic excitation model, which is used for predictions, is updated hierarchically, i.e., a full model update is only performed if updating a small number of model parameters is not sufficient. A nonparametric statistical test enforces that model updates happen only if the cyclic excitation changed with high probability. The effectiveness of the proposed methods is demonstrated using the application example of wireless real-time pitch angle measurements of a human foot in a feedback-controlled neuroprosthesis. The experimental results show that communication load can be reduced by 70 % while the root-mean-square error between measured and received angle is less than 1{\deg}.Comment: 6 pages and 6 figures; to appear in IEEE Control Systems Letter

    The properties of the clumpy torus and BLR in the polar-scattered Seyfert 1 galaxy ESO 323-G77 through X-ray absorption variability

    Full text link
    We report results from multi-epoch X-ray observations of the polar-scattered Seyfert 1 galaxy ESO 323-G77. The source exhibits remarkable spectral variability from months to years timescales. The observed spectral variability is entirely due to variations of the column density of a neutral absorber towards the intrinsic nuclear continuum. The column density is generally Compton-thin ranging from a few times 1022^{22} cm2^{-2} to a few times 1023^{23} cm2^{-2}. However, one observation reveals a Compton-thick state with column density of the order of 1.5 ×\times 1024^{24} cm2^{-2}. The observed variability offers a rare opportunity to study the properties of the X-ray absorber(s) in an active galaxy. We identify variable X-ray absorption from two different components, namely (i) a clumpy torus whose individual clumps have a density of \leq 1.7 ×\times 108^8 cm3^{-3} and an average column density of \sim 4 ×\times 1022^{22} cm2^{-2}, and (ii) the broad line region (BLR), comprising individual clouds with density of 0.1-8 ×\times 109^9 cm3^{-3} and column density of 1023^{23}-1024^{24} cm2^{-2}. The derived properties of the clumpy torus can also be used to estimate the torus half-opening angle, which is of the order of 47 ^\circ. We also confirm the previously reported detection of two highly ionized warm absorbers with outflow velocities of 1000-4000 km s1^{-1}. The observed outflow velocities are consistent with the Keplerian/escape velocity at the BLR. Hence, the warm absorbers may be tentatively identified with the warm/hot inter-cloud medium which ensures that the BLR clouds are in pressure equilibrium with their surroundings. The BLR line-emitting clouds may well be the cold, dense clumps of this outflow, whose warm/hot phase is likely more homogeneous, as suggested by the lack of strong variability of the warm absorber(s) properties during our monitoring.Comment: 15 pages, 4 tables, and 9 figures. Accepted for publication in MNRA
    corecore