34 research outputs found
Low-Lying Excitations from the Yrast Line of Weakly Interacting Trapped Bosons
Through an extensive numerical study, we find that the low-lying,
quasi-degenerate eigenenergies of weakly-interacting trapped N bosons with
total angular momentum L are given in case of small L/N and sufficiently small
L by E = L hbar omega + g[N(N-L/2-1)+1.59 n(n-1)/2], where omega is the
frequency of the trapping potential and g is the strength of the repulsive
contact interaction; the last term arises from the pairwise repulsive
interaction among n octupole excitations and describes the lowest-lying
excitation spectra from the Yrast line. In this case, the quadrupole modes do
not interact with themselves and, together with the octupole modes, exhaust the
low-lying spectra which are separated from others by N-linear energy gaps.Comment: 5 pages, RevTeX, 2 figures, revised version, submitted to PR
Low-lying excitations of a trapped rotating Bose-Einstein condensate
We investigate the low-lying excitations of a weakly-interacting,
harmonically-trapped Bose-Einstein condensed gas under rotation, in the limit
where the angular mometum of the system is much less than the number of the
atoms in the trap. We show that in the asymptotic limit the
excitation energy, measured from the energy of the lowest state, is given by
, where is the number of octupole
excitations and is the unit of the interaction energy.Comment: 3 pages, RevTex, 2 ps figures, submitted to PR
Operator-Algebraic Approach to the Yrast Spectrum of Weakly Interacting Trapped Bosons
We present an operator-algebraic approach to deriving the low-lying
quasi-degenerate spectrum of weakly interacting trapped N bosons with total
angular momentum \hbar L for the case of small L/N, demonstrating that the
lowest-lying excitation spectrum is given by 27 g n_3(n_3-1)/34, where g is the
strength of the repulsive contact interaction and n_3 the number of excited
octupole quanta. Our method provides constraints for these quasi-degenerate
many-body states and gives higher excitation energies that depend linearly on
N.Comment: 7 pages, one figur
Photon interferometry and size of the hot zone in relativistic heavy ion collisions
The parameters obtained from the theoretical analysis of the single photon
spectra observed by the WA98 collaboration at SPS energies have been used to
evaluate the two photon correlation functions. The single photon spectra and
the two photon correlations at RHIC energies have also been evaluated, taking
into account the effects of the possible spectral change of hadrons in a
thermal bath. We find that the ratio for SPS and
for RHIC energy.Comment: text changed, figures adde
Cations extraction of sandy-clay soils from Cavado valley, Portugal, using sodium salts solutions
Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent
extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay
material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.Têm ocorrido casos de contaminações de águas de poços, por metais, no vale do Rio Cávado, região noroeste de Portugal. A princípio, poderiam ser explicáveis pela elevada lixiviação dos solos arenoargilosos
da região, quando da prática de adubações intensivas de nitrogênio em áreas agrícolas. Assim, estudaram-se as características do intemperismo natural dos solos, particularmente da fração argila, característica da margem norte do rio Cávado. Coletaram-se amostras de vários locais, que foram submetidas, após caracterização físico-química, a ensaios de dissolução a partir de soluções de sais de sódio com diferentes
forças iônicas. O objetivo foi observar as relações de determinados parâmetros físico-químicos da água, tais
como: pH, nitratos, cloretos e sulfatos na dissolução das argilas e a conseqüente extração de espécies químicas tais como Al, K e Fe. Para solos areno-argilosos, ácidos, cuja composição mineralógica se caracteriza
por um predomínio de quartzo, micas, caulinita e feldspato-K, o abaixamento do pH da suspensão solo/água promove a solubilização das fases micáceas e feldspáticas. A presença do nitrato nas soluções aquosas promoveu aparentemente a extração de todos os três cátions: Al, K e Fe. O efeito da área superfícial específica
das partículas dos solos condicionou fortemente vários dos parâmetros cinéticos estudados relativos à extração dos cátions.(undefined
The Multiwavelength Approach to Unidentified Gamma-Ray Sources
As the highest-energy photons, gamma rays have an inherent interest to
astrophysicists and particle physicists studying high-energy, nonthermal
processes. Gamma-ray telescopes complement those at other wavelengths,
especially radio, optical, and X-ray, providing the broad, mutiwavelength
coverage that has become such a powerful aspect of modern astrophysics.
Multiwavelength techniques of various types have been developed to help
identify and explore unidentified gamma-ray sources. This overview summarizes
the ideas behind several of these methods.Comment: Proceedings of the Conference "The Multiwavelength Approach to
Unidentified Sources", to appear in the journal Astrophysics and Space
Scienc
Indirect signals from light neutralinos in supersymmetric models without gaugino mass unification
We examine indirect signals produced by neutralino self-annihilations, in the
galactic halo or inside celestial bodies, in the frame of an effective MSSM
model without gaugino-mass unification at a grand unification scale. We compare
our theoretical predictions with current experimental data of gamma-rays and
antiprotons in space and of upgoing muons at neutrino telescopes. Results are
presented for a wide range of the neutralino mass, though our discussions are
focused on light neutralinos. We find that only the antiproton signal is
potentially able to set constraints on very low-mass neutralinos, below 20 GeV.
The gamma-ray signal, both from the galactic center and from high galactic
latitudes, requires significantly steep profiles or substantial clumpiness in
order to reach detectable levels. The up-going muon signal is largely below
experimental sensitivities for the neutrino flux coming from the Sun; for the
flux from the Earth an improvement of about one order of magnitude in
experimental sensitivities (with a low energy threshold) can make accessible
neutralino masses close to O, Si and Mg nuclei masses, for which resonant
capture is operative.Comment: 17 pages, 1 tables and 5 figures, typeset with ReVTeX4. The paper may
also be found at http://www.to.infn.it/~fornengo/papers/indirect04.ps.gz or
through http://www.astroparticle.to.infn.it/. Limit from BR(Bs--> mu+ mu-)
adde
The Geminga Fraction
Radio-quiet gamma-ray pulsars like Geminga may account for a number of the unidentified EGRET sources in the Galaxy. The number of Geminga-like pulsars is very sensitive to the geometry of both the gamma-ray and radio beams. Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1 -10%) of their light cylinder radius. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the gamma-ray beams predicted by slot gap and outer gap models. From the results of this study one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the gamma-ray pulsar population
The nuclear collective motion
Current developments in nuclear structure are discussed from a theoretical perspective. First, the progress in theoretical modeling of nuclei is reviewed. This is followed by the discussion of nuclear time scales, nuclear collective modes, and nuclear deformations. Some perspectives on nuclear structure research far from stability are given. Finally, interdisciplinary aspects of the nuclear many-body problem are outlined